• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python fft.fft函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scikits.cuda.fft.fft函数的典型用法代码示例。如果您正苦于以下问题:Python fft函数的具体用法?Python fft怎么用?Python fft使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了fft函数的19个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: thunk

        def thunk():
            input_shape = inputs[0][0].shape
            output_shape = input_shape

            z = outputs[0]

            # only allocate if there is no previous allocation of the
            # right size.
            if z[0] is None or z[0].shape != output_shape:
                z[0] = CudaNdarray.zeros(output_shape)

            input_pycuda = to_gpuarray(inputs[0][0])
            # I thought we'd need to change the type on output_pycuda
            # so it is complex64, but as it turns out scikits.cuda.fft
            # doesn't really care either way and treats the array as
            # if it is complex64 anyway.
            output_pycuda = to_gpuarray(z[0])

            # only initialise plan if necessary
            if plan[0] is None or plan_input_shape[0] != input_shape:
                plan_input_shape[0] = input_shape
                plan[0] = fft.Plan(input_shape[1:-1], np.complex64, np.complex64,
                                   batch=input_shape[0])

            fft.fft(input_pycuda, output_pycuda, plan[0])
            compute_map[node.outputs[0]][0] = True
开发者ID:Thrandis,项目名称:complex_RNN,代码行数:26,代码来源:fftconv.py


示例2: thunk

        def thunk():
            input_shape = inputs[0][0].shape

            # construct output shape
            output_shape = tuple(input_shape)

            # print 'FFT shapes:', input_shape, '->', output_shape
            # print 'Batch size:', input_shape[0]
            # print 'Core shape:', input_shape[1:-1]

            z = outputs[0]

            # only allocate if there is no previous allocation of the right size.
            if z[0] is None or z[0].shape != output_shape:
                z[0] = CudaNdarray.zeros(output_shape)

            input_pycuda = to_gpuarray(inputs[0][0])
            # I thought we'd need to change the type on output_pycuda
            # so it is complex64, but as it turns out scikits.cuda.fft
            # doesn't really care either way and treats the array as
            # if it is complex64 anyway.
            output_pycuda = to_gpuarray(z[0])

            # only initialise plan if necessary
            if plan[0] is None or plan_input_shape[0] != input_shape:
                plan_input_shape[0] = input_shape
                plan[0] = fft.Plan(shape=input_shape[1:-1],  # Exclude batch dim and complex dim
                                   in_dtype=np.complex64,
                                   out_dtype=np.complex64,
                                   batch=input_shape[0])

            fft.fft(input_pycuda, output_pycuda, plan[0])
开发者ID:soroushmehr,项目名称:BP-FFT,代码行数:32,代码来源:cuda_fft.py


示例3: fft_multiply_repeated

def fft_multiply_repeated(h_fft, x, cuda_dict=dict(use_cuda=False)):
    """Do FFT multiplication by a filter function (possibly using CUDA)

    Parameters
    ----------
    h_fft : 1-d array or gpuarray
        The filtering array to apply.
    x : 1-d array
        The array to filter.
    cuda_dict : dict
        Dictionary constructed using setup_cuda_multiply_repeated().

    Returns
    -------
    x : 1-d array
        Filtered version of x.
    """
    if not cuda_dict["use_cuda"]:
        # do the fourier-domain operations
        x = np.real(ifft(h_fft * fft(x), overwrite_x=True)).ravel()
    else:
        # do the fourier-domain operations, results in second param
        cuda_dict["x"].set(x.astype(np.float64))
        cudafft.fft(cuda_dict["x"], cuda_dict["x_fft"], cuda_dict["fft_plan"])
        cuda_multiply_inplace_c128(h_fft, cuda_dict["x_fft"])
        # If we wanted to do it locally instead of using our own kernel:
        # cuda_seg_fft.set(cuda_seg_fft.get() * h_fft)
        cudafft.ifft(cuda_dict["x_fft"], cuda_dict["x"], cuda_dict["ifft_plan"], False)
        x = np.array(cuda_dict["x"].get(), dtype=x.dtype, subok=True, copy=False)
    return x
开发者ID:TanayGahlot,项目名称:mne-python,代码行数:30,代码来源:cuda.py


示例4: thunk

        def thunk():
            input_shape = inputs[0][0].shape

            # construct output shape
            output_shape = list(input_shape)
            # DFT of real input is symmetric, no need to store
            # redundant coefficients
            output_shape[-1] = output_shape[-1] // 2 + 1
            # extra dimension with length 2 for real/imag
            output_shape += [2]
            output_shape = tuple(output_shape)

            z = outputs[0]

            # only allocate if there is no previous allocation of the
            # right size.
            if z[0] is None or z[0].shape != output_shape:
                z[0] = CudaNdarray.zeros(output_shape)

            input_pycuda = to_gpuarray(inputs[0][0])
            # I thought we'd need to change the type on output_pycuda
            # so it is complex64, but as it turns out scikits.cuda.fft
            # doesn't really care either way and treats the array as
            # if it is complex64 anyway.
            output_pycuda = to_gpuarray(z[0])

            # only initialise plan if necessary
            if plan[0] is None or plan_input_shape[0] != input_shape:
                plan_input_shape[0] = input_shape
                plan[0] = fft.Plan(input_shape[1:], np.float32, np.complex64,
                                   batch=input_shape[0])

            fft.fft(input_pycuda, output_pycuda, plan[0])
开发者ID:Ambier,项目名称:Theano,代码行数:33,代码来源:fftconv.py


示例5: gpu_r2c_fft

def gpu_r2c_fft(in1, is_gpuarray=False, store_on_gpu=False):
    """
    This function makes use of the scikits implementation of the FFT for GPUs to take the real to complex FFT.

    INPUTS:
    in1             (no default):       The array on which the FFT is to be performed.
    is_gpuarray     (default=True):     Boolean specifier for whether or not input is on the gpu.
    store_on_gpu    (default=False):    Boolean specifier for whether the result is to be left on the gpu or not.

    OUTPUTS:
    gpu_out1                            The gpu array containing the result.
    OR
    gpu_out1.get()                      The result from the gpu array.
    """

    if is_gpuarray:
        gpu_in1 = in1
    else:
        gpu_in1 = gpuarray.to_gpu_async(in1.astype(np.float32))

    output_size = np.array(in1.shape)
    output_size[1] = 0.5*output_size[1] + 1

    gpu_out1 = gpuarray.empty([output_size[0], output_size[1]], np.complex64)
    gpu_plan = Plan(gpu_in1.shape, np.float32, np.complex64)
    fft(gpu_in1, gpu_out1, gpu_plan)

    if store_on_gpu:
        return gpu_out1
    else:
        return gpu_out1.get()
开发者ID:AstroChem,项目名称:PyMORESANE,代码行数:31,代码来源:iuwt_convolution.py


示例6: test_fft_float64_to_complex128

 def test_fft_float64_to_complex128(self):
     x = np.asarray(np.random.rand(self.N), np.float64)
     xf = np.fft.fft(x)
     x_gpu = gpuarray.to_gpu(x)
     xf_gpu = gpuarray.empty(self.N/2+1, np.complex128)
     plan = fft.Plan(x.shape, np.float64, np.complex128)
     fft.fft(x_gpu, xf_gpu, plan)
     assert np.allclose(xf[0:self.N/2+1], xf_gpu.get(), atol=atol_float64)
开发者ID:jfrelinger,项目名称:scikits.cuda,代码行数:8,代码来源:test_fft.py


示例7: test_batch_fft_float64_to_complex128_2d

 def test_batch_fft_float64_to_complex128_2d(self):
     x = np.asarray(np.random.rand(self.B, self.N, self.M), np.float64)
     xf = np.fft.rfftn(x, axes=(1,2))
     x_gpu = gpuarray.to_gpu(x)
     xf_gpu = gpuarray.empty((self.B, self.N, self.M/2+1), np.complex128)
     plan = fft.Plan([self.N, self.M], np.float64, np.complex128, batch=self.B)
     fft.fft(x_gpu, xf_gpu, plan)
     assert np.allclose(xf, xf_gpu.get(), atol=atol_float64)
开发者ID:GiladAmar,项目名称:scikits.cuda,代码行数:8,代码来源:test_fft.py


示例8: test_batch_fft_float64_to_complex128_1d

 def test_batch_fft_float64_to_complex128_1d(self):
     x = np.asarray(np.random.rand(self.B, self.N), np.float64)
     xf = np.fft.rfft(x, axis=1)
     x_gpu = gpuarray.to_gpu(x)
     xf_gpu = gpuarray.empty((self.B, self.N/2+1), np.complex128)
     plan = fft.Plan(x.shape[1], np.float64, np.complex128, batch=self.B)
     fft.fft(x_gpu, xf_gpu, plan)
     assert np.allclose(xf, xf_gpu.get(), atol=atol_float64)
开发者ID:GiladAmar,项目名称:scikits.cuda,代码行数:8,代码来源:test_fft.py


示例9: test_fft_float32_to_complex64_2d

 def test_fft_float32_to_complex64_2d(self):
     x = np.asarray(np.random.rand(self.N, self.M), np.float32)
     xf = np.fft.rfftn(x)
     x_gpu = gpuarray.to_gpu(x)
     xf_gpu = gpuarray.empty((self.N, self.M/2+1), np.complex64)
     plan = fft.Plan(x.shape, np.float32, np.complex64)
     fft.fft(x_gpu, xf_gpu, plan)
     assert np.allclose(xf, xf_gpu.get(), atol=atol_float32)
开发者ID:GiladAmar,项目名称:scikits.cuda,代码行数:8,代码来源:test_fft.py


示例10: rfft2

 def rfft2(self, i, o = None, cache = True):
     shape = i.shape[:-2]
     rshape = i.shape[-2:]
     cshape = (rshape[0], rshape[1]/2+1)
     batch = np.prod(shape, dtype=np.int)
     plan = self.get_plan(cache, rshape, self.rtype, self.ctype, batch)
     if o is None:
         o = self.context.empty(shape+cshape, self.ctype)
     cu_fft.fft(i, o, plan, scale=False)
     return o
开发者ID:EelcoHoogendoorn,项目名称:ThreadPy,代码行数:10,代码来源:Context.py


示例11: test_multiple_streams

 def test_multiple_streams(self):
     x = np.asarray(np.random.rand(self.N), np.float32)
     xf = np.fft.fft(x)
     y = np.asarray(np.random.rand(self.N), np.float32)
     yf = np.fft.fft(y)
     x_gpu = gpuarray.to_gpu(x)
     y_gpu = gpuarray.to_gpu(y)
     xf_gpu = gpuarray.empty(self.N/2+1, np.complex64)
     yf_gpu = gpuarray.empty(self.N/2+1, np.complex64)
     stream0 = drv.Stream()
     stream1 = drv.Stream()
     plan1 = fft.Plan(x.shape, np.float32, np.complex64, stream=stream0)
     plan2 = fft.Plan(y.shape, np.float32, np.complex64, stream=stream1)
     fft.fft(x_gpu, xf_gpu, plan1)
     fft.fft(y_gpu, yf_gpu, plan2)
     assert np.allclose(xf[0:self.N/2+1], xf_gpu.get(), atol=atol_float32)
     assert np.allclose(yf[0:self.N/2+1], yf_gpu.get(), atol=atol_float32)
开发者ID:jfrelinger,项目名称:scikits.cuda,代码行数:17,代码来源:test_fft.py


示例12: convol

    def convol(self, data1, data2):
	self.init()
	self.ctx.push()
	plan = self.__class__.plans[self.shape]
	data1_gpu = self.__class__.data1_gpus[self.shape]
	data2_gpu = self.__class__.data2_gpus[self.shape]
	data1_gpu.set(data1.astype(numpy.complex128))
	cu_fft.fft(data1_gpu, data1_gpu, plan)
	data2_gpu.set(data2.astype(numpy.complex128))
	cu_fft.fft(data2_gpu, data2_gpu, plan)
	# data1_gpu *= data2_gpu.conj()
	self.multconj(data1_gpu, data2_gpu)
	cu_fft.ifft(data1_gpu, data1_gpu, plan, True)
	# self.ctx.synchronize()
	res = data1_gpu.get().real
	self.ctx.pop()
   	return res
开发者ID:pierrepaleo,项目名称:directConvolution,代码行数:17,代码来源:fft.py


示例13: cufft

def cufft(data,shape=None,inverse=False):

    if shape:
        data = pad2(data,shape)
                        
    plan  = CUFFT_PLANS.get(data.shape)
    if not plan:
        plan = cu_fft.Plan(data.shape,np.complex64,np.complex64)
        CUFFT_PLANS[data.shape] = plan
    
    gpu_data = gpuarray.to_gpu(np.cast[np.complex64](data))
    if inverse:
        cu_fft.ifft(gpu_data,gpu_data,plan)
    else:
        cu_fft.fft(gpu_data,gpu_data,plan)
    r = gpu_data.get()
    
    return r
开发者ID:yamins81,项目名称:v1framework,代码行数:18,代码来源:v1_pyfft.py


示例14: fft

def fft(invec,outvec,prec,itype,otype):
    cuplan = _get_fwd_plan(invec.dtype,outvec.dtype,len(invec))
    cu_fft.fft(invec.data,outvec.data,cuplan)
开发者ID:AbhayMK,项目名称:pycbc,代码行数:3,代码来源:cufft.py


示例15: sample_defrost_gpu

def sample_defrost_gpu(lat, func, gamma, m2_eff):
    """Calculates a sample of random values in the lattice

    lat = Lattice
    func = name of Cuda kernel
    n = size of cubic lattice
    gamma = -0.25 or +0.25
    m2_eff = effective mass

    This uses CuFFT to calculate FFTW.
    """
    import scikits.cuda.fft as fft
    import fftw3

    "Various constants:"
    mpl = lat.mpl
    n = lat.n
    nn = lat.nn
    os = 16
    nos = n*pow(os,2)
    dk = lat.dk
    dx = lat.dx
    dkos = dk/(2.*os)
    dxos = dx/os
    kcut = nn*dk/2.0
    norm = 0.5/(math.sqrt(2*pi*dk**3.)*mpl)*(dkos/dxos)

    ker = np.empty(nos,dtype = lat.prec_real)
    fft1 = fftw3.Plan(ker,ker, direction='forward', flags=['measure'],
                     realtypes = ['realodd 10'])

    for k in xrange(nos):
        kk = (k+0.5)*dkos
        ker[k]=kk*(kk**2. + m2_eff)**gamma*math.exp(-(kk/kcut)**2.)
    fft1.execute()
    fftw3.destroy_plan(fft1)

    for k in xrange(nos):
        ker[k] = norm*ker[k]/(k+1)

    Fk_gpu = gpuarray.zeros((n/2+1,n,n), dtype = lat.prec_complex)

    ker_gpu = gpuarray.to_gpu(ker)
    tmp_gpu = gpuarray.zeros((n,n,n),dtype = lat.prec_real)

    plan = fft.Plan(tmp_gpu.shape, lat.prec_real, lat.prec_complex)
    plan2 = fft.Plan(tmp_gpu.shape, lat.prec_complex, lat.prec_real)
    
    func(tmp_gpu, ker_gpu, np.uint32(nn), np.float64(os),
         np.uint32(lat.dimx), np.uint32(lat.dimy), np.uint32(lat.dimz),
         block = lat.cuda_block_1, grid = lat.cuda_grid)
    
    fft.fft(tmp_gpu, Fk_gpu, plan)
    
    if lat.test==True:
        print'Testing mode on! Set testQ to False to disable this.\n'
        np.random.seed(1)

    rr1 = (np.random.normal(size=Fk_gpu.shape)+
           np.random.normal(size=Fk_gpu.shape)*1j)

    Fk = Fk_gpu.get()
    Fk*= rr1
    Fk_gpu = gpuarray.to_gpu(Fk)

    fft.ifft(Fk_gpu, tmp_gpu, plan2)
    res = (tmp_gpu.get()).astype(lat.prec_real)

    res *= 1./lat.VL

    return res
开发者ID:jtksai,项目名称:PyCOOL,代码行数:71,代码来源:field_init.py


示例16: cuda_gridvis


#.........这里部分代码省略.........
  d_re   = gpu.to_gpu(h_re)
  d_im   = gpu.to_gpu(h_im)
  d_cnt  = gpu.zeros((np.int(nx),np.int(nx)),np.int32)
  d_grd  = gpu.zeros((np.int(nx),np.int(nx)),np.complex64)
  d_ngrd = gpu.zeros_like(d_grd)
  d_bm   = gpu.zeros_like(d_grd)
  d_nbm  = gpu.zeros_like(d_grd)
  d_fim  = gpu.zeros((np.int(imsize),np.int(imsize)),np.float32)
  ## define kernel parameters
  blocksize2D  = (8,16,1)
  gridsize2D   = (np.int(np.ceil(1.*nx/blocksize2D[0])),np.int(np.ceil(1.*nx/blocksize2D[1])))
  blocksizeF2D = (16,16,1)
  gridsizeF2D  = (np.int(np.ceil(1.*imsize/blocksizeF2D[0])),np.int(np.ceil(1.*imsize/blocksizeF2D[1])))
  blocksize1D  = (256,1,1)
  gridsize1D   = (np.int(np.ceil(1.*gcount/blocksize1D[0])),1)

  # ------------------------
  # make gridding kernels
  # ------------------------
  ## make spheroidal convolution kernel (don't mess with these!)
  width = 6.
  ngcf  = 24.
  h_cgf = gcf(ngcf,width)
  ## make grid correction
  h_corr = corrfun(nx,width)
  d_cgf  = module.get_global('cgf')[0]
  d_corr = gpu.to_gpu(h_corr)
  cu.memcpy_htod(d_cgf,h_cgf)

  # ------------------------
  # grid it up
  # ------------------------
  d_umax = gpu.max(cumath.fabs(d_u))
  d_vmax = gpu.max(cumath.fabs(d_v))
  umax   = np.int32(np.ceil(d_umax.get()/du))
  vmax   = np.int32(np.ceil(d_vmax.get()/du))

  ## grid ($$)
  #  This should be improvable via:
  #    - shared memory solution? I tried...
  #    - better coalesced memory access? I tried...
  #    - reorganzing and indexing UV data beforehand?
  #       (i.e. http://www.nvidia.com/docs/IO/47905/ECE757_Project_Report_Gregerson.pdf)
  #    - storing V(u,v) in texture memory?
  gridVis_wBM_kernel(d_grd,d_bm,d_cnt,d_u,d_v,d_re,d_im,nx,du,gcount,umax,vmax,\
			block=blocksize2D,grid=gridsize2D)
  ## apply weights
  wgtGrid_kernel(d_bm,d_cnt,briggs,nx,block=blocksize2D,grid=gridsize2D)
  hfac = np.int32(1)
  dblGrid_kernel(d_bm,nx,hfac,block=blocksize2D,grid=gridsize2D)
  shiftGrid_kernel(d_bm,d_nbm,nx,block=blocksize2D,grid=gridsize2D)
  ## normalize
  wgtGrid_kernel(d_grd,d_cnt,briggs,nx,block=blocksize2D,grid=gridsize2D)
  ## Reflect grid about v axis
  hfac = np.int32(-1)
  dblGrid_kernel(d_grd,nx,hfac,block=blocksize2D,grid=gridsize2D)
  ## Shift both
  shiftGrid_kernel(d_grd,d_ngrd,nx,block=blocksize2D,grid=gridsize2D)

  # ------------------------
  # Make the beam
  # ------------------------
  ## Transform to image plane
  fft.fft(d_nbm,d_bm,plan)
  ## Shift
  shiftGrid_kernel(d_bm,d_nbm,nx,block=blocksize2D,grid=gridsize2D)
  ## Correct for C
  corrGrid_kernel(d_nbm,d_corr,nx,block=blocksize2D,grid=gridsize2D)
  # Trim
  trimIm_kernel(d_nbm,d_fim,noff,nx,imsize,block=blocksizeF2D,grid=gridsizeF2D)
  ## Normalize
  d_bmax = gpu.max(d_fim)
  bmax = d_bmax.get()
  bmax = np.float32(1./bmax)
  nrmBeam_kernel(d_fim,bmax,imsize,block=blocksizeF2D,grid=gridsizeF2D)
  ## Pull onto CPU
  dpsf  = d_fim.get()

  # ------------------------
  # Make the map
  # ------------------------
  ## Transform to image plane
  fft.fft(d_ngrd,d_grd,plan)
  ## Shift
  shiftGrid_kernel(d_grd,d_ngrd,nx,block=blocksize2D,grid=gridsize2D)
  ## Correct for C
  corrGrid_kernel(d_ngrd,d_corr,nx,block=blocksize2D,grid=gridsize2D)
  ## Trim
  trimIm_kernel(d_ngrd,d_fim,noff,nx,imsize,block=blocksizeF2D,grid=gridsizeF2D)
  ## Normalize (Jy/beam)
  nrmGrid_kernel(d_fim,bmax,imsize,block=blocksizeF2D,grid=gridsizeF2D)

  ## Finish timers
  t_end=time.time()
  t_full=t_end-t_start
  print "Gridding execution time %0.5f"%t_full+' s'
  print "\t%0.5f"%(t_full/gcount)+' s per visibility'

  ## Return dirty psf (CPU) and dirty image (GPU)
  return dpsf,d_fim
开发者ID:shaoguangleo,项目名称:autoFits,代码行数:101,代码来源:gICLEAN.py


示例17: fft_resample

def fft_resample(x, W, new_len, npad, to_remove, cuda_dict=dict(use_cuda=False)):
    """Do FFT resampling with a filter function (possibly using CUDA)

    Parameters
    ----------
    x : 1-d array
        The array to resample.
    W : 1-d array or gpuarray
        The filtering function to apply.
    new_len : int
        The size of the output array (before removing padding).
    npad : int
        Amount of padding to apply before resampling.
    to_remove : int
        Number of samples to remove after resampling.
    cuda_dict : dict
        Dictionary constructed using setup_cuda_multiply_repeated().

    Returns
    -------
    x : 1-d array
        Filtered version of x.
    """
    # add some padding at beginning and end to make this work a little cleaner
    x = _smart_pad(x, npad)
    old_len = len(x)
    shorter = new_len < old_len
    if not cuda_dict["use_cuda"]:
        N = int(min(new_len, old_len))
        sl_1 = slice((N + 1) // 2)
        y_fft = np.zeros(new_len, np.complex128)
        x_fft = fft(x).ravel() * W
        y_fft[sl_1] = x_fft[sl_1]
        sl_2 = slice(-(N - 1) // 2, None)
        y_fft[sl_2] = x_fft[sl_2]
        y = np.real(ifft(y_fft, overwrite_x=True)).ravel()
    else:
        cuda_dict["x"].set(np.concatenate((x, np.zeros(max(new_len - old_len, 0), x.dtype))))
        # do the fourier-domain operations, results put in second param
        cudafft.fft(cuda_dict["x"], cuda_dict["x_fft"], cuda_dict["fft_plan"])
        cuda_multiply_inplace_c128(W, cuda_dict["x_fft"])
        # This is not straightforward, but because x_fft and y_fft share
        # the same data (and only one half of the full DFT is stored), we
        # don't have to transfer the slice like we do in scipy. All we
        # need to worry about is the Nyquist component, either halving it
        # or taking just the real component...
        use_len = new_len if shorter else old_len
        func = cuda_real_c128 if shorter else cuda_halve_c128
        if use_len % 2 == 0:
            nyq = int((use_len - (use_len % 2)) // 2)
            func(cuda_dict["x_fft"], slice=slice(nyq, nyq + 1))
        cudafft.ifft(cuda_dict["x_fft"], cuda_dict["x"], cuda_dict["ifft_plan"], scale=False)
        y = cuda_dict["x"].get()[: new_len if shorter else None]

    # now let's trim it back to the correct size (if there was padding)
    if to_remove > 0:
        keep = np.ones((new_len), dtype="bool")
        keep[:to_remove] = False
        keep[-to_remove:] = False
        y = np.compress(keep, y)

    return y
开发者ID:TanayGahlot,项目名称:mne-python,代码行数:62,代码来源:cuda.py


示例18: int

ii = 0
tmpimg = numpy.zeros((n, m, k), dtype=numpy.float32)

ln = sq + 5
mags = mag[indexp].sum()
del indexp
s = 3
N2 = int(N * 0.7)
N3 = int(N * 0.7)

gpu_data.set(sobject.astype(numpy.complex64))
pycuda.driver.memcpy_dtod(gpu_last.gpudata, gpu_data.gpudata, gpu_data.nbytes)
gpu_intensity.set(mag)
gpu_mask.set(sobm)
#print real_space.nbytes
for i in range(N):
    t0 = time()
    cu_fft.fft(gpu_data, gpu_data, plan)
    constrains_fourier(gpu_data, gpu_intensity)
    cu_fft.ifft(gpu_data, gpu_data, plan, True)
    constrains_real(gpu_data, gpu_last, gpu_mask, beta)
    pycuda.driver.memcpy_dtod(gpu_last.gpudata, gpu_data.gpudata, gpu_data.nbytes)
    t1 = time()
    ctx.synchronize()
    t2 = time()
    print("With CUDA, the full loop took %.3fs but after sync %.3fs" % (t1 - t0, t2 - t0))

del tmpimg
print "it took", time() - time0, N / (time() - time0)
print "smallest error", serr, "number", nerr
开发者ID:kif,项目名称:pycdi,代码行数:30,代码来源:pycid3D_cuda.py


示例19:

import numpy as np

import scikits.cuda.fft as cu_fft

print 'Testing fft/ifft..'
N = 4096*16
batch_size = 16

x = np.asarray(np.random.rand(batch_size, N), np.float32)
xf = np.fft.fft(x)
y = np.real(np.fft.ifft(xf))

x_gpu = gpuarray.to_gpu(x)
xf_gpu = gpuarray.empty((batch_size, N/2+1), np.complex64)
plan_forward = cu_fft.Plan(N, np.float32, np.complex64, batch_size)
cu_fft.fft(x_gpu, xf_gpu, plan_forward)

y_gpu = gpuarray.empty_like(x_gpu)
plan_inverse = cu_fft.Plan(N, np.complex64, np.float32, batch_size)
cu_fft.ifft(xf_gpu, y_gpu, plan_inverse, True)

print 'Success status: ', np.allclose(y, y_gpu.get(), atol=1e-6)

print 'Testing in-place fft..'
x = np.asarray(np.random.rand(batch_size, N)+\
               1j*np.random.rand(batch_size, N), np.complex64)
x_gpu = gpuarray.to_gpu(x)

plan = cu_fft.Plan(N, np.complex64, np.complex64, batch_size)
cu_fft.fft(x_gpu, x_gpu, plan)
开发者ID:Lurkman,项目名称:scikits.cuda,代码行数:30,代码来源:fft_batch_demo.py



注:本文中的scikits.cuda.fft.fft函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python fft.ifft函数代码示例发布时间:2022-05-27
下一篇:
Python bootstrap.ci函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap