• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python bootstrap.ci函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scikits.bootstrap.ci函数的典型用法代码示例。如果您正苦于以下问题:Python ci函数的具体用法?Python ci怎么用?Python ci使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了ci函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: ScikitsBootstrap

def ScikitsBootstrap(fdf, loc=0, scale=100,
                     leftsigma=5, rightsigma=5, minsamples=100, verbose=1):
    '''
    parameters from fit of Gaussian are used to clip total range of data
    from this a BCA bootstrap of the error in the loc and scale are found
    by the MLE estimates (std and mean respectively) --> This will ONLY
    work if the data given IS Gaussian
    '''

#    fRawData = fdf.Ampl[abs(fdf.Ampl) < 1000]
    fRawData = fdf.Ampl[
        (fdf.Ampl > loc - leftsigma * scale) & (fdf.Ampl < loc + rightsigma * scale)]
    if verbose > 0:
        print("number of samples", len(fRawData))
    if len(fRawData) < minsamples:
        if verbose > 0:
            print("insufficient data")
        return (1e12, 1e12, 1e12)
    CILower, CIUpper = btp.ci(fRawData, std)
    scaleerr = (CIUpper - std(fRawData)) / 1.96

    CILower, CIUpper = btp.ci(fRawData, mean)
    locerr = (CIUpper - mean(fRawData)) / 1.96
    amperr = 0  # currently ignored
    return (locerr, scaleerr, amperr)
开发者ID:marksbrown,项目名称:ProcessingCTRData,代码行数:25,代码来源:processingcern.py


示例2: FitToDelayData

def FitToDelayData(
        DelayValues, timerange=1000, GenerateImages=True, verbose=0):
    '''
    Loads cropped data and fits Gaussian
    Calculates error using bootstrap
    '''

    freq, binedges = histogram(
        DelayValues, bins=2 * timerange / 25 + 1, range=(-timerange, timerange))
    binedges = 0.5 * (binedges[1:] + binedges[:-1])

    binedges = binedges[freq > 0]
    freq = freq[freq > 0]

    (param, err), chival = normfit(binedges, freq, yerr=sqrt(freq),
                                   ScaleGuess=100, verbose=verbose)  # fit to CTR peak
    p1, p2, p3 = param

    DelayValues = array(DelayValues)
    fRawData = DelayValues[abs(DelayValues) < 500]
    CILower, CIUpper = btp.ci(fRawData, std)
    scaleerr = (CIUpper - std(fRawData)) / 1.96

    CILower, CIUpper = btp.ci(fRawData, mean)
    locerr = (CIUpper - mean(fRawData)) / 1.96
    ##amperr = p3  # currently ignored

    p1err, p2err, p3err = err.diagonal()

    return param, (locerr, scaleerr, p3err)
开发者ID:marksbrown,项目名称:ProcessingCTRData,代码行数:30,代码来源:processingcern.py


示例3: fit_learning_curve

def fit_learning_curve(data, length=10, user_length=None, context_answer_limit=100, reverse=False, bootstrap_samples=100):
    confidence_vals = [[] for i in range(length)]

    def _fit_learning_curve(series):
        references_by_attempt = map(lambda references: [r for r in references if r is not None], zip(*series))
        learning_curve = map(lambda xs: (numpy.mean(xs), len(xs)), references_by_attempt)

        def _learn_fun(attempt, a, k):
            return a * (1.0 / (attempt + 1) ** k)

        opt, _ = curve_fit(
            _learn_fun,
            numpy.arange(len(learning_curve)),
            numpy.array(map(lambda x: x[0], learning_curve)),
            sigma=numpy.array(map(lambda x: 1.0 / numpy.sqrt(x[1] + 1), learning_curve))
        )
        fit = map(lambda attempt: _learn_fun(attempt, opt[0], opt[1]), range(len(learning_curve)))
        for i, r in enumerate(fit):
            confidence_vals[i].append(r)
        return fit[-1]

    series = reference_series(data, length=length, user_length=user_length,
        context_answer_limit=context_answer_limit, reverse=reverse)
    try:
        bootstrap.ci(series, _fit_learning_curve, method='pi', n_samples=bootstrap_samples)

        def _aggr(rs):
            return {
                'value': numpy.median(rs),
                'confidence_interval_min': numpy.percentile(rs, 2),
                'confidence_interval_max': numpy.percentile(rs, 98),
            }
        return map(_aggr, confidence_vals)
    except:
        return []
开发者ID:papousek,项目名称:slepemapy-learning-curves,代码行数:35,代码来源:ab_random_random_3.py


示例4: ScikitsBootstrap

def ScikitsBootstrap(fdf):
    CILower, CIUpper = btp.ci(fdf.counts, std)
    scaleerr = (CIUpper - std(fdf.counts)) / 1.96

    CILower, CIUpper = btp.ci(fdf.counts, mean)
    locerr = (CIUpper - mean(fdf.counts)) / 1.96
    amperr = 0  # currently ignored
    return (locerr, scaleerr, amperr)
开发者ID:marksbrown,项目名称:ProcessingCTRData,代码行数:8,代码来源:lightyield.py


示例5: test_pi_multi_2dout_multialpha

 def test_pi_multi_2dout_multialpha(self):
     np.random.seed(1234567890)
     results1 = boot.ci((self.x,self.y), stats.linregress, alpha=(0.1,0.2,0.8,0.9),n_samples=2000,method='pi')
     np.random.seed(1234567890)
     results2 = boot.ci(np.vstack((self.x,self.y)).T, lambda a: stats.linregress(a)[0], alpha=(0.1,0.2,0.8,0.9),n_samples=2000,method='pi')
     np.random.seed(1234567890)
     results3 = boot.ci(np.vstack((self.x,self.y)).T, lambda a: stats.linregress(a)[1], alpha=(0.1,0.2,0.8,0.9),n_samples=2000,method='pi')
     np.testing.assert_array_almost_equal(results1[:,0],results2)
     np.testing.assert_array_almost_equal(results1[:,1],results3)
开发者ID:fspaolo,项目名称:scikits-bootstrap,代码行数:9,代码来源:test_bootstrap.py


示例6: flag_outlier

def flag_outlier(in_vec, thresh_percentage=95):
    """
    Flags an outlier according to a percent difference threshold
    :param thresh_percentage: percent confidence interval
    :param in_vec:
    :return: outlier_ind
    """
    in_vec = np.array(in_vec)

    # find largest outlier
    outlier_ind = 0
    l2_resid_old = 0
    mask = np.ones(len(in_vec), dtype=bool)
    for i in xrange(in_vec.shape[0]):
        mask[i] = False
        l2_resid = (in_vec[i] - np.mean(in_vec[mask]))**2

        if l2_resid > l2_resid_old:
            outlier_ind = i

        l2_resid_old = l2_resid
        mask[i] = True

    # check if outlier is outside threshold percentage
    # bootstrap a 95% ci from data
    a_lvl = 1 - (thresh_percentage / 100.)
    CIs = bootstrap.ci(data=in_vec, statfunction=mean, alpha=a_lvl)
    if in_vec[outlier_ind] < CIs[0] or in_vec[outlier_ind] > CIs[1]:
        return outlier_ind
    else:
        return None
开发者ID:mlsamsom,项目名称:PyFrictionTools,代码行数:31,代码来源:utilities.py


示例7: forcedChoicePlot

def forcedChoicePlot(listenerAccuracies, listenerScores, mturkAccuracies, mturkScores, outFile, title, errorBars=False):
  """listenerAccuracies is an array of accuracy arrays, one per problem level.
     mturkAccuracies is a 1-d array of mturk accuracies on each problem level. 
  """
  matplotlib.rcParams.update({'font.size' : 20})
  lw = 4
  plt.hold(True)
  nListeners = len(listenerAccuracies)
  nIterations = len(listenerAccuracies[0]) - 1
  plt.axis([0, nIterations, 0, 1])
  plt.ylabel('Listener Accuracy')
  plt.xlabel('Training Iterations')
  for levelAccuracies, levelScores, lineColor in zip(listenerAccuracies, listenerScores, colors):
    if errorBars: 
      yerrs = []
      for scores in levelScores: 
        if np.array(scores).all():
          yerrs.append(0)
        else:
          interval = boot.ci(np.array(scores), np.average)
          err = (interval[1] - interval[0]) / 2.0
          yerrs.append(err)
      plt.errorbar(range(len(levelAccuracies)), levelAccuracies, yerr=yerrs, linewidth=lw, color=lineColor)
      print lineColor
      print levelAccuracies
    else:
      plt.plot(levelAccuracies, linewidth=lw, marker='o', color=lineColor) 
  listenerTitles = ['Level %d' % level for level in range(nListeners)]
  plt.legend(listenerTitles, loc='lower right')
  plt.title(title)
  plt.savefig(outFile, format='pdf')
  plt.show()
开发者ID:acvogel,项目名称:discriminative-ibr,代码行数:32,代码来源:discrim_ibr.py


示例8: bootstrapCI

def bootstrapCI(data, statFunc=None, alpha=0.05, nPerms=10000, output='lowhigh', method='pi'):
    """Wrapper around a function in the scikits_bootstrap module:
        https://pypi.python.org/pypi/scikits.bootstrap

    Parameters
    ----------
    data : np.ndarray
        Data for computing the confidence interval.
    statFunc : function
        Should take data and operate along axis=0
    alpha : float
        Returns the [alpha/2, 1-alpha/2] percentile confidence intervals.
    nPerms : int
    output : str
        Use 'lowhigh' or 'errorbar', for matplotlib errorbars"""
    if statFunc is None:
        statFunc = partial(np.nanmean, axis=0)
    try:
        out = ci(data=data, statfunction=statFunc, alpha=alpha, n_samples=nPerms, output='lowhigh', method=method)
    except IndexError:
        shp = list(data.shape)
        shp[0] = 2
        out = np.nan * np.ones(shp)
    
    if output == 'errorbar':
        mu = statFunc(data)
        shp = list(out.shape)
        
        out[0,:] = out[0,:] - mu
        out[1,:] = mu - out[1,:]
        out = np.reshape(out, shp)
    return out
开发者ID:agartland,项目名称:utils,代码行数:32,代码来源:bootstrap_testing.py


示例9: stats_per_group

def stats_per_group(x):
    print 'stats-per-group'

    x = x.groupby(['sid']).mean()
    x = x.value

    print len(x)

    res = {'median': [], 'qtile': []}
    medians = np.median(x)
    res['mean'] = np.average(x)
    res['median'] = medians
    lower_quartile, upper_quartile = np.percentile(x, [25, 75])
    res['qtile'] = (upper_quartile, lower_quartile)
    # res['ci'] = np.percentile(x, [2.5,97.5])
    iqr = upper_quartile - lower_quartile
    upper_whisker = x[x <= upper_quartile + 1.5 * iqr].max()
    lower_whisker = x[x >= lower_quartile - 1.5 * iqr].min()
    res['whisk'] = (lower_whisker, upper_whisker)
    res['err'] = (np.abs(lower_whisker - medians),
                  np.abs(upper_whisker - medians))

    res['ci'] = bootstrap.ci(x, n_samples=BOOTSTRAP_NUM)

    return pd.Series(res)
开发者ID:sinkpoint,项目名称:sagit,代码行数:25,代码来源:fiber_stats_viz.py


示例10: totalNspks

	def totalNspks(self):
		"""
		Compute statistical comparisons of total nosepokes in no inhibition versus inhibition session of NpHR subjects 

		Return dictionary with means, sems, p-value, bootstrapped 95 percent CI
		"""
		totalNspks = {}
		totalNspks['controlMean'] = self.datadict['totalNspksControl']['NoInhib'].mean()
		totalNspks['controlSEM'] = self.datadict['totalNspksControl']['NoInhib'].sem()
		totalNspks['controlCI'] = bootstrap.ci(data=self.datadict['totalNspksControl']['NoInhib'], statfunction=scipy.mean)
		totalNspks['inhibMean'] = self.datadict['totalNspksInhibited']['Inhibited'].mean()
		totalNspks['inhibSEM'] = self.datadict['totalNspksInhibited']['Inhibited'].sem()
		totalNspks['inhibCI'] = bootstrap.ci(data=self.datadict['totalNspksInhibited']['Inhibited'], statfunction=scipy.mean)
		totalNspks['p'] = scipy.stats.ttest_rel(self.datadict['totalNspksControl']['NoInhib'], self.datadict['totalNspksInhibited']['Inhibited'])

		return totalNspks
开发者ID:sfischweiss,项目名称:Lab_analysis,代码行数:16,代码来源:stats.py


示例11: meanNspksInhib

	def meanNspksInhib(self):
		"""
		Compute statistical comparisons of mean nosepokes in laser versus simlaser in inhibition session

		Return dictionary with means, sems, p-value, bootstrapped 95 percent CI
		"""
		meanNspksInhib = {}
		meanNspksInhib['simMean'] = self.datadict['meanNspksInhibited']['simLaser'].mean()
		meanNspksInhib['simSEM'] = self.datadict['meanNspksInhibited']['simLaser'].sem()
		meanNspksInhib['simCI'] = bootstrap.ci(data=self.datadict['meanNspksInhibited']['simLaser'], statfunction=scipy.mean)
		meanNspksInhib['laserMean'] = self.datadict['meanNspksInhibited']['Laser'].mean()
		meanNspksInhib['laserSEM'] = self.datadict['meanNspksInhibited']['Laser'].sem()
		meanNspksInhib['laserCI'] = bootstrap.ci(data=self.datadict['meanNspksInhibited']['Laser'], statfunction=scipy.mean)
		meanNspksInhib['p'] = scipy.stats.ttest_rel(self.datadict['meanNspksInhibited']['simLaser'], self.datadict['meanNspksInhibited']['Laser'])

		return meanNspksInhib
开发者ID:sfischweiss,项目名称:Lab_analysis,代码行数:16,代码来源:stats.py


示例12: get_ci

 def get_ci(data, ci):
     try:
         ci_vals = bootstrap.ci(data=data, alpha = ci, 
                                statfunction=print_class, 
                                n_samples = 10)
     except:
         ci_vals = [-1.0,1.0]
     return ci_vals
开发者ID:ameert,项目名称:astro_image_processing,代码行数:8,代码来源:zpanel_functions.py


示例13: calc_bootstrap

def calc_bootstrap(data):
    # Calculate the bootstrap
    CIs = bootstrap.ci(data=data, statfunction=sp.mean)
    
    # Print the data: the "*" turns the array CIs into a list
    print('The conficence intervals for the mean are: {0} - {1}'.format(*CIs))
    
    return CIs
开发者ID:CeasarSS,项目名称:books,代码行数:8,代码来源:bootstrap.py


示例14: bootstrap

 def bootstrap(self):
     """
     performs bootrapping of f1 measure on dataset. A narrow confidence interval is more indicative of a sufficient sample size
     A 95% confidence interval means we are 95% confident that the true f1 measure is between (1) and (2).
     ( 1 and 2 are values return by bootstrap library).
     :return:
     """
     data = list(self.algorithm_results.items())
     CIs = bootstrap.ci(data=data, statfunction=self.f1_bootstrap, n_samples=10000)
     print(self.algorithm_name)
     print("Bootstrapped 95% confidence intervals for f1 \nLow:", CIs[0], "\nHigh:", CIs[1])
开发者ID:a-raina,项目名称:Event-Detection-using-NLP,代码行数:11,代码来源:AlgorithmTester.py


示例15: calc_bootstrap

def calc_bootstrap(data):
    ''' Find the confidence interval for the mean of the given data set with bootstrapping. '''
    
    # --- >>> START stats <<< ---
    # Calculate the bootstrap
    CIs = bootstrap.ci(data=data, statfunction=sp.mean)
    # --- >>> STOP stats <<< ---
    
    # Print the data: the "*" turns the array "CIs" into a list
    print(('The conficence intervals for the mean are: {0} - {1}'.format(*CIs)))
    
    return CIs
开发者ID:ejmurray,项目名称:statsintro_python,代码行数:12,代码来源:C11_8_bootstrapDemo.py


示例16: write_data

def write_data(fn,data):
   """Performs descriptive stats and writes stats to output file"""

   f = open(fn,'w')
   mue,muese = MUE(data)
   f.write("Errors are 95% CIs\n")
   f.write("MUE = %5.3f +/- %5.3f\n" % (mue,muese*1.96))
   mse,msese = MSE(data)
   f.write("MSE = %5.3f +/- %5.3f\n" % (mse,msese*1.96))
   correldict = correls(data)
   f.write("R^2 = %3.2f\n" % correldict['r_value']**2)
   f.write("K-Tau = %3.2f\n\n" % correldict['tau'])
   f.write("BOOTSTRAPPED RESULTS (10k resamples, 95% CIs)\n")
   CIs = boot.ci(data,MUE)
   f.write("MUE = %5.3f < %5.3f < %5.3f\n" % (CIs[0][0],mue,CIs[1][0]))
   CIs = boot.ci(data,MSE)
   f.write("MSE = %5.3f < %5.3f < %5.3f\n" % (CIs[0][0],mse,CIs[1][0]))
   CIs = boot.ci(data,correls_for_bootstrap)
   f.write("Pearson's R = %3.2f < %3.2f < %3.2f\n" % (CIs[0][2],correldict['r_value'],CIs[1][2]))
   f.write("R^2 = %3.2f < %3.2f < %3.2f\n" % (CIs[0][3],correldict['r_value']**2,CIs[1][3]))
   f.write("K-Tau = %3.2f < %3.2f < %3.2f\n\n" % (CIs[0][6],correldict['tau'],CIs[1][6]))
   f.close()
开发者ID:rtb1c13,项目名称:scripts,代码行数:22,代码来源:analyse_hfe.py


示例17: scalesHiddenPlot

def scalesHiddenPlot(name='scales'):
  matplotlib.rcParams.update({'font.size' : 20})
  lw = 3
  plt.hold(True)
  if name == 'scalesPlus':
    experimentName = 'Complex'
    nLevels = 3
    leveledFcData = turk.readScalesProblems('../../data/scale_plus_6stimuli_3levels_no_fam_24_january_SCAL.csv', name)
  elif name == 'scales':
    experimentName = 'Simple'
    nLevels = 2
    leveledFcData = turk.readScalesProblems('../../data/scales_6stimuli_3levels_no_fam_25_january_OSCA.csv', name)
  else:
    print '[forcedChoiceExperiments] Unknown experiment name: ', name
  sizes = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80]
  nModels = 10 # numbered 1 to 10
  agents = [] # will be an array of arrays, one entry per hidden node, one entry per training iteration
  # load the agents
  for size in sizes:
    sizeAgents = []
    for agentNum in range(1,nModels + 1):
      (listeners, speakers) = loadAllAgents('../../data/cogsci/agents-%d-%d.pickle' % (size, agentNum))
      sizeAgents.append(listeners)
    agents.append(sizeAgents)
  for (levelProblems, lineColor) in zip(leveledFcData, colors):
    dataset = forcedChoiceProblemsToDataset(levelProblems)
    hiddenLayerAccuracies = []    
    hiddenLayerScores = []
    yerrs = []
    for (allListeners, size) in zip(agents, sizes): # for each # of hidden layers
      sizeAccuracies = [] # accuracies for each independent trial for this # of hidden nodes and this level of problem. will be averaged.
      sizeScores = []
      for listeners in allListeners:
        lastListener = listeners[3] 
        (correct, activations, scores) = evalListenerOnClassificationDataset(lastListener, dataset)
        sizeAccuracies.append(float(correct) / len(scores))
        sizeScores.append(scores)
      averageAccuracy = np.array(sizeAccuracies).mean()
      hiddenLayerAccuracies.append(averageAccuracy)
      hiddenLayerScores.append(sizeScores)
      interval = boot.ci(np.array(sizeScores), np.average) 
      err = (interval[1] - interval[0])/2.0
      yerrs.append(err)
    plt.errorbar(sizes, hiddenLayerAccuracies, yerr=yerrs, linewidth=lw, color=lineColor)
  plt.axis([0, sizes[-1], 0, 1])
  plt.title('ANN Accuracy on the %s Condition' % experimentName)
  plt.xlabel('Number of Hidden Nodes')
  plt.ylabel('Average Accuracy')
  plt.legend(['Level %d' % i for i in range(nLevels)], loc='lower right')
  plt.savefig('hidden%s.pdf' % name, format='pdf')
  plt.show()
开发者ID:acvogel,项目名称:discriminative-ibr,代码行数:51,代码来源:discrim_ibr.py


示例18: test_bootstrap

def test_bootstrap():
    import numpy as np
    from scikits.bootstrap import ci

    data = np.random.normal(loc=1, scale=1, size=1000)
    print('std = %.2f' % data.std())

    samples = bootstrap(data, 100)
    boot_error = calc_bootstrap_error(samples, 0.32)

    boot_error_ci = ci(data, np.median, 0.32)

    print('bootstrap error', boot_error)
    print('bootstrap error ci', boot_error_ci)
开发者ID:ezbc,项目名称:python_modules,代码行数:14,代码来源:mystats.py


示例19: diffusion_tensor_ci

def diffusion_tensor_ci(positions, orientations, lagtime=1, fps=1., ndim=3, **kwargs):
    """Calculate the diffusion tensor and the confidence interval using bootstrap."""
    from scikits import bootstrap

    delta_tjn, all_xjn = _compute_displ(positions, orientations, lagtime, fps)
    if ndim == 2:
        all_xjn = all_xjn[:, [0, 1, 5]]  # only x, y transl and z rot

    statfunc = lambda x: (x[:, :, np.newaxis] * x[:, np.newaxis, :]).mean(0).ravel() * 0.5 / delta_tjn
    result = bootstrap.ci(all_xjn, statfunc, **kwargs)

    if ndim == 2:
        result = result.reshape((2, 3, 3))
    else:
        result = result.reshape((2, 6, 6))
    return result
开发者ID:caspervdw,项目名称:clustertracking,代码行数:16,代码来源:motion.py


示例20: syntheticHiddenPlot

def syntheticHiddenPlot():
  """ Evaluate a variety of hidden layer agents"""
  matplotlib.rcParams.update({'font.size' : 20})
  lw = 3
  plt.hold(True)
  levelInstances = [loadFacesInstances('../../data/facesInstances-%d.csv' % level) for level in [0,1,2]]
  sizes = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80]
  nModels = 10 # numbered 1 to 10
  agents = [] # will be an array of arrays, one entry per hidden node, one entry per training iteration
  # load the agents
  for size in sizes:
    sizeAgents = []
    for agentNum in range(1,nModels + 1):
      (listeners, speakers) = loadAllAgents('../../data/cogsci/agents-%d-%d.pickle' % (size, agentNum))
      sizeAgents.append(listeners)
    agents.append(sizeAgents)
  # loop over levels, then over model sizes, then over agents..
  for (instances, lineColor) in zip(levelInstances, colors): # for each level
    dataset = goldListenerTrainingExamplesFromInstances(instances)
    hiddenLayerAccuracies = [] # average accuracy for each hidden layer
    hiddenLayerScores = []
    yerrs = []
    for (allListeners, size) in zip(agents, sizes): # for each # of hidden layers
      sizeAccuracies = [] # accuracies for each independent trial for this # of hidden nodes and this level of problem. will be averaged.
      sizeScores = []
      for listeners in allListeners:
        lastListener = listeners[3] 
        (correct, activations, scores) = evalListenerOnClassificationDataset(lastListener, dataset)
        sizeAccuracies.append(float(correct) / len(scores))
        sizeScores.append(scores)
      averageAccuracy = np.array(sizeAccuracies).mean()
      hiddenLayerAccuracies.append(averageAccuracy)
      hiddenLayerScores.append(sizeScores)
      interval = boot.ci(np.array(sizeScores), np.average) 
      err = (interval[1] - interval[0])/2.0
      yerrs.append(err)
    plt.errorbar(sizes, hiddenLayerAccuracies, yerr=yerrs, linewidth=lw, color=lineColor)
  plt.title('ANN Accuracy by Size of Hidden Layer')
  plt.axis([0, sizes[-1], 0, 1])
  plt.xlabel('Number of Hidden Nodes')
  plt.ylabel('Listener Accuracy')
  legendTitles = ['Level 0', 'Level 1', 'Level 2']
  plt.legend(legendTitles, loc='lower right')
  plt.savefig('hiddenSynthetic.pdf', format='pdf')
  plt.show()
开发者ID:acvogel,项目名称:discriminative-ibr,代码行数:45,代码来源:discrim_ibr.py



注:本文中的scikits.bootstrap.ci函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python fft.fft函数代码示例发布时间:2022-05-27
下一篇:
Python audiolab.Sndfile类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap