本文整理汇总了Python中numpy.ma.asarray函数的典型用法代码示例。如果您正苦于以下问题:Python asarray函数的具体用法?Python asarray怎么用?Python asarray使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了asarray函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: set_UVC
def set_UVC(self, U, V, C=None):
self.u = ma.asarray(U).ravel()
self.v = ma.asarray(V).ravel()
if C is not None:
c = ma.asarray(C).ravel()
x,y,u,v,c = delete_masked_points(self.x.ravel(), self.y.ravel(),
self.u, self.v, c)
else:
x,y,u,v = delete_masked_points(self.x.ravel(), self.y.ravel(),
self.u, self.v)
magnitude = np.sqrt(u*u + v*v)
flags, barbs, halves, empty = self._find_tails(magnitude,
self.rounding, **self.barb_increments)
#Get the vertices for each of the barbs
plot_barbs = self._make_barbs(u, v, flags, barbs, halves, empty,
self._length, self._pivot, self.sizes, self.fill_empty, self.flip)
self.set_verts(plot_barbs)
#Set the color array
if C is not None:
self.set_array(c)
#Update the offsets in case the masked data changed
xy = np.hstack((x[:,np.newaxis], y[:,np.newaxis]))
self._offsets = xy
开发者ID:zoccolan,项目名称:eyetracker,代码行数:28,代码来源:quiver.py
示例2: __init__
def __init__(self,*args,**kwargs):
TestCase.__init__(self,*args,**kwargs)
self.presidents = [nan, 87, 82, 75, 63, 50, 43, 32, 35, 60, 54, 55,
36, 39,nan,nan, 69, 57, 57, 51, 45, 37, 46, 39,
36, 24, 32, 23, 25, 32,nan, 32, 59, 74, 75, 60,
71, 61, 71, 57, 71, 68, 79, 73, 76, 71, 67, 75,
79, 62, 63, 57, 60, 49, 48, 52, 57, 62, 61, 66,
71, 62, 61, 57, 72, 83, 71, 78, 79, 71, 62, 74,
76, 64, 62, 57, 80, 73, 69, 69, 71, 64, 69, 62,
63, 46, 56, 44, 44, 52, 38, 46, 36, 49, 35, 44,
59, 65, 65, 56, 66, 53, 61, 52, 51, 48, 54, 49,
49, 61,nan,nan, 68, 44, 40, 27, 28, 25, 24, 24]
self.mdeaths = [2134,1863,1877,1877,1492,1249,1280,1131,1209,1492,1621,
1846,2103,2137,2153,1833,1403,1288,1186,1133,1053,1347,
1545,2066,2020,2750,2283,1479,1189,1160,1113, 970, 999,
1208,1467,2059,2240,1634,1722,1801,1246,1162,1087,1013,
959,1179,1229,1655,2019,2284,1942,1423,1340,1187,1098,
1004, 970,1140,1110,1812,2263,1820,1846,1531,1215,1075,
1056, 975, 940,1081,1294,1341]
self.fdeaths = [901, 689, 827, 677, 522, 406, 441, 393, 387, 582, 578,
666, 830, 752, 785, 664, 467, 438, 421, 412, 343, 440,
531, 771, 767,1141, 896, 532, 447, 420, 376, 330, 357,
445, 546, 764, 862, 660, 663, 643, 502, 392, 411, 348,
387, 385, 411, 638, 796, 853, 737, 546, 530, 446, 431,
362, 387, 430, 425, 679, 821, 785, 727, 612, 478, 429,
405, 379, 393, 411, 487, 574]
self.mdeaths = ma.asarray(self.mdeaths)
self.fdeaths = ma.asarray(self.fdeaths)
开发者ID:ndawe,项目名称:scikit-timeseries,代码行数:28,代码来源:test_avcf.py
示例3: recache
def recache(self, always=False):
if always or self._invalidx:
xconv = self.convert_xunits(self._xorig)
if ma.isMaskedArray(self._xorig):
x = ma.asarray(xconv, np.float_).filled(np.nan)
else:
x = np.asarray(xconv, np.float_)
x = x.ravel()
else:
x = self._x
if always or self._invalidy:
yconv = self.convert_yunits(self._yorig)
if ma.isMaskedArray(self._yorig):
y = ma.asarray(yconv, np.float_).filled(np.nan)
else:
y = np.asarray(yconv, np.float_)
y = y.ravel()
else:
y = self._y
if len(x) == 1 and len(y) > 1:
x = x * np.ones(y.shape, np.float_)
if len(y) == 1 and len(x) > 1:
y = y * np.ones(x.shape, np.float_)
if len(x) != len(y):
raise RuntimeError('xdata and ydata must be the same length')
self._xy = np.empty((len(x), 2), dtype=np.float_)
self._xy[:, 0] = x
self._xy[:, 1] = y
self._x = self._xy[:, 0] # just a view
self._y = self._xy[:, 1] # just a view
self._subslice = False
if (self.axes and len(x) > 1000 and self._is_sorted(x) and
self.axes.name == 'rectilinear' and
self.axes.get_xscale() == 'linear' and
self._markevery is None and
self.get_clip_on() is True):
self._subslice = True
nanmask = np.isnan(x)
if nanmask.any():
self._x_filled = self._x.copy()
indices = np.arange(len(x))
self._x_filled[nanmask] = np.interp(indices[nanmask],
indices[~nanmask], self._x[~nanmask])
else:
self._x_filled = self._x
if self._path is not None:
interpolation_steps = self._path._interpolation_steps
else:
interpolation_steps = 1
xy = STEP_LOOKUP_MAP[self._drawstyle](*self._xy.T)
self._path = Path(np.asarray(xy).T, None, interpolation_steps)
self._transformed_path = None
self._invalidx = False
self._invalidy = False
开发者ID:AbdealiJK,项目名称:matplotlib,代码行数:60,代码来源:lines.py
示例4: recache
def recache(self, always=False):
if always or self._invalidx:
xconv = self.convert_xunits(self._xorig)
if ma.isMaskedArray(self._xorig):
x = ma.asarray(xconv, np.float_)
else:
x = np.asarray(xconv, np.float_)
x = x.ravel()
else:
x = self._x
if always or self._invalidy:
yconv = self.convert_yunits(self._yorig)
if ma.isMaskedArray(self._yorig):
y = ma.asarray(yconv, np.float_)
else:
y = np.asarray(yconv, np.float_)
y = y.ravel()
else:
y = self._y
if len(x) == 1 and len(y) > 1:
x = x * np.ones(y.shape, np.float_)
if len(y) == 1 and len(x) > 1:
y = y * np.ones(x.shape, np.float_)
if len(x) != len(y):
raise RuntimeError("xdata and ydata must be the same length")
x = x.reshape((len(x), 1))
y = y.reshape((len(y), 1))
if ma.isMaskedArray(x) or ma.isMaskedArray(y):
self._xy = ma.concatenate((x, y), 1)
else:
self._xy = np.concatenate((x, y), 1)
self._x = self._xy[:, 0] # just a view
self._y = self._xy[:, 1] # just a view
self._subslice = False
if (
self.axes
and len(x) > 100
and self._is_sorted(x)
and self.axes.name == "rectilinear"
and self.axes.get_xscale() == "linear"
and self._markevery is None
):
self._subslice = True
if hasattr(self, "_path"):
interpolation_steps = self._path._interpolation_steps
else:
interpolation_steps = 1
self._path = Path(self._xy, None, interpolation_steps)
self._transformed_path = None
self._invalidx = False
self._invalidy = False
开发者ID:embray,项目名称:matplotlib,代码行数:56,代码来源:lines.py
示例5: __new__
def __new__(cls, data=None, name=None, mask=None, fill_value=None,
dtype=None, shape=(), length=0,
description=None, unit=None, format=None, meta=None,
units=None, dtypes=None):
if dtypes is not None:
dtype = dtypes
warnings.warn("'dtypes' has been renamed to the singular 'dtype'.",
AstropyDeprecationWarning)
if units is not None:
unit = units
warnings.warn("'units' has been renamed to the singular 'unit'.",
AstropyDeprecationWarning)
if data is None:
dtype = (np.dtype(dtype).str, shape)
self_data = ma.zeros(length, dtype=dtype)
elif isinstance(data, (Column, MaskedColumn)):
self_data = ma.asarray(data.data, dtype=dtype)
if description is None:
description = data.description
if unit is None:
unit = unit or data.unit
if format is None:
format = data.format
if meta is None:
meta = deepcopy(data.meta)
if name is None:
name = data.name
elif isinstance(data, Quantity):
if unit is None:
self_data = ma.asarray(data, dtype=dtype)
unit = data.unit
else:
self_data = ma.asarray(data.to(unit), dtype=dtype)
else:
self_data = ma.asarray(data, dtype=dtype)
self = self_data.view(MaskedColumn)
if mask is None and hasattr(data, 'mask'):
mask = data.mask
if fill_value is None and hasattr(data, 'fill_value'):
fill_value = data.fill_value
self.mask = mask
self.fill_value = fill_value
self._name = name
self.unit = unit
self.format = format
self.description = description
self.parent_table = None
self.meta = meta
return self
开发者ID:astrodsg,项目名称:astropy,代码行数:54,代码来源:column.py
示例6: _check
def _check(self, data):
array = biggus.NumpyArrayAdapter(data)
result = self.biggus_operator(array, axis=0).masked_array()
expected = self.numpy_masked_operator(data, axis=0)
if expected.ndim == 0:
if expected is np.ma.masked:
expected = ma.asarray(expected, dtype=array.dtype)
else:
expected = ma.asarray(expected)
np.testing.assert_array_equal(result.filled(), expected.filled())
np.testing.assert_array_equal(result.mask, expected.mask)
开发者ID:QuLogic,项目名称:biggus,代码行数:11,代码来源:_aggregation_test_framework.py
示例7: _mann_whitney_u
def _mann_whitney_u(x, y=None):
"""
Calculate the Mann-Whitney-U test.
The Wilcoxon signed-rank test tests the null hypothesis that two related paired
samples come from the same distribution. In particular, it tests whether the
distribution of the differences x - y is symmetric about zero.
It is a non-parametric version of the paired T-test.
"""
# A significance-dict for a two-tailed test with 0.05 confidence
# from http://de.wikipedia.org/wiki/Wilcoxon-Mann-Whitney-Test
significance_table = \
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2],
[0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8],
[0, 0, 0, 0, 1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14],
[0, 0, 0, 0, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20],
[0, 0, 0, 0, 0, 5, 6, 8, 10, 11, 13, 14, 16, 17, 19, 21, 22, 24, 25, 27],
[0, 0, 0, 0, 0, 0, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34],
[0, 0, 0, 0, 0, 0, 0, 13, 15, 17, 19, 22, 24, 26, 29, 31, 34, 36, 38, 41],
[0, 0, 0, 0, 0, 0, 0, 0, 17, 20, 23, 26, 28, 31, 34, 37, 39, 42, 45, 48],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 26, 29, 33, 36, 39, 42, 45, 48, 52, 55],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 33, 37, 40, 44, 47, 51, 55, 58, 62],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37, 41, 45, 49, 53, 57, 61, 65, 69],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 45, 50, 54, 59, 63, 67, 72, 76],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 59, 64, 69, 74, 78, 83],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 70, 75, 80, 85, 90],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 75, 81, 86, 92, 98],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 93, 99, 105],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 99, 106, 112],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 113, 119],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 127]]
U, p = stats.mannwhitneyu(x, y)
x = ma.asarray(x).compressed().view(numpy.ndarray)
y = ma.asarray(y).compressed().view(numpy.ndarray)
n1 = len(x)
n2 = len(y)
print n1, n2
if n1 > n2:
tmp = n2
n2 = n1
n1 = tmp
if n1 < 5 or n2 < 5:
return 10000, 10000
if n1 < 20 or n2 < 20:
print "WARNING: scipy.stat might not be accurate, p value is %f and significance according to table is %s" % \
(p, U <= significance_table[n1 - 1][n2 - 1])
return U, p
开发者ID:bjkomer,项目名称:HPOlib,代码行数:52,代码来源:statistics.py
示例8: test_masked_fill_value
def test_masked_fill_value(self):
cubes = []
y = (0, 2)
cube = _make_cube((0, 2), y, 1)
cube.data = ma.asarray(cube.data)
cube.data.fill_value = 10
cubes.append(cube)
cube = _make_cube((2, 4), y, 1)
cube.data = ma.asarray(cube.data)
cube.data.fill_value = 20
cubes.append(cube)
result = concatenate(cubes)
self.assertEqual(len(result), 2)
开发者ID:TheClimateCorporation,项目名称:iris,代码行数:13,代码来源:test_concatenate.py
示例9: detect_contour
def detect_contour(img, level):
"""Returns list of vertices of contours at a given level
Arguments:
img (array): the image array
level (number): the level at which to create the contour
Returns:
(list of nx2 arrays): list of list of vertices of the different contours
Note:
The contour detection is based on matplotlib's QuadContourGenerator
"""
#parameter
mask = None;
corner_mask = True;
nchunk = 0;
#prepare image data
z = ma.asarray(img, dtype=np.float64);
ny, nx = z.shape;
x, y = np.meshgrid(np.arange(nx), np.arange(ny));
#find contour
contour_generator = _contour.QuadContourGenerator(x, y, z.filled(), mask, corner_mask, nchunk)
vertices = contour_generator.create_contour(level);
return vertices;
开发者ID:ChristophKirst,项目名称:CElegansBehaviour,代码行数:28,代码来源:contours_old.py
示例10: _expected
def _expected(self, transpose=False):
data = self.data
if transpose:
data = self.data.T
# Expected raster weights per target grid cell.
# This is the (fractional) source cell contribution
# to each target cell (out of 255)
weights = np.array([[[63, 127, 127], # top left hand cell (tlhc)
[127, 255, 255]],
[[127, 127, 63], # top right hand cell (trhc)
[255, 255, 127]],
[[127, 255, 255], # bottom left hand cell (blhc)
[63, 127, 127]],
[[255, 255, 127], # bottom right hand cell (brhc)
[127, 127, 63]]], dtype=np.uint8)
weights = weights / 255
# Expected source points per target grid cell.
tmp = data[1:-1, 1:-1]
shape = (-1, 2, 3)
cells = [tmp[slice(0, 2), slice(0, 3)].reshape(shape), # tlhc
tmp[slice(0, 2), slice(3, None)].reshape(shape), # trhc
tmp[slice(2, None), slice(0, 3)].reshape(shape), # blhc
tmp[slice(2, None), slice(3, None)].reshape(shape)] # brhc
cells = ma.vstack(cells)
# Expected fractional weighted result.
num = (cells * weights).sum(axis=(1, 2))
dom = weights.sum(axis=(1, 2))
expected = num / dom
expected = ma.asarray(expected.reshape(2, 2))
if transpose:
expected = expected.T
return expected
开发者ID:cpelley,项目名称:iris-agg-regrid,代码行数:32,代码来源:test_agg.py
示例11: smooth
def smooth(self, Y):
'''Run UKS
Params
------
Y : [T, n_dim_state] array
Y[t] = t obs
If Y is a masked array and any Y[t] is masked, obs is assumed missing and ignored.
Returns
-------
smoothed_state_means : [T, n_dim_state] array
filtered_state_means[t] = mean of t state distribution | [0, T-1] obs
smoothed_state_covariances : [T, n_dim_state, n_dim_state] array
filtered_state_covariances[t] = covariance of t state distribution | [0, T-1] obs
'''
Y = ma.asarray(Y)
(transition_functions, observation_functions,
transition_covariance, observation_covariance,
initial_state_mean, initial_state_covariance) = (
self._initialize_parameters()
)
(filtered_state_means, filtered_state_covariances) = self.filter(Y)
(smoothed_state_means, smoothed_state_covariances) = (
additive_unscented_smoother(
filtered_state_means, filtered_state_covariances,
transition_functions, transition_covariance
)
)
return (smoothed_state_means, smoothed_state_covariances)
开发者ID:PierrotLC,项目名称:UnscentedKalmanFilter,代码行数:34,代码来源:UKF.py
示例12: __call__
def __call__(self, value, clip=None, midpoint=None):
if clip is None:
clip = self.clip
if cbook.iterable(value):
vtype = 'array'
val = ma.asarray(value).astype(np.float)
else:
vtype = 'scalar'
val = ma.array([value]).astype(np.float)
self.autoscale_None(val)
vmin, vmax = self.vmin, self.vmax
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin==vmax:
return 0.0 * val
else:
if clip:
mask = ma.getmask(val)
val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
mask=mask)
result = (val-vmin) * (1.0/(vmax-vmin))
#result = (ma.arcsinh(val)-np.arcsinh(vmin))/(np.arcsinh(vmax)-np.arcsinh(vmin))
result = result**(1./self.nthroot)
if vtype == 'scalar':
result = result[0]
return result
开发者ID:Fade89,项目名称:agpy,代码行数:31,代码来源:sqrt_norm.py
示例13: __call__
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
if cbook.iterable(value):
vtype = 'array'
val = ma.asarray(value).astype(np.float)
else:
vtype = 'scalar'
val = ma.array([value]).astype(np.float)
self.autoscale_None(val)
vmin, vmax = self.vmin, self.vmax
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin<=0:
raise ValueError("values must all be positive")
elif vmin==vmax:
return 0.0 * val
else:
if clip:
mask = ma.getmask(val)
val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
mask=mask)
result = (ma.log(val)-np.log(vmin))/(np.log(vmax)-np.log(vmin))
if vtype == 'scalar':
result = result[0]
return result
开发者ID:AndreI11,项目名称:SatStressGui,代码行数:28,代码来源:colors.py
示例14: __call__
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
if cbook.iterable(value):
vtype = 'array'
val = ma.asarray(value).astype(np.float)
else:
vtype = 'scalar'
val = ma.array([value]).astype(np.float)
self.autoscale_None(val)
vmin, vmax = self.vmin, self.vmax
cmin, cmax = self.cmin * vmin, self.cmax * vmax
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin == vmax:
result = 0.0 * val
else:
if clip:
mask = ma.getmask(val)
val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
mask=mask)
result = 0. * val + 0.5
result[val > cmax] = (ma.log10(val[val > cmax]) - ma.log10(cmax)) / (np.log10(vmax) - np.log10(cmax)) / 2. + 0.5
result[val < cmin] = -(ma.log10(-val[val < cmin]) - ma.log10(-cmin)) / (np.log10(-vmin) - np.log10(-cmin)) / 2. + 0.5
if vtype == 'scalar':
result = result[0]
return result
开发者ID:iceseismic,项目名称:sito,代码行数:27,代码来源:imaging.py
示例15: set_data
def set_data(self, x, y, A):
x = np.asarray(x, np.float32)
y = np.asarray(y, np.float32)
A = ma.asarray(A)
if len(x.shape) != 1 or len(y.shape) != 1\
or A.shape[0:2] != (y.shape[0], x.shape[0]):
raise TypeError("Axes don't match array shape")
if len(A.shape) not in [2, 3]:
raise TypeError("Can only plot 2D or 3D data")
if len(A.shape) == 3 and A.shape[2] not in [1, 3, 4]:
raise TypeError(
"3D arrays must have three (RGB) or "
"four (RGBA) color components"
)
if len(A.shape) == 3 and A.shape[2] == 1:
A.shape = A.shape[0:2]
if len(A.shape) == 2:
if A.dtype != np.uint8:
A = (self.cmap(self.norm(A)) * 255).astype(np.uint8)
else:
A = np.repeat(A[:, :, np.newaxis], 4, 2)
A[:, :, 3] = 255
else:
if A.dtype != np.uint8:
A = (255 * A).astype(np.uint8)
if A.shape[2] == 3:
B = np.zeros(tuple(list(A.shape[0:2]) + [4]), np.uint8)
B[:, :, 0:3] = A
B[:, :, 3] = 255
A = B
self._A = A
self._Ax = x
self._Ay = y
self._imcache = None
开发者ID:GitEdit,项目名称:pyphant1,代码行数:34,代码来源:NonUniformImage.py
示例16: __call__
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
if cbook.iterable(value):
vtype = 'array'
val = ma.asarray(value).astype(numpy.float)
else:
vtype = 'scalar'
val = ma.array([value]).astype(numpy.float)
if self.staticrange is None:
self.autoscale_None(val)
vmin, vmax = self.vmin, self.vmax
else:
self.vmin, self.vmax = None, None
self.autoscale_None(val)
vmin, vmax = self.vmax - self.staticrange, self.vmax
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin==vmax:
result = 0.0 * val
else:
vmin = float(vmin)
vmax = float(vmax)
rmin = float(self.rmin)
rmax = float(self.rmax)
if clip:
mask = ma.getmask(val)
val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
mask=mask)
result = (val-vmin) * ((rmax-rmin) / (vmax-vmin)) + rmin
if vtype == 'scalar':
result = result[0]
return result
开发者ID:priyom,项目名称:priyomdb,代码行数:35,代码来源:vorbis-to-spectrum.py
示例17: sim
def sim():
np.random.seed(1)
# Generate the time vector
dt = 0.05
N = int(30 // dt)
k = np.arange(N)
t = k * dt
# Instantiate the model
given = dict(
alpha=1, beta=-1, delta=0.2, gamma=0.3, omega=1,
g1=0, g2=0.1, x_meas_std=0.1,
x0=1, v0=0, x0_std=0.1, v0_std=0.1
)
q = GeneratedDTDuffing.pack('q', given)
c = GeneratedDTDuffing.pack('c', given)
params = dict(q=q, c=c, dt=dt)
sampled = dict(t=t)
model = GeneratedDTDuffing(params, sampled)
# Simulate the system
w = np.random.randn(N - 1, model.nw)
x = np.zeros((N, model.nx))
x[0] = stats.multivariate_normal.rvs(model.x0(), model.Px0())
for k in range(N - 1):
x[k + 1] = model.f(k, x[k]) + model.g(k, x[k]).dot(w[k])
# Sample the outputs
R = model.R()
v = np.random.multivariate_normal(np.zeros(model.ny), R, N)
y = ma.asarray(model.h(k, x) + v)
y[np.arange(N) % 4 != 0] = ma.masked
return model, t, x, y, q
开发者ID:dimasad,项目名称:ceacoest,代码行数:34,代码来源:duffing.py
示例18: to_rgba
def to_rgba(self, x, alpha=None, bytes=False):
'''Return a normalized rgba array corresponding to *x*. If *x*
is already an rgb array, insert *alpha*; if it is already
rgba, return it unchanged. If *bytes* is True, return rgba as
4 uint8s instead of 4 floats.
'''
if alpha is None:
_alpha = 1.0
else:
_alpha = alpha
try:
if x.ndim == 3:
if x.shape[2] == 3:
if x.dtype == np.uint8:
_alpha = np.array(_alpha*255, np.uint8)
m, n = x.shape[:2]
xx = np.empty(shape=(m,n,4), dtype = x.dtype)
xx[:,:,:3] = x
xx[:,:,3] = _alpha
elif x.shape[2] == 4:
xx = x
else:
raise ValueError("third dimension must be 3 or 4")
if bytes and xx.dtype != np.uint8:
xx = (xx * 255).astype(np.uint8)
return xx
except AttributeError:
pass
x = ma.asarray(x)
x = self.norm(x)
x = self.cmap(x, alpha=alpha, bytes=bytes)
return x
开发者ID:AlexSzatmary,项目名称:matplotlib,代码行数:32,代码来源:cm.py
示例19: bodytrack
def bodytrack(threadstuple, serv):
#serv_M = ma.asarray([[0, 0, 0, 0, 6983544, 91465, 23131612, 171783],
# [340208, 21308, 230049, 18250, 83687, 35901, 0, 0],
# [0, 0, 0, 0, 0, 0, 22032093, 103155]])
serv_M = ma.asarray(serv)
rout = [
[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 1, 1],
[0, 0, 1, 0]],
[[39, 1, 0, 0],
[0, 4, 1, 0],
[1, 0, 1, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]]
]
qt = list(islice(cycle((1,0)), serv_M.shape[1]))
routL = map (lambda x: rout_insert_inter(normalizeRowWise(np.asarray(x))), rout)
res = mva_multiclass (routL, 1./serv_M.T, threadstuple, qt)
cont = (res[0][1::2] - serv_M.T[1::2]).T
print "%.0f %.0f %.0f" % (cont[1,0], cont[0,2], cont[2,3])
return res
开发者ID:SLAP-,项目名称:locklocklock,代码行数:28,代码来源:lockgraph.py
示例20: process_value
def process_value(value):
"""
Homogenize the input *value* for easy and efficient normalization.
*value* can be a scalar or sequence.
Returns *result*, *is_scalar*, where *result* is a
masked array matching *value*. Float dtypes are preserved;
integer types with two bytes or smaller are converted to
np.float32, and larger types are converted to np.float.
Preserving float32 when possible, and using in-place operations,
can greatly improve speed for large arrays.
Experimental; we may want to add an option to force the
use of float32.
"""
if cbook.iterable(value):
is_scalar = False
result = ma.asarray(value)
if result.dtype.kind == 'f':
if isinstance(value, np.ndarray):
result = result.copy()
elif result.dtype.itemsize > 2:
result = result.astype(np.float)
else:
result = result.astype(np.float32)
else:
is_scalar = True
result = ma.array([value]).astype(np.float)
return result, is_scalar
开发者ID:aseagram,项目名称:matplotlib,代码行数:30,代码来源:colors.py
注:本文中的numpy.ma.asarray函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论