• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python ma.array函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.ma.array函数的典型用法代码示例。如果您正苦于以下问题:Python array函数的具体用法?Python array怎么用?Python array使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了array函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __call__

    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        if cbook.iterable(value):
            vtype = 'array'
            val = ma.asarray(value).astype(numpy.float)
        else:
            vtype = 'scalar'
            val = ma.array([value]).astype(numpy.float)
        
        if self.staticrange is None:
            self.autoscale_None(val)
            vmin, vmax = self.vmin, self.vmax
        else:
            self.vmin, self.vmax = None, None
            self.autoscale_None(val)
            vmin, vmax = self.vmax - self.staticrange, self.vmax
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin==vmax:
            result = 0.0 * val
        else:
            vmin = float(vmin)
            vmax = float(vmax)
            rmin = float(self.rmin)
            rmax = float(self.rmax)
            if clip:
                mask = ma.getmask(val)
                val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
                                mask=mask)
            result = (val-vmin) * ((rmax-rmin) / (vmax-vmin)) + rmin
        if vtype == 'scalar':
            result = result[0]
        return result
开发者ID:priyom,项目名称:priyomdb,代码行数:35,代码来源:vorbis-to-spectrum.py


示例2: setUp

    def setUp(self):
        self.r1 = Raster('examples/multifact.tif')
        self.r2 = Raster('examples/sites.tif')
        self.r3 = Raster('examples/two_band.tif')

        # r1
        data1 = np.array(
            [
                [1,1,3],
                [3,2,1],
                [0,3,1]
            ])
        # r2
        data2 = np.array(
            [
                [1,2,1],
                [1,2,1],
                [0,1,2]
            ])
        mask = [
            [False, False, False],
            [False, False, False],
            [False, False, False]
        ]
        self.data1 = ma.array(data=data1, mask=mask)
        self.data2 = ma.array(data=data2, mask=mask)
开发者ID:asiaairsurvey,项目名称:molusce,代码行数:26,代码来源:test_dataprovider.py


示例3: test_pearsonr

    def test_pearsonr(self):
        # Tests some computations of Pearson's r
        x = ma.arange(10)
        with warnings.catch_warnings():
            # The tests in this context are edge cases, with perfect
            # correlation or anticorrelation, or totally masked data.
            # None of these should trigger a RuntimeWarning.
            warnings.simplefilter("error", RuntimeWarning)

            assert_almost_equal(mstats.pearsonr(x, x)[0], 1.0)
            assert_almost_equal(mstats.pearsonr(x, x[::-1])[0], -1.0)

            x = ma.array(x, mask=True)
            pr = mstats.pearsonr(x, x)
            assert_(pr[0] is masked)
            assert_(pr[1] is masked)

        x1 = ma.array([-1.0, 0.0, 1.0])
        y1 = ma.array([0, 0, 3])
        r, p = mstats.pearsonr(x1, y1)
        assert_almost_equal(r, np.sqrt(3)/2)
        assert_almost_equal(p, 1.0/3)

        # (x2, y2) have the same unmasked data as (x1, y1).
        mask = [False, False, False, True]
        x2 = ma.array([-1.0, 0.0, 1.0, 99.0], mask=mask)
        y2 = ma.array([0, 0, 3, -1], mask=mask)
        r, p = mstats.pearsonr(x2, y2)
        assert_almost_equal(r, np.sqrt(3)/2)
        assert_almost_equal(p, 1.0/3)
开发者ID:andycasey,项目名称:scipy,代码行数:30,代码来源:test_mstats_basic.py


示例4: test_matching_named_fields

    def test_matching_named_fields(self):
        # Test combination of arrays w/ matching field names
        (_, x, _, z) = self.data
        zz = np.array(
            [("a", 10.0, 100.0), ("b", 20.0, 200.0), ("c", 30.0, 300.0)],
            dtype=[("A", "|S3"), ("B", float), ("C", float)],
        )
        test = stack_arrays((z, zz))
        control = ma.array(
            [("A", 1, -1), ("B", 2, -1), ("a", 10.0, 100.0), ("b", 20.0, 200.0), ("c", 30.0, 300.0)],
            dtype=[("A", "|S3"), ("B", float), ("C", float)],
            mask=[(0, 0, 1), (0, 0, 1), (0, 0, 0), (0, 0, 0), (0, 0, 0)],
        )
        assert_equal(test, control)
        assert_equal(test.mask, control.mask)

        test = stack_arrays((z, zz, x))
        ndtype = [("A", "|S3"), ("B", float), ("C", float), ("f3", int)]
        control = ma.array(
            [
                ("A", 1, -1, -1),
                ("B", 2, -1, -1),
                ("a", 10.0, 100.0, -1),
                ("b", 20.0, 200.0, -1),
                ("c", 30.0, 300.0, -1),
                (-1, -1, -1, 1),
                (-1, -1, -1, 2),
            ],
            dtype=ndtype,
            mask=[(0, 0, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), (1, 1, 1, 0), (1, 1, 1, 0)],
        )
        assert_equal(test, control)
        assert_equal(test.mask, control.mask)
开发者ID:haadkhan,项目名称:cerebri,代码行数:33,代码来源:test_recfunctions.py


示例5: test_matching_named_fields

    def test_matching_named_fields(self):
        # Test combination of arrays w/ matching field names
        (_, x, _, z) = self.data
        zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
                      dtype=[('A', '|S3'), ('B', float), ('C', float)])
        test = stack_arrays((z, zz))
        control = ma.array([('A', 1, -1), ('B', 2, -1),
                            (
                                'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
                           dtype=[('A', '|S3'), ('B', float), ('C', float)],
                           mask=[(0, 0, 1), (0, 0, 1),
                                 (0, 0, 0), (0, 0, 0), (0, 0, 0)])
        assert_equal(test, control)
        assert_equal(test.mask, control.mask)

        test = stack_arrays((z, zz, x))
        ndtype = [('A', '|S3'), ('B', float), ('C', float), ('f3', int)]
        control = ma.array([('A', 1, -1, -1), ('B', 2, -1, -1),
                            ('a', 10., 100., -1), ('b', 20., 200., -1),
                            ('c', 30., 300., -1),
                            (-1, -1, -1, 1), (-1, -1, -1, 2)],
                           dtype=ndtype,
                           mask=[(0, 0, 1, 1), (0, 0, 1, 1),
                                 (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1),
                                 (1, 1, 1, 0), (1, 1, 1, 0)])
        assert_equal(test, control)
        assert_equal(test.mask, control.mask)
开发者ID:vbasu,项目名称:numpy,代码行数:27,代码来源:test_recfunctions.py


示例6: test_peak_with_mask

    def test_peak_with_mask(self):
        # Single value in column masked.
        latitude = iris.coords.DimCoord(np.arange(0, 5, 1),
                                        standard_name='latitude',
                                        units='degrees')
        cube = iris.cube.Cube(ma.array([1, 4, 2, 3, 2], dtype=np.float32),
                              standard_name='air_temperature',
                              units='kelvin')
        cube.add_dim_coord(latitude, 0)

        cube.data[3] = ma.masked

        collapsed_cube = cube.collapsed('latitude', iris.analysis.PEAK)
        self.assertArrayAlmostEqual(collapsed_cube.data,
                                    np.array([4.024977], dtype=np.float32))
        self.assertTrue(ma.isMaskedArray(collapsed_cube.data))
        self.assertEqual(collapsed_cube.data.shape, (1,))

        # Whole column masked.
        cube.data[:] = ma.masked

        collapsed_cube = cube.collapsed('latitude', iris.analysis.PEAK)
        masked_array = ma.array(ma.masked)
        self.assertTrue(ma.allequal(collapsed_cube.data, masked_array))
        self.assertTrue(ma.isMaskedArray(collapsed_cube.data))
        self.assertEqual(collapsed_cube.data.shape, (1,))
开发者ID:Jozhogg,项目名称:iris,代码行数:26,代码来源:test_peak.py


示例7: preprocessing

def preprocessing(gridding_method, Time, ColumnAmountNO2Trop,
    ColumnAmountNO2TropStd, FoV75Area, CloudRadianceFraction,
    RootMeanSquareErrorOfFit, SolarZenithAngle, VcdQualityFlags,
    XTrackQualityFlags, **kwargs):

    # mask of bad values
    mask = ColumnAmountNO2Trop.mask | ColumnAmountNO2TropStd.mask

    # mask low quality data
    mask |= RootMeanSquareErrorOfFit > 0.0003
    mask |= SolarZenithAngle > 85
    mask |= VcdQualityFlags % 2 != 0
    mask |= XTrackQualityFlags

    # set invalid cloud cover to 100% -> smallest weight
    CloudRadianceFraction[CloudRadianceFraction.mask] = 1.0

    # values and errors
    values = ma.array(ColumnAmountNO2Trop, mask=mask)
    errors = ma.array(ColumnAmountNO2TropStd, mask=mask)

    # weight based on stddev and pixel area (see Wenig et al., 2008)
    stddev = 1.5e15 * (1.0 + 3.0 * ma.array(CloudRadianceFraction, mask=mask))
    area = FoV75Area.reshape(1, FoV75Area.size)
    area = area.repeat(ColumnAmountNO2Trop.shape[0], axis=0)

    if gridding_method.startswith('psm'):
        weights = ma.array(1.0 / area, mask=mask)
    else:
        weights = ma.array(1.0 / (area * stddev**2), mask=mask)

    return values, errors, stddev, weights
开发者ID:gkuhl,项目名称:omi,代码行数:32,代码来源:OMNO2_Trop.py


示例8: setUp

    def setUp(self):
        self.factor = Raster('../../examples/multifact.tif')
                #~ [1,1,3]
                #~ [3,2,1]
                #~ [0,3,1]

        self.sites  = Raster('../../examples/sites.tif')
                    #~ [1,2,1],
                    #~ [1,2,1],
                    #~ [0,1,2]
        self.sites.resetMask(maskVals= [0])

        self.mask = [
            [False, False, False,],
            [False, False, False,],
            [True,  False, False,]
        ]
        fact = [
            [1, 1, 3,],
            [3, 2, 1,],
            [0, 3, 1,]
        ]
        site = [
            [False, True,  False,],
            [False, True,  False,],
            [False, False, True,]
        ]
        self.factraster  = ma.array(data = fact, mask=self.mask, dtype=np.int)
        self.sitesraster = ma.array(data = site, mask=self.mask, dtype=np.bool)
开发者ID:nextgis,项目名称:molusce,代码行数:29,代码来源:test_manager.py


示例9: hooray

def hooray(year,tile):

	file_pattern = 'files/data/MCD15A2.A%s*.%s.*'%(year,tile)

	filenames = np.sort(glob(file_pattern))


	selected_layers = [  "Lai_1km", "FparLai_QC", "LaiStdDev_1km" ]
	file_template = 'HDF4_EOS:EOS_GRID:"%s":MOD_Grid_MOD15A2:%s'


	lai_all    = []
	lai_sd_all = []

	for filename in filenames:
		data = {}
		for i, layer in enumerate ( selected_layers ):
		    this_file = file_template % ( filename, layer )
		    g = gdal.Open ( this_file )
		    
		    if g is None:
		        raise IOError
		    data[layer] = g.ReadAsArray() 
		lai = data['Lai_1km'] * 0.1
		lai_sd = data['LaiStdDev_1km'] * 0.1
		mask = data['FparLai_QC'] & 1
		laim = ma.array(lai,mask=mask)
		laim_sd = ma.array(lai_sd,mask=mask)

		lai_all.append(laim)
		lai_sd_all.append(laim_sd)

	lai_all    = ma.array(lai_all)
	lai_sd_all = ma.array(lai_sd_all)
	return lai_all, lai_sd_all
开发者ID:ThomasG77,项目名称:geogg122,代码行数:35,代码来源:mlai.py


示例10: getShiibaVectorField

def getShiibaVectorField(shiibaCoeffs, phi1, gridSize=25, name="",\
                     key="Shiiba vector field", title="UpWind Scheme"):
 
    """ plotting vector fields from shiiba coeffs
    input:  shiiba coeffs (c1,c2,c3,..,c6) for Ui=c1.I + c2.J +c3, Vj=c4.I +c5.J+c6
    and transform it via I=y, J=x, to Ux = c5.x+c4.y+c6, Vy = c2.x+c1.y+c3
    """
    # 1. setting the variables
    # 2. setting the stage
    # 3. plotting
    # 4. no need to save or print to screen

    # 1. setting the variables
    c1, c2, c3, c4, c5, c6 = shiibaCoeffs
    c5, c4, c6, c2, c1, c3 = c1, c2, c3, c4, c5, c6     # x,y <- j, i switch
    # 2. setting the stage
    height= phi1.matrix.shape[0]
    width = phi1.matrix.shape[1]
    mask  = phi1.matrix.mask
    name  = "shiiba vector field for "+ phi1.name
    imagePath = phi1.name+"shiibaVectorField.png"
    key   = key
    ploTitle  = title
    gridSize = gridSize
    X, Y    = np.meshgrid(range(width), range(height))
    Ux      = c1*X + c2*Y + c3
    Vy      = c4*X + c5*Y + c6
    Ux      = ma.array(Ux, mask=mask)
    Vy      = ma.array(Vy, mask=mask)
    #constructing the vector field object
    vect    = pattern.VectorField(Ux, Vy, name=name, imagePath=imagePath, key=key,
                                    title=title, gridSize=gridSize)
    return vect
开发者ID:rainly,项目名称:armor,代码行数:33,代码来源:regression.py


示例11: spike_flag

def spike_flag(data,masked,freq,percent):
    """
    Flags out RFI spikes using a 11 bin filter
    Can be used with either time or freq
    percent is a percentage level cut (100 would be twice the 11 bin average)
    Needs to be applied to masked data.
    """
    new_mask = np.zeros(len(data))
    new_array = ma.array(data,mask=masked)
    new_comp = ma.compressed(new_array)
    freq_array = ma.array(freq,mask=masked)
    new_freq = ma.compressed(freq_array)
    for i in range(0,len(data)):
        if masked[i]==1.0:
            new_mask[i] = 1.0

    for i in range(5,len(new_comp)-5):
        group = new_comp[i-5]+new_comp[i-4]+new_comp[i-3]+new_comp[i-2]+new_comp[i-1]+new_comp[i]+new_comp[i+1]+new_comp[i+2]+new_comp[i+3]+new_comp[i+4]+new_comp[i+5]
        mean_group = group/11.
        if new_comp[i]/mean_group>=(1+percent/100.):
            comp_freq = new_freq[i]
            for j in range(0,len(freq)):
                if freq[j]==comp_freq:
                    index=j
            new_mask[index]= 1.0
        elif new_comp[i]/mean_group<=1/(1+percent/100.):
            comp_freq = new_freq[i]
            for j in range(0,len(freq)):
                if freq[j]==comp_freq:
                    index=j
            new_mask[index]= 1.0
   
    return new_mask
开发者ID:tcv,项目名称:hibiscus,代码行数:33,代码来源:file_funcs.py


示例12: plotCurves

def plotCurves(c1, c2):
    name1, t, avg1, top1, bottom1 = c1
    name2, t, avg2, top2, bottom2 = c2
    pl.plot(t, np.zeros(len(t)), 'k-')
    s1 = ma.array(avg1)
    s2 = ma.array(avg2)
    zx1 = np.logical_and(np.greater_equal(top1, 0), np.less_equal(bottom1, 0))
    zx2 = np.logical_and(np.greater_equal(top2, 0), np.less_equal(bottom2, 0))
    ix = np.logical_or(
            np.logical_and(
                np.greater_equal(top1, top2),
                np.less_equal(bottom1, top2)),
            np.logical_and(
                np.greater_equal(top1, bottom2),
                np.less_equal(bottom1, bottom2)))
    mask1 = np.logical_or(zx1, ix)
    mask2 = np.logical_or(zx2, ix)

    print mask1
    print mask2
    print zx1
    print zx2
    print ix

    pl.plot(t, s1, "k--", linewidth=1)
    pl.plot(t, s2, "k-", linewidth=1)
    s1.mask = ix
    s2.mask = ix
    pl.plot(t, s1, "k--", linewidth=3, label=name1)
    pl.plot(t, s2, "k-", linewidth=3, label=name2)
    pl.xlabel('Time (secs)')
    pl.ylabel("Pearson correlation")
开发者ID:estebanhurtado,项目名称:cutedots,代码行数:32,代码来源:plot2.py


示例13: __call__

 def __call__(self, value, clip=None):
     if clip is None:
         clip = self.clip
     if cbook.iterable(value):
         vtype = 'array'
         val = ma.asarray(value).astype(np.float)
     else:
         vtype = 'scalar'
         val = ma.array([value]).astype(np.float)
     self.autoscale_None(val)
     vmin, vmax = self.vmin, self.vmax
     cmin, cmax = self.cmin * vmin, self.cmax * vmax
     if vmin > vmax:
         raise ValueError("minvalue must be less than or equal to maxvalue")
     elif vmin == vmax:
         result = 0.0 * val
     else:
         if clip:
             mask = ma.getmask(val)
             val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
                             mask=mask)
         result = 0. * val + 0.5
         result[val > cmax] = (ma.log10(val[val > cmax]) - ma.log10(cmax)) / (np.log10(vmax) - np.log10(cmax)) / 2. + 0.5
         result[val < cmin] = -(ma.log10(-val[val < cmin]) - ma.log10(-cmin)) / (np.log10(-vmin) - np.log10(-cmin)) / 2. + 0.5
     if vtype == 'scalar':
         result = result[0]
     return result
开发者ID:iceseismic,项目名称:sito,代码行数:27,代码来源:imaging.py


示例14: fitModel

def fitModel(traj, mode=None, maxMissing=0.9, excludeEdge=None):
    traj = deepcopy(traj)
    if mode == 'onFood':
        traj.excluded = normDistToFood(traj)>1.1
    if mode == 'offFood':
        traj.excluded = normDistToFood(traj)<=1.1
    if excludeEdge is not None:
            width, height = (traj.h5ref['cropRegion'][-2:]/
                             traj.pixelsPerMicron)
            xsel = np.logical_or(traj.X[:,0] < excludeEdge,
                                 traj.X[:,0] > width - excludeEdge)
            ysel = np.logical_or(traj.X[:,1] < excludeEdge,
                                 traj.X[:,1] > height - excludeEdge)
            sel = np.logical_or(xsel, ysel)
            traj.excluded = np.logical_or(traj.excluded, sel)
    
    m = wtm.Helms2015CentroidModel()
    # check whether there is sufficient datapoints to fit model
    if fractionMissing(traj) > maxMissing:
        p = ma.array(m.toParameterVector()[0], dtype=float)
        p[:] = ma.masked
        return p.filled(np.NAN).astype(float)
    else:
        try:
            m.fit(traj, windowSize=100., plotFit=False)
            return ma.array(m.toParameterVector()[0]).filled(np.NAN).astype(float)
        except Exception as e:
            print 'Error during ' + repr(traj) + repr(e)
            p = ma.array(m.toParameterVector()[0])
            p[:] = ma.masked
            return p.filled(np.NAN).astype(float)
开发者ID:stephenhelms,项目名称:WormTracker,代码行数:31,代码来源:fit_centroid_model_data.py


示例15: __call__

    def __call__(self, value, clip=None, midpoint=None):


        if clip is None:
            clip = self.clip

        if cbook.iterable(value):
            vtype = 'array'
            val = ma.asarray(value).astype(np.float)
        else:
            vtype = 'scalar'
            val = ma.array([value]).astype(np.float)

        self.autoscale_None(val)
        vmin, vmax = self.vmin, self.vmax

        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin==vmax:
            return 0.0 * val
        else:
            if clip:
                mask = ma.getmask(val)
                val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
                                mask=mask)
            result = (val-vmin) * (1.0/(vmax-vmin))
            #result = (ma.arcsinh(val)-np.arcsinh(vmin))/(np.arcsinh(vmax)-np.arcsinh(vmin))
            result = result**(1./self.nthroot)
        if vtype == 'scalar':
            result = result[0]
        return result
开发者ID:Fade89,项目名称:agpy,代码行数:31,代码来源:sqrt_norm.py


示例16: test_woe

 def test_woe(self):
     wPlus1  = np.math.log ( (2.0/3 + EPSILON)/(2.0/5 + EPSILON) ) 
     wMinus1 = np.math.log ( (1.0/3 + EPSILON)/(3.0/5 + EPSILON) ) 
     
     wPlus2  = np.math.log ( (1.0/3 + EPSILON)/(EPSILON) ) 
     wMinus2 = np.math.log ( (2.0/3 + EPSILON)/(1.0 + EPSILON) ) 
     
     wPlus3  = np.math.log ( (EPSILON)/(3.0/5 + EPSILON) ) 
     wMinus3 = np.math.log ( (1.0 + EPSILON)/(2.0/5 + EPSILON) )
     
     # Binary classes
     ans = [
         [wPlus1,  wPlus1,  wMinus1,],
         [wMinus1, wMinus1, wPlus1, ],
         [None,   wMinus1,  wPlus1, ]
     ]
     ans = ma.array(data=ans, mask=self.mask)
     np.testing.assert_equal(woe(self.factor, self.sites), ans)
     
     # Multiclass
     w1, w2, w3 = (wPlus1 + wMinus2+wMinus3), (wPlus2 + wMinus1 + wMinus3), (wPlus3 + wMinus1 + wMinus2)
     ans = [
         [w1, w1, w3,],
         [w3, w2, w1,],
         [ 0, w3, w1,]
     ]
     ans = ma.array(data=ans, mask=self.mask)
     weights = woe(self.multifact, self.sites)
     
     np.testing.assert_equal(ans, weights)
开发者ID:asiaairsurvey,项目名称:molusce,代码行数:30,代码来源:test_model.py


示例17: common_ma_setup

def common_ma_setup():
    data2D = ma.array([np.random.rand(25).reshape(5,5),
                       np.random.rand(25).reshape(5,5),
                       np.random.rand(25).reshape(5,5),
                       np.random.rand(25).reshape(5,5),
                       np.random.rand(25).reshape(5,5),],
                       mask=[np.random.rand(25).reshape(5,5)>.5,
                             np.random.rand(25).reshape(5,5)>.5,
                             np.random.rand(25).reshape(5,5)>.5,
                             np.random.rand(25).reshape(5,5)>.5,
                             np.random.rand(25).reshape(5,5)>.5,]
                      ) 
    data1D = ma.array(np.random.rand(25),
                      mask=np.random.rand(25)>0.9,
                      fill_value=-9999)
    dtype5R = [('a',float),('b',int),('c','|S3')]
    data5N = ma.array(zip(np.random.rand(5),
                          np.arange(5),
                          'ABCDE'),
                      dtype=dtype5R)
    data5R = mr.fromarrays([np.random.rand(5),
                            np.arange(5),
                            ('A','B','C','D','E')],
                           dtype=dtype5R)
    data5R._mask['a'][0]=True
    data5R._mask['b'][2]=True
    data5R._mask['c'][-1]=True
    return dict(data1D=data1D, 
                data2D=data2D,
                data5N=data5N,
                data5R=data5R)
开发者ID:ndawe,项目名称:scikit-timeseries,代码行数:31,代码来源:test_tstables.py


示例18: autosearch_peaks

def autosearch_peaks(dataset,limits,params): 
    """
    Detects peaks in the y axis of a dataset and returns a list of PeakRowUI objects for each peak
    """
    xdata=dataset.data[:,0]
    #limits=(xdata[0],xdata[-1])
    iBeg = np.searchsorted(xdata,limits[0])
    iFin = np.searchsorted(xdata,limits[1])
    x = xdata[iBeg:iFin]
    y0 = dataset.data[iBeg:iFin,1]
    y1 = copy.copy(y0)
    ysig = np.std(y1)
    offset = [-1,1]
    ymask = ma.array(y0,mask=(y0<ysig))
    for off in offset:
        ymask = ma.array(ymask,mask=(ymask-np.roll(y0,off)<=0.))
    indx = ymask.nonzero()
    mags = ymask[indx]
    poss = x[indx]
    iPeak=0
    max_peaks=50 # arbitrarily set for now
    if len(poss)>max_peaks:
        return None
    else:
        for pos,mag in zip(poss,mags):
            params.update(setPeakparms(pos,mag,params,iPeak))
            iPeak+=1
        return createPeakRows(params)
开发者ID:AustralianSynchrotron,项目名称:pdviper,代码行数:28,代码来源:peak_fitting.py


示例19: colicTest

def colicTest():
    frTrain = open('horseColicTraining.txt')
    frTest = open('horseColicTest.txt')
    trainingSet = []
    trainingLabels = []
    for line in frTrain.readlines():
        currLine = line.strip().split('\t')
        lineArr = []
        for i in range(21):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)
        trainingLabels.append(float(currLine[21]))
    trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 200)
    errorCount = 0
    numTestVec = 0.0
    for line in frTest.readlines():
        numTestVec += 1.0
        currLine = line.strip().split('\t')
        lineArr = []
        for i in range(21):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(array(lineArr), trainWeights)) != int(currLine[21]):
            errorCount += 1
    errorRate = (float(errorCount) / numTestVec)
    print "the error rate of this test is: %f" % errorRate
    return errorRate
开发者ID:daihui,项目名称:machinelearning,代码行数:26,代码来源:logRegres.py


示例20: test_user_missing_values

 def test_user_missing_values(self):
     data = "A, B, C\n0, 0., 0j\n1, N/A, 1j\n-9, 2.2, N/A\n3, -99, 3j"
     basekwargs = dict(dtype=None, delimiter=",", names=True)
     mdtype = [("A", int), ("B", float), ("C", complex)]
     #
     test = np.mafromtxt(StringIO(data), missing_values="N/A", **basekwargs)
     control = ma.array(
         [(0, 0.0, 0j), (1, -999, 1j), (-9, 2.2, -999j), (3, -99, 3j)],
         mask=[(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)],
         dtype=mdtype,
     )
     assert_equal(test, control)
     #
     basekwargs["dtype"] = mdtype
     test = np.mafromtxt(StringIO(data), missing_values={0: -9, 1: -99, 2: -999j}, **basekwargs)
     control = ma.array(
         [(0, 0.0, 0j), (1, -999, 1j), (-9, 2.2, -999j), (3, -99, 3j)],
         mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)],
         dtype=mdtype,
     )
     assert_equal(test, control)
     #
     test = np.mafromtxt(StringIO(data), missing_values={0: -9, "B": -99, "C": -999j}, **basekwargs)
     control = ma.array(
         [(0, 0.0, 0j), (1, -999, 1j), (-9, 2.2, -999j), (3, -99, 3j)],
         mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)],
         dtype=mdtype,
     )
     assert_equal(test, control)
开发者ID:hector1618,项目名称:numpy,代码行数:29,代码来源:test_io.py



注:本文中的numpy.ma.array函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python ma.asarray函数代码示例发布时间:2022-05-27
下一篇:
Python ma.arctan2函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap