• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python linalg.norm函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.linalg.linalg.norm函数的典型用法代码示例。如果您正苦于以下问题:Python norm函数的具体用法?Python norm怎么用?Python norm使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了norm函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: spiral_sphere

def spiral_sphere(N, Om=2*pi, b=array((0, 0, 1))):
    """
    Internal helper function for the raycasting that returns an array of
    unit vectors (N, 3) giving equally distributed directions on a part of
    sphere given by the center direction b and the solid angle Om
    """
    # first produce 'equally' distributed directions in spherical coords
    o = 4*pi/Om
    h = -1+ 2*arange(N)/(N*o-1.)
    theta = arccos(h)
    phi = zeros_like(theta)
    for i, hk in enumerate(h[1:]):
        phi[i+1] = phi[i]+3.6/sqrt(N*o*(1-hk*hk)) % (2*pi)
    # translate to cartesian coords
    xyz = vstack((sin(theta) * cos(phi), sin(theta) * sin(phi), cos(theta)))
    # mirror everything on a plane so that b points into the center
    a = xyz[:, 0]
    b = b/norm(b)
    ab = (a-b)[:, newaxis]
    if norm(ab)<1e-10:
        return xyz
    # this is the Householder matrix for mirroring
    H = identity(3)-dot(ab, ab.T)/dot(ab.T, a)
    # actual mirroring
    return dot(H, xyz)
开发者ID:g4idrijs,项目名称:acoular,代码行数:25,代码来源:environments.py


示例2: j

 def j(self, x, u):
     j = super(CtmAdmm, self).j(x, u)
     x_strip = self.strip_x(x)
     u_strip = self.strip_u(u)
     ramp_strip = self.strip_ramp(u)
     j += tog.t * self.yl.dot(x_strip) + self.beta / 2.0 * norm(x_strip - self.xbarl)
     j += tog.t * self.yr.dot(u_strip) + self.beta / 2.0 * norm(u_strip - self.xbarr)
     j += tog.t * self.yramp.dot(ramp_strip) + self.beta / 2.0 * norm(ramp_strip - self.xbarramp)
     return j
开发者ID:jackdreilly,项目名称:adjoint-admm,代码行数:9,代码来源:ctm_admm.py


示例3: test_3

 def test_3(self):
     kernel=GaussianKernel(sigma=10)
     X=randn(3000,10)
     K_chol, I, R, W=incomplete_cholesky(X, kernel, eta=0.001)
     K=kernel.kernel(X)
     
     self.assertEqual(shape(K_chol), (len(I), (len(I))))
     self.assertEqual(shape(R), (len(I), (len(X))))
     self.assertEqual(shape(W), (len(I), (len(X))))
     
     self.assertLessEqual(norm(K-R.T.dot(R)), 1)
     self.assertLessEqual(norm(K-W.T.dot(K_chol.dot(W))), 1)
开发者ID:karlnapf,项目名称:graphlab,代码行数:12,代码来源:IncopleteCholeskyTests.py


示例4: create_square_from_two_points

def create_square_from_two_points(a_point,b_point):
    """   
    Let a and b two points, this function will return a square (polygon)
    in which the a_point is at one corner and in the other extreme corner a point in the direction of b.
    
    Parameters
    ----------
        
        a_point : geometry (shapely Point)
        b_point : geometry (shapely Point) the direction is what matters
    
    """

        
    d = create_rectangle_from_two_points(a_point, b_point)
    
    apt = d['a']
    bpt = d['b']
    appt = d['a_p']
    bppt = d['b_p']

    a = asarray(apt)
    b = asarray(bpt)
    bp = asarray(bppt)
    ap = asarray(appt)
    
    a_m_bp = a - bp
    a_m_b = a - b
    a_m_ap = a - ap
    
    n_a_m_b = norm(a_m_b)
    n_a_m_ap = norm(a_m_ap)
    n_a_m_bp = norm(a_m_bp)
    
    if n_a_m_b < 0 :
        sig = -1.0
    elif n_a_m_b > 0 :
        sig = 1.0
    else:
        logger.error("The points are equal. It's not possible to generate an area with only one point.")
    
    
    p = (sig * ( n_a_m_ap / n_a_m_bp ) ) * a_m_bp

    pp = p + (a_m_ap) + a
    
    #n_chiqui = min((n_a_m_bp,n_a_m_ap))
    
    pp_pt = Point(pp)
    a_point = Point(a_point)
    new_dic = create_rectangle_from_two_points(a_point, pp_pt)
    return new_dic
开发者ID:molgor,项目名称:biospytial,代码行数:52,代码来源:tools.py


示例5: _compute_colors

    def _compute_colors(self, array_x, array_y):

        # on calcule le maximum absolu de toutes valeurs pour former un carré
        abs_maximum = max([max(map(abs,array_x)), max(map(abs,array_y))])
        diagonal_length = norm(array([abs_maximum, abs_maximum])) # longueur de la projection
        diag = array([diagonal_length, diagonal_length])
        anti_diag = array([-diagonal_length, diagonal_length])

        # on instancie le gradient de couleur sur le modèle de couleur du centre
        linear_normalizer = mpl.colors.Normalize(vmin=-abs_maximum, vmax=abs_maximum)
        log_normalizer = mpl.colors.SymLogNorm(abs_maximum/5, vmin=-abs_maximum, vmax=abs_maximum)
        r_to_b_gradient = cm.ScalarMappable(norm=linear_normalizer, cmap=redtoblue)

        # on calcule le produit scalaire de chaque valeur avec la diagonale
        # ensuite, on calcule la couleur à partir de la valeur de la projection sur la diagonale
        hex_color_values = []
        for i, x in enumerate(array_x):
            # on calcule les produits scalaire du point avec la diagonale et l'antidiagonale
            scal_p_diag = dot(array([array_x[i], array_y[i]]), diag) / diagonal_length
            scal_p_antidiag = dot(array([array_x[i], array_y[i]]), anti_diag) / diagonal_length

            #on calcule le gradient de couleur sur la diagonale
            on_diag_color = colorConverter.to_rgb(r_to_b_gradient.to_rgba(scal_p_diag))
            # puis on utilise cette couleur (en rgb) pour définir un gradient, dont la valeur sera estimée
            # sur l'antidiagonale
            on_diag_gradient = make_white_gradient(on_diag_color, log_normalizer)
            final_color = on_diag_gradient.to_rgba(scal_p_antidiag)

            #on traduit en HEX
            hex_color_values.append(rgb2hex(colorConverter.to_rgb(final_color)))

        return hex_color_values, abs_maximum
开发者ID:ThomasPoncet,项目名称:Ocre,代码行数:32,代码来源:correlations.py


示例6: test_mode_newton_2d

    def test_mode_newton_2d(self):
        X = asarray([-1, 1])
        X = reshape(X, (len(X), 1))
        y = asarray([+1 if x >= 0 else -1 for x in X])
        covariance = SquaredExponentialCovariance(sigma=1, scale=1)
        likelihood = LogitLikelihood()
        gp = GaussianProcess(y, X, covariance, likelihood)
        laplace = LaplaceApproximation(gp, newton_start=asarray([3, 3]))
        
        f_mode, _, steps = laplace.find_mode_newton(return_full=True)
        F = linspace(-10, 10, 20)
        D = zeros((len(F), len(F)))
        for i in range(len(F)):
            for j in range(len(F)):
                f = asarray([F[i], F[j]])
                D[i, j] = gp.log_posterior_unnormalised(f)
           
        idx = unravel_index(D.argmax(), D.shape)
        empirical_max = asarray([F[idx[0]], F[idx[1]]])
        
        pcolor(F, F, D)
        hold(True)
        plot(steps[:, 0], steps[:, 1])
        plot(f_mode[1], f_mode[0], 'mo', markersize=10)
        hold(False)
        colorbar()
        clf()
#        show()
           
        self.assertLessEqual(norm(empirical_max - f_mode), 1)
开发者ID:karlnapf,项目名称:kameleon-mcmc,代码行数:30,代码来源:LaplaceApproximationTests.py


示例7: on_mouse_move

def on_mouse_move(event):
	if event.press_event is None:
		return

	modifiers = event.modifiers
	pos = event.press_event.pos
	if is_in_view(pos, view1.camera):
		if modifiers is not ():
			if 1 in event.buttons and modifiers[0].name=='Control':
				# Translate: camera._scene_transform.imap(event.pos)
				p1 = np.array(pos)[:2]
				p2 = np.array(event.last_event.pos)[:2]
				p1 = p1 - view1.pos
				p2 = p2 - view1.pos
				# print p1,p2
				p1s = view1.camera._scene_transform.imap(p1)[:2]
				p2s = view1.camera._scene_transform.imap(p2)[:2]
				print p1s, p2s
				pos_ = np.vstack((p2s,p1s))
				# print pos_
				measure_line.set_data(pos=pos_)
				measure_line.visible = True
				d_pixel = norm(pos_[1,:]-pos_[0,:])
				d_um = d_pixel*get_mpp(_id)
				print 'distance =',d_um
				measure_text.visible = True
				measure_text.text = '%.2f um' % d_um
				measure_text.pos = pos_[1,:]
				measure_text.pos[0] -= 10
				event.handled = True
开发者ID:chongxi,项目名称:tritrode_proj,代码行数:30,代码来源:Electrogenesis_view_CA1_2channel.py


示例8: integrate_gyro

    def integrate_gyro( self ):
        w_gyr = array( self.gyr.get_gyr(  ) ) \
                * self.deg_to_rad;
        g_acc = array( self.acc.get_acc(  ) );
        dg    = cross( self.g, w_gyr );

        is_to_suppress_acc                 \
            = norm( g_acc ) - self.g0_norm \
            > self.d_gravity_threashold;
        #
        
        for i in range( 3 ):
            if is_to_suppress_acc:
                self.kalman[ i ].y_innov_modulate = 0.;
                print 'Suppressed acc';
            else:
                self.kalman[ i ].y_innov_modulate = 1.;
            #
            res = self.kalman[ i ] \
                  ( dg[ i ], g_acc[ i ], self.dt );
            if not isnan( res ):
                self.g[ i ] = res;
            #
        #

        self.g = self.normalize( self.g );
        return;
开发者ID:wll745881210,项目名称:RPi_GG_HUD,代码行数:27,代码来源:sensor.py


示例9: test_adapt_does_nothing

    def test_adapt_does_nothing(self):
        dimension = 3
        ps = rand(dimension)
        distribution = Bernoulli(ps)
        kernel = HypercubeKernel(1.)
        Z = zeros((2, distribution.dimension))
        threshold = 0.5
        spread = .5
        sampler = DiscreteKameleon(distribution, kernel, Z, threshold, spread)
        
        # serialise, call adapt, load, compare
        f = NamedTemporaryFile()
        dump(sampler, f)
        f.seek(0)
        sampler_copy = load(f)
        f.close()
        
        sampler.adapt(None, None)
        
        # rough check for equality, dont do a proper one here
        self.assertEqual(type(sampler_copy.kernel), type(sampler.kernel))
        self.assertEqual(sampler_copy.kernel.gamma, sampler.kernel.gamma)
        
        self.assertEqual(type(sampler_copy.distribution), type(sampler.distribution))
        self.assertEqual(sampler_copy.distribution.dimension, sampler.distribution.dimension)
        
        self.assertEqual(type(sampler_copy.Z), type(sampler.Z))
        self.assertEqual(sampler_copy.Z.shape, sampler.Z.shape)
        self.assertAlmostEqual(norm(sampler_copy.Z - sampler.Z), 0)
        
        self.assertEqual(sampler_copy.spread, sampler.spread)

        # this is none, so just compare
        self.assertEqual(sampler.Q, sampler_copy.Q)
开发者ID:karlnapf,项目名称:kameleon-mcmc,代码行数:34,代码来源:DiscreteKameleonUnitTest.py


示例10: v

    def v( self, xx):
        """
        Provides the flow field as a function of the location. This is
        implemented here only for the component in the direction of :attr:`flow`;
        entrainment components are set to zero.

        Parameters
        ----------
        xx : array of floats of shape (3, )
            Location in the fluid for which to provide the data.

        Returns
        -------
        tuple with two elements
            The first element in the tuple is the velocity vector and the
            second is the Jacobian of the velocity vector field, both at the
            given location.
        """
        # TODO: better to make sure that self.flow and self.plane are indeed unit vectors before
        # normalize
        flow = self.flow/norm(self.flow)
        plane = self.plane/norm(self.plane)
        # additional axes of global co-ordinate system
        yy = -cross(flow,plane)
        zz = cross(flow,yy)
        # distance from slot exit plane
        xx1 = xx-self.origin
        # local co-ordinate system 
        x = dot(flow,xx1)
        y = dot(yy,xx1)
        x1 = 0.109*x
        h1 = abs(y)+sqrt(pi)*0.5*x1-0.5*self.B
        if h1 < 0.0:
            # core jet
            Ux = self.v0
            Udx = 0
            Udy = 0
        else:
            # shear layer
            Ux = self.v0*exp(-h1*h1/(2*x1*x1))
            Udx = (h1*h1/(x*x1*x1)-sqrt(pi)*0.5*h1/(x*x1))*Ux
            Udy = -sign(y)*h1*Ux/(x1*x1)
        # Jacobi matrix
        dU = array(((Udx,0,0),(Udy,0,0),(0,0,0))).T
        # rotation matrix
        R = array((flow,yy,zz)).T
        return dot(R,array((Ux,0,0))), dot(dot(R,dU),R.T)
开发者ID:g4idrijs,项目名称:acoular,代码行数:47,代码来源:environments.py


示例11: move_axis

	def move_axis( self , dist , axis ) :
		''' translate cursor in self.node space '''

		axis = np.array( axis )
		axis = axis / la.norm( axis )
		axis*= dist

		return self.move_vec( axis )
开发者ID:jkotur,项目名称:Torrusador,代码行数:8,代码来源:cursor.py


示例12: dibujarpf

def dibujarpf(bdcha,cadena,pasos=1,ppo=0, fin = np.inf,multi = False):
    '''dibuja a partir de datos recogidos en arrays de datos tipo barco y cadena
    ver el sistema de preparar matrices para guardar datos dibuja también
    un buque fondeado buque = [eslora, manga, posición, orientación,de     sup'''
    
    
    
    if fin > bdcha.shape[0]-1:
        fin = bdcha.shape[0]-1
        
    for i in range(ppo,fin,pasos):
        if multi:
            figure()
        
        cms = np.array([cadena[i,0,:],cadena[i,1,:]])
        para = np.array([cadena[i,-2,:],cadena[i,-1,:]])
        pl.plot(cms[0,:],cms[1,:],'bo')
        pl.hold(True)
        barrasi = cms + cadena[-1,1,0] * para
        barrasd = cms - cadena[-1,1,0] * para
        pl.plot([barrasi[0,:],barrasd[0,:]],[barrasi[1,:],barrasd[1,:]],'k')
                        

        
        

        vertices = np.array([[-bdcha[-1,6]/2.,-0.25*bdcha[-1,6]/2],\
        [-bdcha[-1,6]/2.,0.25*bdcha[-1,6]/2],\
        [-0.25*bdcha[-1,6]/2,0.35*bdcha[-1,6]/2],[bdcha[-1,6]/2.,0],\
        [-0.25*bdcha[-1,6]/2,-0.35*bdcha[-1,6]/2],[-bdcha[-1,6]/2.,\
        -0.25*bdcha[-1,6]/2]])        
        rot = np.array([[np.cos(bdcha[i,6]),- np.sin(bdcha[i,6])],[np.sin(bdcha[i,6]),\
        np.cos(bdcha[i,6])]])       
        vertrot = np.array([np.dot(rot,j) for j in vertices]) + [bdcha[i,0],bdcha[i,1]]
        codes = [Path.MOVETO,Path.LINETO,Path.CURVE3,Path.CURVE3,Path.CURVE3,\
        Path.CURVE3]
     
        pathd = Path(vertrot,codes)
        patchd = patches.PathPatch(pathd,facecolor = 'green') #'green'
        pl.gca().add_patch(patchd)
         #######################dibujar cable de arrastre derecha#######################
        rot = np.array([[np.cos(bdcha[i,6]),- np.sin(bdcha[i,6])],[np.sin(bdcha[i,6]),\
        np.cos(bdcha[i,6])]])  
        popad =  np.dot(rot, np.array([-bdcha[-1,6]/2.,0])) + [bdcha[i,0],bdcha[i,1]]  
        tipd = - para[:,-1] * cadena[-1,1,0] + cms[:,-1]
        
        
        distd = norm(popad - tipd)
        dd = distd/cadena[-1,3,1]
        #print dd
        if dd > 1: dd = 1
        r = bezier_cvr.bezier4p([[tipd[0]],[tipd[1]]],[[popad[0]],[popad[1]]],1,1,1.5,\
        (1-dd) * bdcha[i,6]\
         +dd * np.arctan2(popad[1]-tipd[1],popad[0] - tipd[0]),\
        (1-dd) * np.arctan2(-para[0,0],-para[0,1])\
         +dd * np.arctan2(popad[1]-tipd[1],popad[0] - tipd[0]),\
        100)
        bezier_cvr.pintar_bezier(r[0],color = 'b')
开发者ID:juanjimenez,项目名称:pyships,代码行数:58,代码来源:dibujar_postmortem.py


示例13: test_log_pdf_1d_2n

 def test_log_pdf_1d_2n(self):
     mu = asarray([0], dtype=numpy.bool8)
     spread = rand()
     dist = DiscreteRandomWalkProposal(mu, spread)
     X = asarray([[1], [0]], dtype=numpy.bool8)
     log_liks = dist.log_pdf(X)
     expected = asarray([log(1.), -inf])
     self.assertAlmostEqual(norm(log_liks[0] - expected[0]), 0)
     self.assertEqual(log_liks[1], expected[1])
开发者ID:karlnapf,项目名称:kameleon-mcmc,代码行数:9,代码来源:DiscreteRandomWalkProposalUnitTest.py


示例14: test_kernel_X_two_points_fixed

 def test_kernel_X_two_points_fixed(self):
     gamma = .2
     k = HypercubeKernel(gamma)
     X = asarray([[1, 0], [1, 1]], dtype=numpy.bool8)
     K = zeros((2, 2))
     for i in range(2):
         for j in range(2):
             dist = sum(X[i] != X[j])
             K[i, j] = tanh(gamma) ** dist
     self.assertAlmostEqual(norm(K - k.kernel(X)), 0)
开发者ID:karlnapf,项目名称:kameleon-mcmc,代码行数:10,代码来源:HypercubeKernelUnitTest.py


示例15: testFitNorm

def testFitNorm():
    X = coo_matrix((ones(4),([0, 1, 2, 2], [1, 1, 0, 1])), shape=(3, 3), dtype=np.uint8).tolil()
    A = np.array([[0.9, 0.1],
         [0.8, 0.2],
         [0.1, 0.9]])
    R = np.array([[0.9, 0.1],
         [0.1, 0.9]])
    expectedNorm = norm(X - dot(A,dot(R, A.T)))**2
    assert_almost_equal(fitNorm(X, A, R), expectedNorm)  
    assert_almost_equal(fitNormWithoutNormX(X, A, R) + squareFrobeniusNormOfSparse(X), expectedNorm)
开发者ID:brianholland,项目名称:Ext-RESCAL,代码行数:10,代码来源:commonFunctionsTest.py


示例16: varify_gradient_decent

def varify_gradient_decent(lambda_num):
    input_layer_size = 3
    hidden_layer_size = 5
    num_labels = 3
    m = 5
    input = generate_debug_input(m, input_layer_size - 1)
    print(input)
    output = 1 + np.mod(np.arange(m).reshape(1, m), num_labels).T
    print(output)
    theta1 = rand_initialize_weights(input_layer_size, hidden_layer_size)
    theta2 = rand_initialize_weights(hidden_layer_size, num_labels)
    nn_param = unroll_params(theta1, theta2)

    cost_func = lambda param: cost_function(param, input_layer_size, hidden_layer_size, input, output, lambda_num,
                                            num_labels)
    (cost, grad) = cost_func(nn_param)
    num_grad = compute_numerical_gradient(cost_func, nn_param)
    diff = linalg.norm(num_grad - grad, 2) / linalg.norm(num_grad + grad,2)
    print("The relative difference will be small (less than 1e-9)", diff)
开发者ID:jasonhotsauce,项目名称:neural-network,代码行数:19,代码来源:neural_network.py


示例17: test_log_lik_vector_multiple2

 def test_log_lik_vector_multiple2(self):
     n=100
     y=randint(0,2,n)*2-1
     F=randn(10,n)
     
     lik=LogitLikelihood()
     multiples=lik.log_lik_vector_multiple(y, F)
     singles=asarray([lik.log_lik_vector(y, f) for f in F])
     
     self.assertLessEqual(norm(singles-multiples), 1e-10)
开发者ID:karlnapf,项目名称:kameleon-mcmc,代码行数:10,代码来源:LogitLikelihoodTests.py


示例18: test_log_lik_vector_multiple1

 def test_log_lik_vector_multiple1(self):
     n=100
     y=randint(0,2,n)*2-1
     f=randn(n)
     
     lik=LogitLikelihood()
     multiple=lik.log_lik_vector_multiple(y, f.reshape(1,n))
     single=lik.log_lik_vector(y, f)
     
     self.assertLessEqual(norm(single-multiple), 1e-10)
开发者ID:karlnapf,项目名称:kameleon-mcmc,代码行数:10,代码来源:LogitLikelihoodTests.py


示例19: rknewton

 def rknewton(self,f,t,x0,tol=1e-5, nmax=50, nmax_gss=100):
     F = lambda x,x0:  Matrix(lsolve(-self.J(t,x),f(x0)))
     #F = lambda x,x0:  Matrix(lsolve(-J(x),f(x0)))
     #F = lambda x,x0: -inv(J(x))*f(x0)
     if norm(f(x0),1) == 0:
         return [x0,f(x0), 0]
     else:
         for n in range(1,nmax+1):
             x = self.RK.RKX(lambda t,Y:F(Y,x0), 0, x0,1,1)[:,1]
             if norm(f(x),2) > norm(f(x0),2):
                 s = x - x0
                 f2 = lambda Y: (f(Y).T*f(Y))[0]
                 f2_= lambda alpha:f2(x0 + alpha*s)
                 alpha = gnewton(f2_,0,min(1.0*tol/norm(s,2),1e-2),nmax_gss)[0]
                 x = x0 + alpha*s
             if norm(x-x0, 1)<tol:
                 break
             else:
                 x0 = x
     return [x,f(x), n]
开发者ID:mrcouts,项目名称:Nyquist-Attack,代码行数:20,代码来源:RK.py


示例20: create_matrix

def create_matrix(m, k, p, N, iteration_number, starting_conditions):
    x = [random.choice([-1, 1]) for _ in range(0, N)]
    A = zeros(shape=(N, N))
    for i in range(0, N):
        for j in range(0, N):
            if i == j:
                A[i][j] = k
            elif j > i:
                A[i][j] = (-1) ** (j + 1) * (m / (j + 1))
            elif j == (i - 1):
                A[i][j] = m / (i + 1)
    x_copy = x
    b = dot(A, x)
    D = diag(A)
    R = A - diagflat(D)
    x = starting_conditions
    x_norm = p + 1
    i = 0
    B = R/D
    e_vals, e_vect = linalg.eig(B)
    print(";".join((str(N), str(max(abs(e_vals))))))
    # print "results for ||x(i+1) - x(i): "
    while (x_norm >= p) or (i > iteration_number):
        prev_x = x
        x = (b - dot(R, x)) / D
        x_norm = linalg.norm(x - prev_x, inf)  # norma typu max po kolumnach
        i += 1

    # print ";".join((str(N), str("%.8f" % p), str(i), str("%.15f" % linalg.norm(x_copy - x)), str("%.15f" % linalg.norm(x_copy - x, inf)))) + ";",
    x = x_copy
    b = dot(A, x)
    D = diag(A)
    R = A - diagflat(D)
    x = starting_conditions
    b_norm = p + 1
    i = 0
    # print "results for ||Ax(i) -b ||"
    while (b_norm >= p) or (i > iteration_number):
        x = (b - dot(R, x)) / D
        b_norm = linalg.norm(dot(A, x) - b, inf)
        i += 1
开发者ID:WiktorJ,项目名称:Computation-Methods,代码行数:41,代码来源:JacobiMethodSovler.py



注:本文中的numpy.linalg.linalg.norm函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python ma.allclose函数代码示例发布时间:2022-05-27
下一篇:
Python linalg.svd函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap