本文整理汇总了Python中numpy.ma.average函数的典型用法代码示例。如果您正苦于以下问题:Python average函数的具体用法?Python average怎么用?Python average使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了average函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: calc_area_weighted_spatial_average
def calc_area_weighted_spatial_average(dataset, area_weight=False):
'''Calculate area weighted average of the values in OCW dataset
:param dataset: Dataset object
:type dataset: :class:`dataset.Dataset`
:returns: time series for the dataset of shape (nT)
'''
if dataset.lats.ndim ==1:
lons, lats = np.meshgrid(dataset.lons, dataset.lats)
else:
lons = dataset.lons
lats = dataset.lats
weights = np.cos(lats*np.pi/180.)
nt, ny, nx = dataset.values.shape
spatial_average = ma.zeros(nt)
for it in np.arange(nt):
if area_weight:
spatial_average[it] = ma.average(dataset.values[it,:], weights = weights)
else:
spatial_average[it] = ma.average(dataset.values[it,:])
return spatial_average
开发者ID:MBoustani,项目名称:climate,代码行数:25,代码来源:utils.py
示例2: mean_wind
def mean_wind(prof, pbot=850, ptop=250, dp=-1, stu=0, stv=0):
'''
Calculates a pressure-weighted mean wind through a layer. The default
layer is 850 to 200 hPa.
Parameters
----------
prof: profile object
Profile object
pbot : number (optional; default 850 hPa)
Pressure of the bottom level (hPa)
ptop : number (optional; default 250 hPa)
Pressure of the top level (hPa)
dp : negative integer (optional; default -1)
The pressure increment for the interpolated sounding
stu : number (optional; default 0)
U-component of storm-motion vector
stv : number (optional; default 0)
V-component of storm-motion vector
Returns
-------
mnu : number
U-component
mnv : number
V-component
'''
if dp > 0: dp = -dp
ps = np.arange(pbot, ptop+dp, dp)
u, v = interp.components(prof, ps)
# u -= stu; v -= stv
return ma.average(u, weights=ps)-stu, ma.average(v, weights=ps)-stv
开发者ID:nguy,项目名称:SHARPpy,代码行数:33,代码来源:winds.py
示例3: testAttrs
def testAttrs(self):
# Same export as testAnaNetwork, but check that the
# attributes are synchronised
query = dballe.Record()
query["var"] = "B10004"
query["datetime"] = datetime.datetime(2007, 1, 1, 0, 0, 0)
vars = read(self.db.query_data(query), (AnaIndex(), NetworkIndex()), attributes=True)
self.assertEqual(len(vars), 1)
self.assertCountEqual(vars.keys(), ["B10004"])
data = vars["B10004"]
self.assertEqual(len(data.attrs), 2)
self.assertCountEqual(sorted(data.attrs.keys()), ['B33007', 'B33040'])
for net, a in ('synop', 'B33007'), ('temp', 'B33040'):
self.assertEqual(data.dims, data.attrs[a].dims)
self.assertEqual(data.vals.size, data.attrs[a].vals.size)
self.assertEqual(data.vals.shape, data.attrs[a].vals.shape)
# Find what is the network dimension where we have the attributes
netidx = -1
for idx, n in enumerate(data.dims[1]):
if n == net:
netidx = idx
break
self.assertNotEqual(netidx, -1)
# No attrs in the other network
self.assertEqual([x for x in data.attrs[a].vals.mask[:,1-netidx].flat], [True]*len(data.attrs[a].vals.mask[:,1-netidx].flat))
# Same attrs as values in this network
self.assertEqual([x for x in data.vals.mask[:,netidx].flat], [x for x in data.attrs[a].vals.mask[:,netidx].flat])
self.assertEqual(round(ma.average(data.attrs['B33007'].vals)), 32)
self.assertEqual(round(ma.average(data.attrs['B33040'].vals)), 54)
开发者ID:ARPA-SIMC,项目名称:dballe,代码行数:32,代码来源:test-volnd.py
示例4: avgprices
def avgprices(self, stockweighted=False):
"""Return a masked array of the average price by element"""
p = ma.array(self.prices, mask=self.prices <= 0)
if stockweighted:
s = ma.array(self.stock, mask=self.stock <= 0)
avgprices = ma.average(p, weights=s, axis=1)
else:
#avgprices = p.sum(axis=1)/(p > 0).sum(axis=1) #denominator sums the non-zero values
avgprices = ma.average(p, axis=1)
return avgprices
开发者ID:Geekly,项目名称:pybcm,代码行数:11,代码来源:bcmdata.py
示例5: servTime
def servTime (acqSeqL, relSeqL, dim=0):
servTimeList = map (partial(avgWaitTime, dim=dim), acqSeqL, relSeqL)
servTimes, servTimesSq, counts = zip (*servTimeList)
servTimesMtx = listOfArrToMtx (servTimes)
servTimesSqMtx = listOfArrToMtx (servTimesSq)
countMtx = listOfArrToMtx (counts)
# norm of columns
norms = normalizeRowWise(countMtx.T).T
ma_servTimesMtx = ma.array(servTimesMtx, mask = servTimesMtx == 0)
ma_servTimesSqMtx = ma.array(servTimesSqMtx, mask = servTimesSqMtx == 0)
return ma.average (ma_servTimesMtx, axis=0, weights=norms), ma.average(ma_servTimesSqMtx, axis=0, weights=norms)
开发者ID:SLAP-,项目名称:locklocklock,代码行数:11,代码来源:lockgraph.py
示例6: testAnaTrangeNetwork
def testAnaTrangeNetwork(self):
# 3 dimensions: ana, timerange, network
# 2 variables
query = dballe.Record(datetime=datetime.datetime(2007, 1, 1, 0, 0, 0))
vars = read(self.db.query_data(query), (AnaIndex(), TimeRangeIndex(shared=False), NetworkIndex()))
self.assertEqual(len(vars), 2)
self.assertEqual(sorted(vars.keys()), ["B10004", "B13011"])
data = vars["B10004"]
self.assertEqual(data.name, "B10004")
self.assertEqual(len(data.attrs), 0)
self.assertEqual(len(data.dims), 3)
self.assertEqual(len(data.dims[0]), 6)
self.assertEqual(len(data.dims[1]), 1)
self.assertEqual(len(data.dims[2]), 2)
self.assertEqual(data.vals.size, 12)
self.assertEqual(data.vals.shape, (6, 1, 2))
self.assertEqual(sum(data.vals.mask.flat), 1)
self.assertEqual(round(ma.average(data.vals)), 83185)
self.assertEqual(data.dims[0][0], (1, 10., 15., None))
self.assertEqual(data.dims[0][1], (2, 10., 25., None))
self.assertEqual(data.dims[0][2], (3, 20., 15., None))
self.assertEqual(data.dims[0][3], (4, 20., 25., None))
self.assertEqual(data.dims[0][4], (5, 30., 15., None))
self.assertEqual(data.dims[0][5], (6, 30., 25., None))
self.assertEqual(data.dims[1][0], (0, None, None))
self.assertEqual(set(data.dims[2]), set(("temp", "synop")))
data = vars["B13011"]
self.assertEqual(data.name, "B13011")
self.assertEqual(len(data.attrs), 0)
self.assertEqual(len(data.dims), 3)
self.assertEqual(len(data.dims[0]), 6)
self.assertEqual(len(data.dims[1]), 2)
self.assertEqual(len(data.dims[2]), 2)
self.assertEqual(data.vals.size, 24)
self.assertEqual(data.vals.shape, (6, 2, 2))
self.assertEqual(sum(data.vals.mask.flat), 0)
self.assertAlmostEqual(ma.average(data.vals), 5.325, 6)
self.assertEqual(data.dims[0][0], (1, 10., 15., None))
self.assertEqual(data.dims[0][1], (2, 10., 25., None))
self.assertEqual(data.dims[0][2], (3, 20., 15., None))
self.assertEqual(data.dims[0][3], (4, 20., 25., None))
self.assertEqual(data.dims[0][4], (5, 30., 15., None))
self.assertEqual(data.dims[0][5], (6, 30., 25., None))
self.assertEqual(data.dims[1][0], (4, -43200, 0))
self.assertEqual(data.dims[1][1], (4, -21600, 0))
self.assertEqual(set(data.dims[2]), set(("temp", "synop")))
self.assertEqual(vars["B10004"].dims[0], vars["B13011"].dims[0])
self.assertNotEqual(vars["B10004"].dims[1], vars["B13011"].dims[1])
self.assertEqual(vars["B10004"].dims[2], vars["B13011"].dims[2])
开发者ID:ARPA-SIMC,项目名称:dballe,代码行数:52,代码来源:test-volnd.py
示例7: average_combine
def average_combine(self):
"""Average combine together a set of arrays. A CCDData object is
returned with the data property set to the average of the arrays.
If the data was masked or any data have been rejected, those pixels
will not be included in the median. A mask will be returned, and
if a pixel has been rejected in all images, it will be masked. The
uncertainty of the combined image is set by the standard deviation
of the input images.
Returns
-------
combined_image: CCDData object
CCDData object based on the combined input of CCDData objects.
"""
#set up the data
data, wei = ma.average(self.data_arr, axis=0, weights=self.weights,
returned=True)
#set up the mask
mask = self.data_arr.mask.sum(axis=0)
mask = (mask == len(self.data_arr))
#set up the variance
uncertainty = ma.std(self.data_arr, axis=0)
#create the combined image
combined_image = CCDData(data.data, mask=mask, unit=self.unit,
uncertainty=StdDevUncertainty(uncertainty))
#update the meta data
combined_image.meta['NCOMBINE'] = len(self.data_arr)
#return the combined image
return combined_image
开发者ID:sargas,项目名称:ccdproc,代码行数:35,代码来源:combiner.py
示例8: binner
def binner(x, y, w_sta, nbins, rang = None, ebar = False, per = None) :
from numpy import array, digitize, lexsort, linspace
from numpy.ma import average, median
ind = lexsort((y, x))
xs, ys = x[ind], y[ind]
if rang is None : mn, mx = min(xs), max(xs)
else : mn, mx = rang
bins = linspace(mn, mx, nbins + 1)
x_cen = (bins[: - 1] + bins[1:])*0.5
bins = linspace(mn, mx, nbins)
ibins = digitize(xs, bins)
if w_sta == "median" : y_sta = array([median(ys[ibins == i]) for i in range(1, bins.size + 1)])
elif w_sta == "mean" : y_sta = array([average(ys[ibins == i]) for i in range(1, bins.size + 1)])
elif w_sta == "mode" : y_sta = array([mode(ys[ibins == i])[0] for i in range(1, bins.size + 1)])
if ebar == False : return x_cen, y_sta
elif ebar == True and per == None :
myer = abs(array([scoreatpercentile(ys[ibins == i], 15.8) for i in range(1, bins.size + 1)]) - y_sta)
pyer = abs(array([scoreatpercentile(ys[ibins == i], 84.0) for i in range(1, bins.size + 1)]) - y_sta)
yer = array([myer, pyer])
return x_cen, y_sta, yer
elif ebar == True and per != None :
myer = abs(array([scoreatpercentile(ys[ibins == i], per[0]) for i in range(1, bins.size + 1)]) - y_sta)
pyer = abs(array([scoreatpercentile(ys[ibins == i], per[1]) for i in range(1, bins.size + 1)]) - y_sta)
yer = array([myer, pyer])
return x_cen, y_sta, yer
开发者ID:ajmejia,项目名称:notebooks,代码行数:31,代码来源:sample_props.py
示例9: temporal_rebin_with_time_index
def temporal_rebin_with_time_index(target_dataset, nt_average):
""" Rebin a Dataset to a new temporal resolution
:param target_dataset: Dataset object that needs temporal rebinned
:type target_dataset: :class:`dataset.Dataset`
:param nt_average: Time resolution for the output datasets.
It is the same as the number of time indicies to be averaged. (length of time dimension in the rebinned dataset) = (original time dimension length/nt_average)
:type temporal_resolution: integer
:returns: A new temporally rebinned Dataset
:rtype: :class:`dataset.Dataset`
"""
nt = target_dataset.times.size
if nt % nt_average !=0:
print 'Warning: length of time dimension must be a multiple of nt_average'
# nt2 is the length of time dimension in the rebinned dataset
nt2 = nt/nt_average
binned_dates = target_dataset.times[np.arange(nt2)*nt_average]
binned_values = ma.zeros(np.insert(target_dataset.values.shape[1:],0,nt2))
for it in np.arange(nt2):
binned_values[it,:] = ma.average(target_dataset.values[nt_average*it:nt_average*it+nt_average,:], axis=0)
new_dataset = ds.Dataset(target_dataset.lats,
target_dataset.lons,
binned_dates,
binned_values,
variable=target_dataset.variable,
units=target_dataset.units,
name=target_dataset.name,
origin=target_dataset.origin)
return new_dataset
开发者ID:MJJoyce,项目名称:climate,代码行数:31,代码来源:dataset_processor.py
示例10: testSomeAttrs
def testSomeAttrs(self):
# Same export as testAnaNetwork, but check that the
# attributes are synchronised
query = dballe.Record()
query["var"] = "B10004"
query["datetime"] = datetime.datetime(2007, 1, 1, 0, 0, 0)
vars = read(self.db.query_data(query), (AnaIndex(), NetworkIndex()), attributes=('B33040',))
self.assertEqual(len(vars), 1)
self.assertCountEqual(vars.keys(), ["B10004"])
data = vars["B10004"]
self.assertEqual(len(data.attrs), 1)
self.assertCountEqual(data.attrs.keys(), ['B33040'])
a = data.attrs['B33040']
self.assertEqual(data.dims, a.dims)
self.assertEqual(data.vals.size, a.vals.size)
self.assertEqual(data.vals.shape, a.vals.shape)
# Find the temp index
netidx = -1
for idx, n in enumerate(data.dims[1]):
if n == "temp":
netidx = idx
break
self.assertNotEqual(netidx, -1)
# Only compare the values on the temp index
self.assertEqual([x for x in a.vals.mask[:,1-netidx].flat], [True]*len(a.vals.mask[:,1-netidx].flat))
self.assertEqual([x for x in data.vals.mask[:,netidx].flat], [x for x in a.vals.mask[:,netidx].flat])
self.assertEqual(round(ma.average(a.vals)), 54)
开发者ID:ARPA-SIMC,项目名称:dballe,代码行数:30,代码来源:test-volnd.py
示例11: testAnaNetwork
def testAnaNetwork(self):
# Ana in one dimension, network in the other
query = dballe.Record()
query["var"] = "B10004"
query["datetime"] = datetime.datetime(2007, 1, 1, 0, 0, 0)
vars = read(self.db.query_data(query), (AnaIndex(), NetworkIndex()))
self.assertEqual(len(vars), 1)
self.assertCountEqual(vars.keys(), ["B10004"])
data = vars["B10004"]
self.assertEqual(data.name, "B10004")
self.assertEqual(len(data.attrs), 0)
self.assertEqual(len(data.dims), 2)
self.assertEqual(len(data.dims[0]), 6)
self.assertEqual(len(data.dims[1]), 2)
self.assertEqual(data.vals.size, 12)
self.assertEqual(data.vals.shape, (6, 2))
self.assertEqual(sum(data.vals.mask.flat), 1)
self.assertEqual(round(ma.average(data.vals)), 83185)
self.assertEqual(data.dims[0][0], (1, 10., 15., None))
self.assertEqual(data.dims[0][1], (2, 10., 25., None))
self.assertEqual(data.dims[0][2], (3, 20., 15., None))
self.assertEqual(data.dims[0][3], (4, 20., 25., None))
self.assertEqual(data.dims[0][4], (5, 30., 15., None))
self.assertEqual(data.dims[0][5], (6, 30., 25., None))
self.assertEqual(set(data.dims[1]), set(("temp", "synop")))
开发者ID:ARPA-SIMC,项目名称:dballe,代码行数:25,代码来源:test-volnd.py
示例12: executeOperations
def executeOperations(self, task, inputs):
available_inputIds = [ inputId.split('-')[0] for inputId in inputs ]
data_inputIds = [ inputId.split('-')[0] for inputId in task.inputs ]
wids = [ inputId + "_WEIGHTS_" for inputId in data_inputIds ]
weight_inputIds = [ ( wid if (wid in available_inputIds) else None ) for wid in wids ]
inputs_with_weights = zip( data_inputIds, weight_inputIds )
self.logger.info("@@@@ data_inputIds = " + str(data_inputIds) + ", weight_inputIds = " + str(weight_inputIds) + ", inputs = " + str(inputs) )
results = []
for input_pair in inputs_with_weights:
input = inputs.get( input_pair[0] ) # npArray
if( input == None ): raise Exception( "Can't find input " + input_pair[0] + " in numpyModule.WeightedAverageKernel")
else :
weights = inputs.get( input_pair[1] ).array if( input_pair[1] != None ) else None
axes = self.getOrderedAxes(task,input)
self.logger.info("\n Executing average, input: " + str( input_pair[0] ) + ", shape = " + str(input.array.shape)+ ", task metadata = " + str(task.metadata) + " Input metadata: " + str( input.metadata ) )
t0 = time.time()
result = input.array
for axis in axes:
current_shape = list( result.shape )
self.logger.info(" --> Exec: axis: " + str(axis) + ", shape: " + str(current_shape) )
# ( result, weights ) = ma.average( result, axis, weights, True )
( result, weights ) = ma.average( result, axis, np.broadcast_to( weights, current_shape ), True )
current_shape[axis] = 1
result = result.reshape( current_shape )
weights = weights.reshape( current_shape )
results.append( npArray.createResult( task, input, result.filled( input.array.fill_value ) ) )
t1 = time.time()
self.logger.info( " ------------------------------- AVEW KERNEL: Operating on input '{0}', shape = {1}, origin = {2}, time = {3}".format( input.name, input.shape, input.origin, t1-t0 ))
return results
开发者ID:nasa-nccs-cds,项目名称:CDAS2,代码行数:30,代码来源:numpyModule.py
示例13: v_average_test
def v_average_test():
import numpy.ma as ma
M=[[1,1,0],[0,0,1],[0,1,0]]
Coins=[100000,200000,300000]
Mat=numpy.matrix(M)
Mean = ma.average(Mat, axis=0, weights=numpy.hstack(Coins))
print(Mean)
print(v_average(M, ReWeight(Coins)))
开发者ID:master-zhuang,项目名称:Truthcoin-POW,代码行数:8,代码来源:python_CustomMath_test.py
示例14: mean
def mean(phi, lower=0., upper=120.):
"""wrapping the numpy.ma.average function for weighed average of masked arrays
here weight = the image intensity,
and the coordinates X, Y = np.meshgrid(range(921), range(881))
are to be averaged out.
"""
phi1 = phi.view(ma.MaskedArray).copy() # to be safe (slow?)
try:
phi1.mask += (phi1<lower) + (phi1>upper) # masking the out-of-range regions
except:
phi1.mask = (phi1<lower) + (phi1>upper)
height, width = phi1.shape
X, Y = np.meshgrid(range(width), range(height))
I, J = Y, X # always work with I, J internally
Ibar = ma.average(I, weights=phi1)
Jbar = ma.average(J, weights=phi1)
return {'i':Ibar, 'j':Jbar}
开发者ID:rainly,项目名称:armor,代码行数:17,代码来源:moments.py
示例15: applyOperation
def applyOperation( self, input_variable, operation ):
result = None
try:
self.setTimeBounds( input_variable )
operator = None
# pydevd.settrace('localhost', port=8030, stdoutToServer=False, stderrToServer=True)
wpsLog.debug( " $$$ ApplyOperation: %s " % str( operation ) )
if operation is not None:
type = operation.get('type','').lower()
bounds = operation.get('bounds','').lower()
op_start_time = time.clock() # time.time()
if not bounds:
if type == 'departures':
ave = cdutil.averager( input_variable, axis='t', weights='equal' )
result = input_variable - ave
elif type == 'climatology':
result = cdutil.averager( input_variable, axis='t', weights='equal' )
else:
result = input_variable
time_axis = input_variable.getTime()
elif bounds == 'np':
if type == 'departures':
result = ma.anomalies( input_variable ).squeeze()
elif type == 'climatology':
result = ma.average( input_variable ).squeeze()
else:
result = input_variable
time_axis = input_variable.getTime()
else:
if bounds == 'djf': operator = cdutil.DJF
elif bounds == 'mam': operator = cdutil.MAM
elif bounds == 'jja': operator = cdutil.JJA
elif bounds == 'son': operator = cdutil.SON
elif bounds == 'year': operator = cdutil.YEAR
elif bounds == 'annualcycle': operator = cdutil.ANNUALCYCLE
elif bounds == 'seasonalcycle': operator = cdutil.SEASONALCYCLE
if operator <> None:
if type == 'departures': result = operator.departures( input_variable ).squeeze()
elif type == 'climatology': result = operator.climatology( input_variable ).squeeze()
else: result = operator( input_variable ).squeeze()
time_axis = result.getTime()
op_end_time = time.clock() # time.time()
wpsLog.debug( " ---> Base Operation Time: %.5f" % (op_end_time-op_start_time) )
else:
result = input_variable
time_axis = input_variable.getTime()
if isinstance( result, float ):
result_data = [ result ]
elif result is not None:
if result.__class__.__name__ == 'TransientVariable':
result = ma.masked_equal( result.squeeze().getValue(), input_variable.getMissing() )
result_data = result.tolist( numpy.nan )
else: result_data = None
except Exception, err:
wpsLog.debug( "Exception applying Operation '%s':\n %s" % ( str(operation), traceback.format_exc() ) )
return ( None, None )
开发者ID:cehbrecht,项目名称:wps_cwt,代码行数:57,代码来源:timeseries_analysis.py
示例16: seasonal_cycle
def seasonal_cycle( self, input_variable ):
t0 = time.time()
time_vals = input_variable.getTime().asComponentTime()
season_index_array = np.array( [ self.season_def_array[tv.month] for tv in time_vals ] )
squeezed_input = input_variable.squeeze()
acycle = [ ma.average( get_subset( squeezed_input, season_index, season_index_array ) ) for season_index in range(0,4) ]
t1 = time.time()
wpsLog.debug( "Computed seasonal cycle, time = %.4f, result:\n %s" % ( (t1-t0), str(acycle) ) )
return ma.array(acycle)
开发者ID:ericxuhao,项目名称:wps_cwt,代码行数:9,代码来源:timeseries_analysis.py
示例17: annual_cycle
def annual_cycle( self, input_variable ):
t0 = time.time()
time_vals = input_variable.getTime().asComponentTime()
month_index_array = np.array( [ tv.month for tv in time_vals ] )
squeezed_input = input_variable.squeeze()
acycle = [ ma.average( get_subset( squeezed_input, month_index, month_index_array ) ) for month_index in range(1,13) ]
t1 = time.time()
wpsLog.debug( "Computed annual cycle, time = %.4f, result:\n %s" % ( (t1-t0), str(acycle) ) )
return ma.array(acycle)
开发者ID:ericxuhao,项目名称:wps_cwt,代码行数:9,代码来源:timeseries_analysis.py
示例18: weighted_mean_
def weighted_mean_(self):
"""
Calculates the weighted mean of the image given the probabilistic
segmentation. If binary, mean and weighted mean will give the same
result
:return:
"""
masked_seg = np.tile(self.masked_seg, [self.img_channels, 1]).T
return ma.average(self.masked_img, axis=0, weights=masked_seg).flatten()
开发者ID:fepegar,项目名称:NiftyNet,代码行数:10,代码来源:region_properties.py
示例19: weighted_average
def weighted_average(self,axis=0,expaxis=None):
""" Calculate weighted average of data along axis
after optionally inserting a new dimension into the
shape array at position expaxis
"""
if expaxis is not None:
vals = ma.expand_dims(self.vals,expaxis)
dmin = ma.expand_dims(self.dmin,expaxis)
dmax = ma.expand_dims(self.dmax,expaxis)
wt = ma.expand_dims(self.wt,expaxis)
else:
vals = self.vals
wt = self.wt
dmin = self.dmin
dmax = self.dmax
# Get average value
avg,norm = ma.average(vals,axis=axis,weights=wt,returned=True)
avg_ex = ma.expand_dims(avg,0)
# Calculate weighted uncertainty
wtmax = ma.max(wt,axis=axis)
neff = norm/wtmax # Effective number of samples based on uncertainties
# Seeking max deviation from the average; if above avg use max, if below use min
term = np.empty_like(vals)
indices = np.where(vals > avg_ex)
i0 = indices[0]
irest = indices[1:]
ii = tuple(x for x in itertools.chain([i0],irest))
jj = tuple(x for x in itertools.chain([np.zeros_like(i0)],irest))
term[ii] = (dmax[ii] - avg_ex[jj])**2
indices = np.where(vals <= avg_ex)
i0 = indices[0]
irest = indices[1:]
ii = tuple(x for x in itertools.chain([i0],irest))
jj = tuple(x for x in itertools.chain([np.zeros_like(i0)],irest))
term[ii] = (avg_ex[jj] - dmin[ii])**2
dsum = ma.sum(term*wt,axis=0) # Sum for weighted average of deviations
dev = 0.5*np.sqrt(dsum/(norm*neff))
if isinstance(avg,(float,np.float)):
avg = avg_ex
tmp_min = avg - dev
ii = np.where(tmp_min < 0)
tmp_min[ii] = TOL*avg[ii]
return UncertContainer(avg,tmp_min,avg+dev)
开发者ID:nrego,项目名称:westpa,代码行数:54,代码来源:UncertMath.py
示例20: calculate_mean
def calculate_mean(data, lats):
"""
data - a 2d lat-lon array with latitude axis first
lats - a 1d array containing the corresponding latitude values
returns - a latitude-weighted mean of the entire data array
"""
# Create a 2d-array containing the weights of each cell - i.e. the cosine of the latitude of that cell
lat_weights = np.repeat(np.cos([lats * np.pi / 180.0]).T, np.shape(data)[1], axis=1)
return ma.average(data, weights=lat_weights)
开发者ID:guygriffiths,项目名称:cci-visualisations,代码行数:11,代码来源:cci_timeseries.py
注:本文中的numpy.ma.average函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论