• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python linalg.svd函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.linalg.svd函数的典型用法代码示例。如果您正苦于以下问题:Python svd函数的具体用法?Python svd怎么用?Python svd使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了svd函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_betti0_periodic

def test_betti0_periodic(horiz_complex, vert_complex):
    """
    Verify that the 0-form Hodge Laplacian has kernel of dimension
    equal to the 0th Betti number of the periodic extruded interval,
    i.e. 1.  Also verify that the 0-form Hodge Laplacian with
    Dirichlet boundary conditions has kernel of dimension equal to the
    2nd Betti number of the extruded mesh, i.e. 0.
    """
    U0, U1 = horiz_complex
    V0, V1 = vert_complex

    m = PeriodicUnitIntervalMesh(5)
    mesh = ExtrudedMesh(m, layers=4, layer_height=0.25)
    U0 = FiniteElement(U0[0], "interval", U0[1])
    V0 = FiniteElement(V0[0], "interval", V0[1])

    W0_elt = TensorProductElement(U0, V0)
    W0 = FunctionSpace(mesh, W0_elt)

    u = TrialFunction(W0)
    v = TestFunction(W0)

    L = assemble(inner(grad(u), grad(v))*dx)
    uvecs, s, vvecs = linalg.svd(L.M.values)
    nharmonic = sum(s < 1.0e-5)
    assert(nharmonic == 1)

    bcs = [DirichletBC(W0, 0., x) for x in ["top", "bottom"]]
    L = assemble(inner(grad(u), grad(v))*dx, bcs=bcs)
    uvecs, s, vvecs = linalg.svd(L.M.values)
    nharmonic = sum(s < 1.0e-5)
    assert(nharmonic == 0)
开发者ID:firedrakeproject,项目名称:firedrake,代码行数:32,代码来源:test_2d_cohomology.py


示例2: test_betti0

def test_betti0(space, mesh):
    """
    Verify that the 0-form Hodge Laplacian with strong Dirichlet
    boundary conditions has kernel of dimension equal to the 2nd Betti
    number of the annulus mesh, i.e. 0.
    """
    V0tag, V1tag, V2tag = space

    if(len(V0tag) == 2):
        V0 = FunctionSpace(mesh, V0tag[0], V0tag[1])
    else:
        V0a = FiniteElement(V0tag[0], "triangle", V0tag[1])
        V0b = FiniteElement(V0tag[2], "triangle", V0tag[3])
        V0 = FunctionSpace(mesh, V0a + V0b)
    # V0 Hodge Laplacian
    u = TrialFunction(V0)
    v = TestFunction(V0)

    L = assemble(inner(nabla_grad(u), nabla_grad(v))*dx)

    bc0 = DirichletBC(V0, Constant(0.0), 9)
    L0 = assemble(inner(nabla_grad(u), nabla_grad(v))*dx, bcs=[bc0])

    u, s, v = linalg.svd(L.M.values)
    nharmonic = sum(s < 1.0e-5)
    assert(nharmonic == 1)

    u, s, v = linalg.svd(L0.M.values)
    nharmonic = sum(s < 1.0e-5)
    assert(nharmonic == 0)
开发者ID:firedrakeproject,项目名称:firedrake,代码行数:30,代码来源:test_2dcohomology.py


示例3: admira

def admira(r, b, m, n, iter, A, A_star):
	if 2*r > min(m,n):
		r_prime = min(m,n)
	else:
		r_prime = 2*r

	# initialization
	X_hat = np.random.randn(m,n) # step 1
	Psi_hatU = np.matrix([])
	Psi_hatV = np.matrix([])
	for i in range(iter):
		Y = A_star(b - A(X_hat))
		(U, s, Vt) = svd(Y)
		Psi_primeU = U[:, 0:r_prime]
		Psi_primeV = Vt.T[:, 0:r_prime]
		if i > 0:
			Psi_tildeU = np.bmat([Psi_primeU, Psi_hatU])
			Psi_tildeV = np.bmat([Psi_primeV, Psi_hatV])
		else:
			Psi_tildeU = Psi_primeU
			Psi_tildeV = Psi_primeV
		AP = lambda b: APsiUV(b, A, Psi_tildeU, Psi_tildeV)
		APt = lambda s: APsitUV(s, A_star, Psi_tildeU, Psi_tildeV)
		ALS = lambda b: APt(AP(b))
		(s, res, iter) = cgsolve(ALS, APt(b), 1e-6, 100, False)
		X_tilde = Psi_tildeU*np.matrix(np.diag(np.array(s).reshape(-1)))*Psi_tildeV.T
		(U, s, Vt) = svd(X_tilde)
		Psi_hatU = U[:, 0:r]
		Psi_hatV = Vt.T[:, 0:r]
		X_hat = Psi_hatU*np.diag(s[0:r])*Psi_hatV.T

	return X_hat
开发者ID:ab39826,项目名称:IndexCoding,代码行数:32,代码来源:greedy_alignment.py


示例4: principal_angles

def principal_angles(A, B):
    '''Compute the principal angles between subspaces A and B.

    The algorithm for computing the principal angles is described in :
    A. V. Knyazev and M. E. Argentati,
    Principal Angles between Subspaces in an A-Based Scalar Product: 
    Algorithms and Perturbation Estimates. SIAM Journal on Scientific Computing, 
    23 (2002), no. 6, 2009-2041.
    http://epubs.siam.org/sam-bin/dbq/article/37733
    '''    
    # eps = np.finfo(np.float64).eps**.981
    # for i in range(A.shape[1]):
    #     normi = la.norm(A[:,i],np.inf)
    #     if normi > eps: A[:,i] = A[:,i]/normi
    # for i in range(B.shape[1]):
    #     normi = la.norm(B[:,i],np.inf)
    #     if normi > eps: B[:,i] = B[:,i]/normi
    QA = sl.orth(A)
    QB = sl.orth(B)
    _, s, Zs = svd(QA.T.dot(QB), full_matrices=False)
    s = np.minimum(s, ones_like(s))
    theta = np.maximum(np.arccos(s), np.zeros_like(s))
    V = QB.dot(Zs)
    idxSmall = s > np.sqrt(2.)/2.
    if np.any(idxSmall):
        RB = V[:,idxSmall]
        _, x, _ = svd(RB-QA.dot(QA.T.dot(RB)),full_matrices=False)
        thetaSmall = np.flipud(np.maximum(arcsin(np.minimum(x, ones_like(x))), zeros_like(x)))
        theta[idxSmall] = thetaSmall
    return theta
开发者ID:sylvchev,项目名称:mdla,代码行数:30,代码来源:dict_metrics.py


示例5: __init__

 def __init__(self,data):
     self.data = data
     self.N,self.p = self.data.shape
     self.covMatrix = covmatrix(self.data)
     self.corMatrix = corrmatrix(self.data)
     _,self.covlambda,_ = svd(self.covMatrix, full_matrices=False)
     _,self.corlambda,_ = svd(self.corMatrix, full_matrices=False)
开发者ID:thelahunginjeet,项目名称:kbutil,代码行数:7,代码来源:stopping.py


示例6: frequent_directions

def frequent_directions(A, ell):
  """A matrix "A" should be 256x7291
  """

  m = 256
  n = 7291

  if A.shape[0] != m or A.shape[1] != n: raise ValueError('Error: incorrect matrix size')

  start = time.clock()

  B = np.hstack((A[:, :(ell-1)], np.zeros((m, 1))))

  for i in range(ell-1, n):

    # new matrix is just a single vector (i-th column of A)
    B[:, ell-1] = A[:, i]
    U, s, V = ln.svd(B, full_matrices=False)

    delta = s[-1] ** 2 # squared smallest singular value

    B = np.dot(U, np.diag(np.sqrt(abs(s ** 2 - delta))))

  U, s, V = ln.svd(B, full_matrices=False)

  elapsed_time = time.clock() - start
  print 'time:', elapsed_time

  return U, s, V
开发者ID:takuti,项目名称:incremental-matrix-approximation,代码行数:29,代码来源:frequent_directions.py


示例7: AND

def AND(C, B):
	
	dim, col = C.shape
	tolerance = 1e-14

	UC, SC, UtC = svd(C)
	UB, SB, UtB = svd(B)

	diag_SC = diag(SC)
	diag_SB = diag(SB)

	# sum up how many elements on diagonal 
	# are bigger than tolerance
	numRankC =  (1.0 * (diag_SC > tolerance)).sum()
	numRankB =  (1.0 * (diag_SB > tolerance)).sum()

	UC0 = matrix(UC[:, numRankC:])
	UB0 = matrix(UB[:, numRankB:])
	W, Sigma, Wt = svd(UC0 * UC0.transpose() + UB0 * UB0.transpose())
	numRankSigma =  (1.0 * (diag(Sigma) > tolerance)).sum()
	Wgk = matrix(W[:, numRankSigma:])
	I = matrix(identity(dim))
	CandB = \
	  Wgk * inv(Wgk.transpose() *  \
	  ( pinv(C, tolerance) + pinv(B, tolerance) - \
	    I) * Wgk) *Wgk.transpose()
	return CandB
开发者ID:trondarild,项目名称:ikaros,代码行数:27,代码来源:conceptor.py


示例8: get_eigenvectors

def get_eigenvectors(spikes, nfeats, nspikes):
    """Calculate eigenvectors of spike waveforms

    spikes: resampled and aligned spike waveforms, dimensions (nspikes, nsamples)
    nfeats: the number of the most significant eigenvectors to return
    nspikes: the number of spikes to use

    Returns eigenvectors, dimension (nsamples, nfeats). Does not need to be
    transposed to calculate projections.

    The call to svd may "fail to converge", which just means dgesdd (a faster
    algorithm) didn't work. In this case, the algorithm tries to decompose the
    transpose. (see
    http://r.789695.n4.nabble.com/Observations-on-SVD-linpack-errors-and-a-workaround-td837282.html)

    """
    from numpy.linalg import svd, LinAlgError
    # center data
    data = spikes[:nspikes] - spikes[:nspikes].mean(0)
    try:
        u, s, v = svd(data, full_matrices=0)
        return v[:nfeats].T.copy()
    except LinAlgError:
        u, s, v = svd(data.T, full_matrices=0)
        return u[:, :nfeats].copy()
开发者ID:melizalab,项目名称:mspikes,代码行数:25,代码来源:spike_extraction.py


示例9: PCA

def PCA(Y, components):
	"""
	run PCA, retrieving the first (components) principle components
	return [s0, eig, w0]
	s0: factors
	w0: weights
	"""

	N,D = Y.shape
	sv = linalg.svd(Y, full_matrices=0);
	[s0, w0] = [sv[0][:, 0:components], np.dot(np.diag(sv[1]), sv[2]).T[:, 0:components]]
	v = s0.std(axis=0)
	s0 /= v;
	w0 *= v;
	return [s0, w0]

	if N>D:
		sv = linalg.svd(Y, full_matrices=0);
		[s0, w0] = [sv[0][:, 0:components], np.dot(np.diag(sv[1]), sv[2]).T[:, 0:components]]
		v = s0.std(axis=0)
		s0 /= v;
		w0 *= v;
		return [s0, w0]
	else:
		K=np.cov(Y)
		sv = linalg.eigh(K)
		std_var = np.sqrt(sv[0])
		pc = sv[1]*std_var[np.newaxis(),0]
		#
		#ipdb.set_trace()
		return [pc,std_var]
开发者ID:PMBio,项目名称:limix,代码行数:31,代码来源:pca.py


示例10: _create_SDP

    def _create_SDP(self):
        """ Creates the SDP knockoff of X"""
 
        # Check for rank deficiency (will add later).
 
        # SVD and come up with perpendicular matrix
        U, d, V = nplin.svd(self.X,full_matrices=True) 
        d[d<0] = 0
        U_perp = U[:,self.p:(2*self.p)]
        if self.randomize:
            U_perp = np.dot(U_perp,splin.orth(npran.randn(self.p,self.p)))
 
        # Compute the Gram matrix and its (pseudo)inverse.
        G     = np.dot(V.T * d**2 ,V)
        G_inv = np.dot(V.T * d**-2,V)
 
        # Optimize the parameter s of Equation 1.3 using SDP.
        self.s = solve_sdp(G)
        self.s[s <= self.zerotol] = 0
 
        # Construct the knockoff according to Equation 1.4:
        C_U,C_d,C_V = nplin.svd(2*np.diag(s) - (self.s * G_inv.T).T * self.s)
        C_d[C_d < 0] = 0
        X_ko = self.X - np.dot(self.X,G_inv*s) + np.dot(U_perp*np.sqrt(C_d),C_V)
        self.X_lrg = np.concatenate((self.X,X_ko), axis=1)
开发者ID:ajmaurer,项目名称:Chicago-Course-Work,代码行数:25,代码来源:knockoffGLM.py


示例11: stdNorm

    def stdNorm(self, U1, U2):
        print "U1"
        print U1
        print "U2"
        print U2

        mat1 = np.matrix(U1).T
        print mat1
        print mat1.mean(axis=1)
        mat1 = mat1 - mat1.mean(axis=1)
        print mat1
        mat1cov = np.cov(mat1)
        print mat1cov
        p1,l1,p1t = NLA.svd(mat1cov)
        print p1
        print l1
        print p1t
        l1sq = SLA.sqrtm(SLA.inv(np.diag(l1))) 
        snU1 =  np.dot(np.dot(l1sq, p1.T), mat1)

        mat2 = np.matrix(U2).T
        mat2 = mat2 - mat2.mean(axis=1)
        mat2cov = np.cov(mat2)
        p2,l2,p2t = NLA.svd(mat2cov)
        l2sq = SLA.sqrtm(SLA.inv(np.diag(l2))) 
        snU2 =  np.dot(np.dot(l2sq, p2.T), mat2)

        print "cov:"
        print np.cov(snU1)
        print np.cov(snU2)

        return snU1, snU2
开发者ID:cvpapero,项目名称:rqt_cca,代码行数:32,代码来源:roscca3.py


示例12: planar_ransac

	def planar_ransac(self, pc):
		#fit to model Ax  +By + Cz + D = 0 (a plane)
		sample_iter = 20
		pc = pc[np.nonzero(np.nansum(pc, axis=1)>0)[0], :]
		pc = pc[::sample_iter,:]
		pc_len = pc.shape[0]
		n=int(0.1*pc_len)		#size of random sample
#		print "Points: ", n
		k=15; 		#number of iteration
		err_thresh=0.01				#deviation - meters
		min_points=.5*pc_len	 	#minime amount of points within deviation		
		
		iter_ = 0
		best_model = None
		best_consensus_set = None
		best_error = np.inf
		best_offset = None
		
		while best_model == None:
			while iter_ < k:

				maybe_inliers = pc[np.random.randint(0, pc_len, (n))] #get n random points from pc
				offset = np.mean(maybe_inliers, axis=0)
				maybe_inliers -= offset
				# Find model
				_,_,Vs = svd(maybe_inliers)
				V = Vs.T.conj() 
				Normal = V[:,2]
				maybe_model = Normal
				consensus_set = maybe_inliers

				err = np.sum((pc-offset) * maybe_model, axis=1)
				consensus_set = pc[np.nonzero(err < err_thresh)[0]]
#				print consensus_set.shape, pc_len
			
				if consensus_set.shape[0] > min_points:
					_,_,Vs = svd(maybe_inliers)
					V = Vs.T.conj() 
					Normal = V[:,2]
					better_model = Normal
				
					offset = np.mean(consensus_set, axis=0)
					new_error = np.sum(np.sum((consensus_set-offset) * maybe_model, axis=1))
#					print new_error
				
					if abs(new_error) < best_error:
	#					print "iter: ", iter_
	#					print "e: ", best_error					
						best_model = better_model
						best_consensus_set = consensus_set
						best_error = abs(new_error)
						best_offset = offset
					
				iter_ += 1
			#if there is no model, decrease the number of points required for 'best' model
			min_points = min_points*3/4 
			iter_ = 0
			
		return best_model, best_offset
开发者ID:ChristopherMcFaul,项目名称:Previous-Work,代码行数:59,代码来源:detectionObjectFinder.py


示例13: check

 def check(dtype):
     x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
     u, s, vh = linalg.svd(x)
     assert_equal(u.dtype, dtype)
     assert_equal(s.dtype, get_real_dtype(dtype))
     assert_equal(vh.dtype, dtype)
     s = linalg.svd(x, compute_uv=False)
     assert_equal(s.dtype, get_real_dtype(dtype))
开发者ID:Prastaruszek,项目名称:numpy,代码行数:8,代码来源:test_linalg.py


示例14: nk_singular

def nk_singular(a,k, opt):
  (size,_) = a.shape
  nseq = rdft.all_leading_sequence(size)[-1]
  seq  = rdft.all_leading_sequence(k)[-1]
  if opt == 0:
    _, sings, _ = linalg.svd(a[np.ix_(nseq,seq)])
  else:
    _, sings, _ = linalg.svd(a[np.ix_(seq,nseq)])
  return sings
开发者ID:warelle,项目名称:rdft,代码行数:9,代码来源:myinput.py


示例15: conceptor_similarity

def conceptor_similarity (a, b): 
      U_a, S_a, V_a = svd(a);
      U_b, S_b, V_b = svd(b);
      S_a = diag(S_a)
      S_b = diag(S_b)
      # similarity with previous conceptor
      return pow(norm((sqrt(S_a) * U_a.transpose() * \
              U_b * sqrt(S_b))),2) / \
              (norm(a) * norm(b));
开发者ID:trondarild,项目名称:ikaros,代码行数:9,代码来源:conceptor.py


示例16: test_betti1

def test_betti1(space):
    """
    Verify that the 1-form Hodge Laplacian with strong Dirichlet
    boundary conditions has kernel of dimension equal to the 1st Betti
    number of the annulus mesh, i.e. 1.
    """
    mesh = Mesh(join(cwd, "annulus.msh"))
    V0tag, V1tag, V2tag = space

    if(len(V0tag) == 2):
        V0 = FunctionSpace(mesh, V0tag[0], V0tag[1])
    else:
        V0a = FiniteElement(V0tag[0], "triangle", V0tag[1])
        V0b = FiniteElement(V0tag[2], "triangle", V0tag[3])
        V0 = FunctionSpace(mesh, V0a + V0b)

    V1 = FunctionSpace(mesh, V1tag[0], V1tag[1])

    W = V0*V1
    sigma, u = TrialFunctions(W)
    tau, v = TestFunctions(W)
    L = assemble((sigma*tau - inner(rot(tau), u) + inner(rot(sigma), v) +
                  div(u)*div(v))*dx)

    bc0 = DirichletBC(W.sub(0), 0., 9)
    bc1 = DirichletBC(W.sub(1), Expression(("0.0", "0.0")), 9)
    L0 = assemble((sigma*tau - inner(rot(tau), u) + inner(rot(sigma), v) +
                   div(u)*div(v))*dx, bcs=[bc0, bc1])

    dV0 = V0.dof_count
    dV1 = V1.dof_count

    A = numpy.zeros((dV0+dV1, dV0+dV1))
    A[:dV0, :dV0] = L.M[0, 0].values
    A[:dV0, dV0:dV0+dV1] = L.M[0, 1].values
    A[dV0:dV0+dV1, :dV0] = L.M[1, 0].values
    A[dV0:dV0+dV1, dV0:dV0+dV1] = L.M[1, 1].values

    u, s, v = linalg.svd(A)

    nharmonic = sum(s < 1.0e-5)
    assert(nharmonic == 1)

    dV0 = V0.dof_count
    dV1 = V1.dof_count

    A0 = numpy.zeros((dV0+dV1, dV0+dV1))
    A0[:dV0, :dV0] = L0.M[0, 0].values
    A0[:dV0, dV0:dV0+dV1] = L0.M[0, 1].values
    A0[dV0:dV0+dV1, :dV0] = L0.M[1, 0].values
    A0[dV0:dV0+dV1, dV0:dV0+dV1] = L0.M[1, 1].values

    u, s, v = linalg.svd(A0)

    nharmonic = sum(s < 1.0e-5)
    assert(nharmonic == 1)
开发者ID:nicoddemus,项目名称:firedrake,代码行数:56,代码来源:test_2dcohomology.py


示例17: get_singular

def get_singular(a,fra):
  (size,_) = a.shape
  a_fra_subsings = []
  _, a_sings, _ = linalg.svd(a)
  i = 0
  for seq in rdft.all_leading_sequence(size):
    _, fra_subsing, _ = linalg.svd(fra[np.ix_(seq,seq)])
    a_fra_subsings.append( (a_sings[i], fra_subsing[-1]) )
    i = i + 1
  return a_fra_subsings
开发者ID:warelle,项目名称:rdft,代码行数:10,代码来源:myinput.py


示例18: incremental_svd

def incremental_svd(A, qr_flg=False):
  """A matrix "A" should be 256x7291
  """

  m = 256
  n = 7291

  n0 = 256

  if A.shape[0] != m or A.shape[1] != n: raise ValueError('Error: incorrect matrix size')

  start = time.clock()

  A0 = A[:, :n0]
  U, s, V = ln.svd(A0, full_matrices=False)

  # NOTE: s is a vector; np.diag(s) will produce a diagonal matrix
  for i in range(n0, n):

    # new matrix is just a single vector (i-th column of A)
    A1 = np.matrix(A[:, i]).T

    if qr_flg:
      J, K = ln.qr(A1 - np.dot(np.dot(U, U.T), A1))
      U_, s_, V_ = ln.svd(
          np.vstack((
            np.hstack((np.diag(s), np.dot(U.T, A1))),
            np.hstack((np.zeros((K.shape[0], s.shape[0])), K))
          )),
          full_matrices=False)

      # update the result of SVD
      U = np.dot(np.hstack((U, J)), U_)

    else:
      U_, s_, V_ = ln.svd(np.hstack((np.diag(s), np.dot(U.T, A1))), full_matrices=False)
      U = np.dot(U, U_)

    s = s_

    # NOTE: V from svd on NumPy is already transposed
    V = np.dot(V_,
          np.vstack((
            np.hstack((V, np.zeros((V.shape[0], i+1-V.shape[1])))),
            np.hstack((np.zeros((V_.shape[1]-V.shape[0], V.shape[1])), np.eye(V_.shape[1]-V.shape[0], i+1-V.shape[1])))
          ))
        )

    # for next computation, update A0
    A0 = np.hstack((A0, A1))

  elapsed_time = time.clock() - start
  print 'time:', elapsed_time

  return U, s, V
开发者ID:takuti,项目名称:incremental-matrix-approximation,代码行数:55,代码来源:incremental_svd.py


示例19: PCA

def PCA(X):
    # tansform X to be centered data
    # cauz the feature dimention is larger than data number, so we should calculate the SVD of X's transpose
    V,D,UT = svd(X.T)
    U1,D1,VT1 = svd(X)
    U = array(matrix(UT).T)
    results = []
    results.append(U[:,0])
    results.append(U[:,1])
    results = dot(results,X) 
    return results
开发者ID:RONGLX,项目名称:CSmathhomework2,代码行数:11,代码来源:PCA.py


示例20: G

 def G(self):
     if self.pos in (0,len(self)):
         B=self[self.pos] if self.pos==0 else self[self.pos-1]
         U,S,V=svd(B.V.dot(B.U).transpose().conjugate()+np.diag(B.S))
         U,V=B.U.dot(U).transpose().conjugate(),V.dot(B.V).transpose().conjugate()
         return np.einsum('ij,j,jk->ik',V,1.0/S,U)
     else:
         BR,BL=self[self.pos-1],self[self.pos]
         U,S,V=svd(BL.V.dot(BR.U).transpose().conjugate()+np.einsum('i,ij,jk,k->ik',BR.S,BR.V,BL.U,BL.S))
         U,V=BR.U.dot(U).transpose().conjugate(),V.dot(BL.V).transpose().conjugate()
         return np.einsum('ij,j,jk->ik',V,1.0/S,U)
开发者ID:waltergu,项目名称:HamiltonianPy,代码行数:11,代码来源:DQMC.py



注:本文中的numpy.linalg.svd函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python linalg.norm函数代码示例发布时间:2022-05-27
下一篇:
Python linalg.solve函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap