• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python fft.ifft函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scikits.cuda.fft.ifft函数的典型用法代码示例。如果您正苦于以下问题:Python ifft函数的具体用法?Python ifft怎么用?Python ifft使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了ifft函数的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: thunk

        def thunk():
            input_shape = inputs[0][0].shape

            # construct output shape
            # chop off the extra length-2 dimension for real/imag
            output_shape = list(input_shape[:-1])
            # restore full signal length
            output_shape[-1] = (output_shape[-1] - 1) * 2
            output_shape = tuple(output_shape)

            z = outputs[0]

            # only allocate if there is no previous allocation of the
            # right size.
            if z[0] is None or z[0].shape != output_shape:
                z[0] = CudaNdarray.zeros(output_shape)

            input_pycuda = to_gpuarray(inputs[0][0])
            # input_pycuda is a float32 array with an extra dimension,
            # but will be interpreted by scikits.cuda as a complex64
            # array instead.
            output_pycuda = to_gpuarray(z[0])

            # only initialise plan if necessary
            if plan[0] is None or plan_input_shape[0] != input_shape:
                plan_input_shape[0] = input_shape
                plan[0] = fft.Plan(output_shape[1:], np.complex64, np.float32,
                                   batch=output_shape[0])

            fft.ifft(input_pycuda, output_pycuda, plan[0])
开发者ID:Ambier,项目名称:Theano,代码行数:30,代码来源:fftconv.py


示例2: gpu_c2r_ifft

def gpu_c2r_ifft(in1, is_gpuarray=False, store_on_gpu=False):
    """
    This function makes use of the scikits implementation of the FFT for GPUs to take the complex to real IFFT.

    INPUTS:
    in1             (no default):       The array on which the IFFT is to be performed.
    is_gpuarray     (default=True):     Boolean specifier for whether or not input is on the gpu.
    store_on_gpu    (default=False):    Boolean specifier for whether the result is to be left on the gpu or not.

    OUTPUTS:
    gpu_out1                            The gpu array containing the result.
    OR
    gpu_out1.get()                      The result from the gpu array.
    """

    if is_gpuarray:
        gpu_in1 = in1
    else:
        gpu_in1 = gpuarray.to_gpu_async(in1.astype(np.complex64))

    output_size = np.array(in1.shape)
    output_size[1] = 2*(output_size[1]-1)

    gpu_out1 = gpuarray.empty([output_size[0],output_size[1]], np.float32)
    gpu_plan = Plan(output_size, np.complex64, np.float32)
    ifft(gpu_in1, gpu_out1, gpu_plan)
    scale_fft(gpu_out1)

    if store_on_gpu:
        return gpu_out1
    else:
        return gpu_out1.get()
开发者ID:AstroChem,项目名称:PyMORESANE,代码行数:32,代码来源:iuwt_convolution.py


示例3: fft_multiply_repeated

def fft_multiply_repeated(h_fft, x, cuda_dict=dict(use_cuda=False)):
    """Do FFT multiplication by a filter function (possibly using CUDA)

    Parameters
    ----------
    h_fft : 1-d array or gpuarray
        The filtering array to apply.
    x : 1-d array
        The array to filter.
    cuda_dict : dict
        Dictionary constructed using setup_cuda_multiply_repeated().

    Returns
    -------
    x : 1-d array
        Filtered version of x.
    """
    if not cuda_dict["use_cuda"]:
        # do the fourier-domain operations
        x = np.real(ifft(h_fft * fft(x), overwrite_x=True)).ravel()
    else:
        # do the fourier-domain operations, results in second param
        cuda_dict["x"].set(x.astype(np.float64))
        cudafft.fft(cuda_dict["x"], cuda_dict["x_fft"], cuda_dict["fft_plan"])
        cuda_multiply_inplace_c128(h_fft, cuda_dict["x_fft"])
        # If we wanted to do it locally instead of using our own kernel:
        # cuda_seg_fft.set(cuda_seg_fft.get() * h_fft)
        cudafft.ifft(cuda_dict["x_fft"], cuda_dict["x"], cuda_dict["ifft_plan"], False)
        x = np.array(cuda_dict["x"].get(), dtype=x.dtype, subok=True, copy=False)
    return x
开发者ID:TanayGahlot,项目名称:mne-python,代码行数:30,代码来源:cuda.py


示例4: thunk

        def thunk():
            input_shape = inputs[0][0].shape
            output_shape = input_shape

            z = outputs[0]

            # only allocate if there is no previous allocation of the
            # right size.
            if z[0] is None or z[0].shape != output_shape:
                z[0] = CudaNdarray.zeros(output_shape)

            input_pycuda = to_gpuarray(inputs[0][0])
            # input_pycuda is a float32 array with an extra dimension,
            # but will be interpreted by scikits.cuda as a complex64
            # array instead.
            output_pycuda = to_gpuarray(z[0])

            # only initialise plan if necessary
            if plan[0] is None or plan_input_shape[0] != input_shape:
                plan_input_shape[0] = input_shape
                plan[0] = fft.Plan(output_shape[1:-1], np.complex64, np.complex64,
                                   batch=output_shape[0])

            fft.ifft(input_pycuda, output_pycuda, plan[0])
            compute_map[node.outputs[0]][0] = True
开发者ID:Thrandis,项目名称:complex_RNN,代码行数:25,代码来源:fftconv.py


示例5: test_ifft_complex128_to_float64

 def test_ifft_complex128_to_float64(self):
     x = np.asarray(np.random.rand(self.N), np.float64)
     xf = np.asarray(np.fft.fft(x), np.complex128)
     xf_gpu = gpuarray.to_gpu(xf[0:self.N/2+1])
     x_gpu = gpuarray.empty(self.N, np.float64)
     plan = fft.Plan(x.shape, np.complex128, np.float64)
     fft.ifft(xf_gpu, x_gpu, plan, True)
     assert np.allclose(x, x_gpu.get(), atol=atol_float64)
开发者ID:jfrelinger,项目名称:scikits.cuda,代码行数:8,代码来源:test_fft.py


示例6: test_ifft_complex64_to_float32_1d

 def test_ifft_complex64_to_float32_1d(self):
     x = np.asarray(np.random.rand(self.N), np.float32)
     xf = np.asarray(np.fft.rfftn(x), np.complex64)
     xf_gpu = gpuarray.to_gpu(xf)
     x_gpu = gpuarray.empty(self.N, np.float32)
     plan = fft.Plan(x.shape, np.complex64, np.float32)
     fft.ifft(xf_gpu, x_gpu, plan, True)
     assert np.allclose(x, x_gpu.get(), atol=atol_float32)
开发者ID:GiladAmar,项目名称:scikits.cuda,代码行数:8,代码来源:test_fft.py


示例7: irfft2

 def irfft2(self, i, o = None, cache = True):
     shape = i.shape[:-2]
     cshape = i.shape[-2:]
     rshape = (cshape[0], (cshape[1]-1)*2)
     batch = np.prod(shape, dtype=np.int)
     plan = self.get_plan(cache, rshape, self.ctype, self.rtype, batch)
     if o is None:
         o = self.context.empty(shape+rshape, self.rtype)
     cu_fft.ifft(i, o, plan, scale=True)
     return o
开发者ID:EelcoHoogendoorn,项目名称:ThreadPy,代码行数:10,代码来源:Context.py


示例8: test_batch_ifft_complex128_to_float64_2d

    def test_batch_ifft_complex128_to_float64_2d(self):

        # Note that since rfftn returns a Fortran-ordered array, it
        # needs to be reformatted as a C-ordered array before being
        # passed to gpuarray.to_gpu:
        x = np.asarray(np.random.rand(self.B, self.N, self.M), np.float64)
        xf = np.asarray(np.fft.rfftn(x, axes=(1,2)), np.complex128)
        xf_gpu = gpuarray.to_gpu(np.ascontiguousarray(xf))
        x_gpu = gpuarray.empty((self.B, self.N, self.M), np.float64)
        plan = fft.Plan([self.N, self.M], np.complex128, np.float64, batch=self.B)
        fft.ifft(xf_gpu, x_gpu, plan, True)
        assert np.allclose(x, x_gpu.get(), atol=atol_float64)
开发者ID:GiladAmar,项目名称:scikits.cuda,代码行数:12,代码来源:test_fft.py


示例9: test_ifft_complex64_to_float32_2d

    def test_ifft_complex64_to_float32_2d(self):

        # Note that since rfftn returns a Fortran-ordered array, it
        # needs to be reformatted as a C-ordered array before being
        # passed to gpuarray.to_gpu:
        x = np.asarray(np.random.rand(self.N, self.M), np.float32)
        xf = np.asarray(np.fft.rfftn(x), np.complex64)
        xf_gpu = gpuarray.to_gpu(np.ascontiguousarray(xf))
        x_gpu = gpuarray.empty((self.N, self.M), np.float32)
        plan = fft.Plan(x.shape, np.complex64, np.float32)
        fft.ifft(xf_gpu, x_gpu, plan, True)
        assert np.allclose(x, x_gpu.get(), atol=atol_float32)
开发者ID:GiladAmar,项目名称:scikits.cuda,代码行数:12,代码来源:test_fft.py


示例10: convol

    def convol(self, data1, data2):
	self.init()
	self.ctx.push()
	plan = self.__class__.plans[self.shape]
	data1_gpu = self.__class__.data1_gpus[self.shape]
	data2_gpu = self.__class__.data2_gpus[self.shape]
	data1_gpu.set(data1.astype(numpy.complex128))
	cu_fft.fft(data1_gpu, data1_gpu, plan)
	data2_gpu.set(data2.astype(numpy.complex128))
	cu_fft.fft(data2_gpu, data2_gpu, plan)
	# data1_gpu *= data2_gpu.conj()
	self.multconj(data1_gpu, data2_gpu)
	cu_fft.ifft(data1_gpu, data1_gpu, plan, True)
	# self.ctx.synchronize()
	res = data1_gpu.get().real
	self.ctx.pop()
   	return res
开发者ID:pierrepaleo,项目名称:directConvolution,代码行数:17,代码来源:fft.py


示例11: cufft

def cufft(data,shape=None,inverse=False):

    if shape:
        data = pad2(data,shape)
                        
    plan  = CUFFT_PLANS.get(data.shape)
    if not plan:
        plan = cu_fft.Plan(data.shape,np.complex64,np.complex64)
        CUFFT_PLANS[data.shape] = plan
    
    gpu_data = gpuarray.to_gpu(np.cast[np.complex64](data))
    if inverse:
        cu_fft.ifft(gpu_data,gpu_data,plan)
    else:
        cu_fft.fft(gpu_data,gpu_data,plan)
    r = gpu_data.get()
    
    return r
开发者ID:yamins81,项目名称:v1framework,代码行数:18,代码来源:v1_pyfft.py


示例12: sample_defrost_gpu

def sample_defrost_gpu(lat, func, gamma, m2_eff):
    """Calculates a sample of random values in the lattice

    lat = Lattice
    func = name of Cuda kernel
    n = size of cubic lattice
    gamma = -0.25 or +0.25
    m2_eff = effective mass

    This uses CuFFT to calculate FFTW.
    """
    import scikits.cuda.fft as fft
    import fftw3

    "Various constants:"
    mpl = lat.mpl
    n = lat.n
    nn = lat.nn
    os = 16
    nos = n*pow(os,2)
    dk = lat.dk
    dx = lat.dx
    dkos = dk/(2.*os)
    dxos = dx/os
    kcut = nn*dk/2.0
    norm = 0.5/(math.sqrt(2*pi*dk**3.)*mpl)*(dkos/dxos)

    ker = np.empty(nos,dtype = lat.prec_real)
    fft1 = fftw3.Plan(ker,ker, direction='forward', flags=['measure'],
                     realtypes = ['realodd 10'])

    for k in xrange(nos):
        kk = (k+0.5)*dkos
        ker[k]=kk*(kk**2. + m2_eff)**gamma*math.exp(-(kk/kcut)**2.)
    fft1.execute()
    fftw3.destroy_plan(fft1)

    for k in xrange(nos):
        ker[k] = norm*ker[k]/(k+1)

    Fk_gpu = gpuarray.zeros((n/2+1,n,n), dtype = lat.prec_complex)

    ker_gpu = gpuarray.to_gpu(ker)
    tmp_gpu = gpuarray.zeros((n,n,n),dtype = lat.prec_real)

    plan = fft.Plan(tmp_gpu.shape, lat.prec_real, lat.prec_complex)
    plan2 = fft.Plan(tmp_gpu.shape, lat.prec_complex, lat.prec_real)
    
    func(tmp_gpu, ker_gpu, np.uint32(nn), np.float64(os),
         np.uint32(lat.dimx), np.uint32(lat.dimy), np.uint32(lat.dimz),
         block = lat.cuda_block_1, grid = lat.cuda_grid)
    
    fft.fft(tmp_gpu, Fk_gpu, plan)
    
    if lat.test==True:
        print'Testing mode on! Set testQ to False to disable this.\n'
        np.random.seed(1)

    rr1 = (np.random.normal(size=Fk_gpu.shape)+
           np.random.normal(size=Fk_gpu.shape)*1j)

    Fk = Fk_gpu.get()
    Fk*= rr1
    Fk_gpu = gpuarray.to_gpu(Fk)

    fft.ifft(Fk_gpu, tmp_gpu, plan2)
    res = (tmp_gpu.get()).astype(lat.prec_real)

    res *= 1./lat.VL

    return res
开发者ID:jtksai,项目名称:PyCOOL,代码行数:71,代码来源:field_init.py


示例13: int

ii = 0
tmpimg = numpy.zeros((n, m, k), dtype=numpy.float32)

ln = sq + 5
mags = mag[indexp].sum()
del indexp
s = 3
N2 = int(N * 0.7)
N3 = int(N * 0.7)

gpu_data.set(sobject.astype(numpy.complex64))
pycuda.driver.memcpy_dtod(gpu_last.gpudata, gpu_data.gpudata, gpu_data.nbytes)
gpu_intensity.set(mag)
gpu_mask.set(sobm)
#print real_space.nbytes
for i in range(N):
    t0 = time()
    cu_fft.fft(gpu_data, gpu_data, plan)
    constrains_fourier(gpu_data, gpu_intensity)
    cu_fft.ifft(gpu_data, gpu_data, plan, True)
    constrains_real(gpu_data, gpu_last, gpu_mask, beta)
    pycuda.driver.memcpy_dtod(gpu_last.gpudata, gpu_data.gpudata, gpu_data.nbytes)
    t1 = time()
    ctx.synchronize()
    t2 = time()
    print("With CUDA, the full loop took %.3fs but after sync %.3fs" % (t1 - t0, t2 - t0))

del tmpimg
print "it took", time() - time0, N / (time() - time0)
print "smallest error", serr, "number", nerr
开发者ID:kif,项目名称:pycdi,代码行数:30,代码来源:pycid3D_cuda.py


示例14:

print 'Testing fft/ifft..'
N = 4096*16
batch_size = 16

x = np.asarray(np.random.rand(batch_size, N), np.float32)
xf = np.fft.fft(x)
y = np.real(np.fft.ifft(xf))

x_gpu = gpuarray.to_gpu(x)
xf_gpu = gpuarray.empty((batch_size, N/2+1), np.complex64)
plan_forward = cu_fft.Plan(N, np.float32, np.complex64, batch_size)
cu_fft.fft(x_gpu, xf_gpu, plan_forward)

y_gpu = gpuarray.empty_like(x_gpu)
plan_inverse = cu_fft.Plan(N, np.complex64, np.float32, batch_size)
cu_fft.ifft(xf_gpu, y_gpu, plan_inverse, True)

print 'Success status: ', np.allclose(y, y_gpu.get(), atol=1e-6)

print 'Testing in-place fft..'
x = np.asarray(np.random.rand(batch_size, N)+\
               1j*np.random.rand(batch_size, N), np.complex64)
x_gpu = gpuarray.to_gpu(x)

plan = cu_fft.Plan(N, np.complex64, np.complex64, batch_size)
cu_fft.fft(x_gpu, x_gpu, plan)

cu_fft.ifft(x_gpu, x_gpu, plan, True)

print 'Success status: ', np.allclose(x, x_gpu.get(), atol=1e-6)
开发者ID:Lurkman,项目名称:scikits.cuda,代码行数:30,代码来源:fft_batch_demo.py


示例15: resample_sdbe_to_r2dbe_fft_interp

def resample_sdbe_to_r2dbe_fft_interp(Xs,interp_kind="nearest"):
	"""
	Resample SWARM spectrum product in time-domain at R2DBE rate using
	iFFT and then interpolation in the time-domain.
	
	Arguments:
	----------
	Xs -- MxN numpy array in which the zeroth dimension is increasing
	snapshot index, and the first dimension is the positive frequency
	half of the spectrum.
	interp_kind -- Kind of interpolation.
	
	Returns:
	--------
	xs -- The time-domain signal sampled at the R2DBE rate.
	"""
	# timestep sizes for SWARM and R2DBE rates
	dt_s = 1.0/SWARM_RATE
	dt_r = 1.0/R2DBE_RATE
	
	# cuFFT plan for complex to real DFT
	plan = cu_fft.Plan(SWARM_SAMPLES_PER_WINDOW,complex64,float32,Xs.shape[0])

	# load complex spectrum to device
	x_d = gpuarray.to_gpu(Xs)
	xp_d = gpuarray.empty((Xs.shape[0],Xs.shape[1]+1),dtype=complex64)

	# pad nyquist with zeros
	block = (32,32,1)
	grid = (int(ceil(1. * (Xs.shape[1]+1) / block[1])), int(ceil(1. * Xs.shape[0] / block[0])))
	fill_padded = mod.get_function("fill_padded")
	fill_padded(int32(Xs.shape[0]),xp_d,int32(Xs.shape[1]+1),x_d,int32(Xs.shape[1]),\
		block=block,grid=grid)

	# allocate memory for time series
	xf_d = gpuarray.empty((Xs.shape[0],SWARM_SAMPLES_PER_WINDOW),float32)

	# calculate time series, include scaling
	cu_fft.ifft(xp_d,xf_d,plan,scale=True)

	# and interpolate
	xs_size = int(floor(Xs.shape[0]*SWARM_SAMPLES_PER_WINDOW*dt_s/dt_r)) - 1
	TPB = 64				# threads per block
	nB = int(ceil(1. * xs_size / TPB))	# number of blocks
	xs_d = gpuarray.empty(xs_size,float32)	# decimated time-series 
	if interp_kind == 'nearest':
		# compile kernel
		nearest_interp = mod.get_function(interp_kind)
		# call kernel
		nearest_interp(xf_d,xs_d,int32(xs_size),float64(dt_r/dt_s),block=(TPB,1,1),grid=(nB,1))
	elif interp_kind == 'linear':
		# compile kernel
		linear_interp = mod.get_function("copy_texture_kernel")
		# get texture reference
		a_texref = mod.get_texref("a_tex")
		a_texref.set_filter_mode(drv.filter_mode.LINEAR)	# linear
		#a_texref.set_filter_mode(drv.filter_mode.POINT)	# nearest-neighbor
		# move time series to texture reference
		# following http://lists.tiker.net/pipermail/pycuda/2009-November/001916.html
		descr = drv.ArrayDescriptor()
		descr.format= drv.array_format.FLOAT
		descr.height = Xs.shape[0]
		descr.width = SWARM_SAMPLES_PER_WINDOW
		descr.num_channels = 1
		a_texref.set_address_2d(xf_d.gpudata,descr,SWARM_SAMPLES_PER_WINDOW*4)
		# set up linear interpolation over texture
		linear_interp(xs_d,int32(xs_size),float64(dt_r/dt_s),int32(SWARM_SAMPLES_PER_WINDOW),\
				texrefs=[a_texref],block=(TPB,1,1),grid=(nB,1))

	return xs_d.get()
开发者ID:sma-wideband,项目名称:sdbe,代码行数:70,代码来源:swarmdbe_cuda.py


示例16: fft_resample

def fft_resample(x, W, new_len, npad, to_remove, cuda_dict=dict(use_cuda=False)):
    """Do FFT resampling with a filter function (possibly using CUDA)

    Parameters
    ----------
    x : 1-d array
        The array to resample.
    W : 1-d array or gpuarray
        The filtering function to apply.
    new_len : int
        The size of the output array (before removing padding).
    npad : int
        Amount of padding to apply before resampling.
    to_remove : int
        Number of samples to remove after resampling.
    cuda_dict : dict
        Dictionary constructed using setup_cuda_multiply_repeated().

    Returns
    -------
    x : 1-d array
        Filtered version of x.
    """
    # add some padding at beginning and end to make this work a little cleaner
    x = _smart_pad(x, npad)
    old_len = len(x)
    shorter = new_len < old_len
    if not cuda_dict["use_cuda"]:
        N = int(min(new_len, old_len))
        sl_1 = slice((N + 1) // 2)
        y_fft = np.zeros(new_len, np.complex128)
        x_fft = fft(x).ravel() * W
        y_fft[sl_1] = x_fft[sl_1]
        sl_2 = slice(-(N - 1) // 2, None)
        y_fft[sl_2] = x_fft[sl_2]
        y = np.real(ifft(y_fft, overwrite_x=True)).ravel()
    else:
        cuda_dict["x"].set(np.concatenate((x, np.zeros(max(new_len - old_len, 0), x.dtype))))
        # do the fourier-domain operations, results put in second param
        cudafft.fft(cuda_dict["x"], cuda_dict["x_fft"], cuda_dict["fft_plan"])
        cuda_multiply_inplace_c128(W, cuda_dict["x_fft"])
        # This is not straightforward, but because x_fft and y_fft share
        # the same data (and only one half of the full DFT is stored), we
        # don't have to transfer the slice like we do in scipy. All we
        # need to worry about is the Nyquist component, either halving it
        # or taking just the real component...
        use_len = new_len if shorter else old_len
        func = cuda_real_c128 if shorter else cuda_halve_c128
        if use_len % 2 == 0:
            nyq = int((use_len - (use_len % 2)) // 2)
            func(cuda_dict["x_fft"], slice=slice(nyq, nyq + 1))
        cudafft.ifft(cuda_dict["x_fft"], cuda_dict["x"], cuda_dict["ifft_plan"], scale=False)
        y = cuda_dict["x"].get()[: new_len if shorter else None]

    # now let's trim it back to the correct size (if there was padding)
    if to_remove > 0:
        keep = np.ones((new_len), dtype="bool")
        keep[:to_remove] = False
        keep[-to_remove:] = False
        y = np.compress(keep, y)

    return y
开发者ID:TanayGahlot,项目名称:mne-python,代码行数:62,代码来源:cuda.py


示例17: resample_sdbe_to_r2dbe_zpfft

def resample_sdbe_to_r2dbe_zpfft(Xs):
	"""
	Resample SWARM spectrum product in time-domain at R2DBE rate using
	zero-padding and a radix-2 iFFT algorithm.
	
	Arguments:
	----------
	Xs -- MxN numpy array in which the zeroth dimension is increasing
	snapshot index, and the first dimension is the positive frequency
	half of the spectrum.
	
	Returns:
	--------
	xs -- The time-domain signal sampled at the R2DBE rate.
	next_start_vec -- Start indecies for each FFT window.

	"""

	# timestep sizes for SWARM and R2DBE rates
	dt_s = 1.0/SWARM_RATE
	dt_r = 1.0/R2DBE_RATE
	
	# we need to oversample by factor 64 and then undersample by factor 39
	simple_r = 64 # 4096
	simple_s = 39 # 2496
	fft_window_oversample = 2*SWARM_CHANNELS*simple_r # 2* due to real FFT
	
	# oversample timestep size
	dt_f = dt_s/simple_r
	
	# the timespan of one SWARM FFT window
	T_s = dt_s*SWARM_SAMPLES_PER_WINDOW
	
	# what are these...?
	x_t2_0 = None
	x_t2_1 = None
	
	# time vectors over one SWARM FFT window in different step sizes
	t_r = arange(0,T_s,dt_r)
	t_s = arange(0,T_s,dt_s)
	t_f = arange(0,T_s,dt_f)
	
	# offset in oversampled time series that corresponds to one dt_r step
	# from the last R2DBE rate sample in the previous window
	next_start = 0 
	
	# some time offsets...?
	offset_in_window_offset_s = list()
	offset_global_s = list()
	
	# total number of time series samples
	N_x = int(ceil(Xs.shape[0]*SWARM_SAMPLES_PER_WINDOW*dt_s/dt_r))
	# and initialize the output
	xs = zeros(N_x,dtype=float32)
	#fine_sample_index = zeros(N_x)
	next_start_vec = zeros(Xs.shape[0])
	# index in output where samples from next window are stored
	start_output = 0

	# cuFFT plan for complex to real DFT
	plan = cu_fft.Plan(fft_window_oversample,complex64,float32)

	# padding kernel
	fill_padded = mod.get_function("fill_padded")

	# downsampling kernel
	downsample = mod.get_function("downsample")

	# FFT scaling kernel
	scale = ElementwiseKernel(
			"float *a",
			"a[i] = {0} * a[i]".format(1./fft_window_oversample),"scale")

	# max size of resampled chunk from a single window
	xs_chunk_size_max = int32(ceil((1. * fft_window_oversample)/simple_s))

	# create memory on device for cuFFT
       	xf_d = gpuarray.empty(fft_window_oversample,dtype=float32)
	xp_d = gpuarray.zeros(fft_window_oversample/2+1, dtype=complex64)
	y_d = gpuarray.empty(xs_chunk_size_max,dtype=float32)

	for ii in range(Xs.shape[0]):

		# move window to device
		x_d = gpuarray.to_gpu(Xs[ii,:])

		# threads per block
		# number of blocks (keep the array as zeros to save time)
		TPB = 1024
		nB = int(ceil(1. * Xs.shape[1] / TPB))
		# pad with zeros to oversample by 64
		fill_padded(int32(1), xp_d, int32(fft_window_oversample/2+1),\
			    x_d, int32(Xs.shape[1]),\
			    block=(TPB,1,1), grid=(nB,1))

		# iFFT
		cu_fft.ifft(xp_d,xf_d,plan,scale=False)

		xs_chunk_size = int32(ceil((1. * fft_window_oversample - next_start)/simple_s))
		# threads per block
#.........这里部分代码省略.........
开发者ID:sma-wideband,项目名称:sdbe,代码行数:101,代码来源:swarmdbe_cuda.py


示例18: ifft

def ifft(invec,outvec,prec,itype,otype):
    cuplan = _get_inv_plan(invec.dtype,outvec.dtype,len(outvec))
    cu_fft.ifft(invec.data,outvec.data,cuplan)
开发者ID:AbhayMK,项目名称:pycbc,代码行数:3,代码来源:cufft.py



注:本文中的scikits.cuda.fft.ifft函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python linalg.dot函数代码示例发布时间:2022-05-27
下一篇:
Python fft.fft函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap