• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python util.img_as_float函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中skimage.util.img_as_float函数的典型用法代码示例。如果您正苦于以下问题:Python img_as_float函数的具体用法?Python img_as_float怎么用?Python img_as_float使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了img_as_float函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: slic_data

def slic_data():
   for i in range(uu_num_train+uu_num_test):

      print "data %d" %(i+1)
      img_name = ''
      if i < 10:
         img_name = '0' + str(i)
      else:
         img_name = str(i)

      #Read first 70 images as floats
      img = img_as_float(io.imread('..\data\\training\image_2\uu_0000' + img_name + '.png'))
      img_hsv = color.rgb2hsv(img)
      gt_img = img_as_float(io.imread('..\data\\training\gt_image_2\uu_road_0000' + img_name + '.png'))

      #Create superpixels for training images
      image_segment = slic(img, n_segments = numSegments, sigma = 5)
      t, train_indices = np.unique(image_segment, return_index=True)
      images_train_indices.append(train_indices)
      image = np.reshape(img,(1,(img.shape[0]*img.shape[1]),3))
      image_hsv = np.reshape(img_hsv,(1,(img_hsv.shape[0]*img_hsv.shape[1]),3))
      #images_train.append([image[0][i] for i in train_indices])
      images_train_hsv.append([image_hsv[0][i] for i in train_indices])

      #Create gt training image values index at train_indices and converted to 1 or 0
      gt_image = np.reshape(gt_img, (1,(gt_img.shape[0]*gt_img.shape[1]),3))
      gt_image = [1 if gt_image[0][i][2] > 0 else 0 for i in train_indices]
      gt_images_train.append(gt_image)
开发者ID:rudasi,项目名称:road-classification,代码行数:28,代码来源:old_svm_creator.py


示例2: updateParametros

def updateParametros(val):
    global p_segmentos, p_sigma, p_compactness, segments, image, cuda_python

    if(val == "Python SLIC"):
	cuda_python = 0
    elif(val == "CUDA gSLICr"):
	cuda_python = 1

    p_segmentos = int("%d" % (slider_segmentos.val))
    p_sigma = slider_sigma.val
    p_compactness = slider_compactness.val
    
    image = c_image.copy()

    if(cuda_python == 0):
	start_time = time.time()
    	segments = slic(img_as_float(image), n_segments=p_segmentos, sigma=p_sigma, compactness=p_compactness)
	print("--- Tempo Python skikit-image SLIC: %s segundos ---" % (time.time() - start_time))
    else:
	start_time = time.time()
	gSLICrInterface.process( p_segmentos)
	print("--- Tempo C++/CUDA gSLICr:          %s segundos ---" % (time.time() - start_time))
	segments = cuda_seg

    obj.set_data(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments, outline_color=p_outline))
    draw()
开发者ID:fernandovieiraf02,项目名称:superpixel,代码行数:26,代码来源:slicParametros.py


示例3: compute_sept_isodata

    def compute_sept_isodata(self, mask, thick, septum_base):
        """Method used to create the cell sept_mask using the threshold_isodata
        to separate the cytoplasm from the septum"""
        cell_mask = mask
        if septum_base:
            fluor_box = 1 - self.base_box
        else:
            fluor_box = self.fluor
        perim_mask = self.compute_perim_mask(cell_mask, thick)
        inner_mask = cell_mask - perim_mask
        inner_fluor = (inner_mask > 0) * fluor_box

        threshold = threshold_isodata(inner_fluor[inner_fluor > 0])
        interest_matrix = inner_mask * (inner_fluor > threshold)

        label_matrix = label(interest_matrix, connectivity=2)
        interest_label = 0
        interest_label_sum = 0

        for l in range(np.max(label_matrix)):
            if np.sum(img_as_float(label_matrix == l + 1)) > interest_label_sum:
                interest_label = l + 1
                interest_label_sum = np.sum(img_as_float(label_matrix == l + 1))

        return img_as_float(label_matrix == interest_label)
开发者ID:brunomsaraiva,项目名称:eHooke_1.0,代码行数:25,代码来源:cells.py


示例4: createFigure4

def createFigure4(list_file, list_param, corpus_meta, prob_topic_doc, segment_dir, n_topic, output_dir):    
    for file_item in list_file:
        print file_item
        for topic in range(n_topic):
            print topic
            fig = plt.figure()
            img = img_as_float(io.imread(img_dir+file_item+'.ppm'))
            ax1 = fig.add_subplot(4,4, 1, axisbg='grey')
            ax1.set_xticks(()), ax1.set_yticks(())
            ax1.imshow(img)
            index=2
            for param in list_param:

                if 'slic' in param:
                    # print 'test', index
                    # print corpus_meta[0][1].split('-')[0]
                    segment_in_file = [item_corpus for item_corpus in corpus_meta if file_item == item_corpus[1].split('-')[0]]
                    print len(segment_in_file)
                    segments_res = csv2Array(segment_dir+'/'+file_item+'/'+file_item+'-'+param+'.sup')
                    img = img_as_float(io.imread(img_dir+file_item+'.ppm'))
                    output = np.zeros( (len(img), len(img[0])) )
                    for segment in segment_in_file:
                        # print prob_topic_doc[int(segment[0])][topic]
                        output[segments_res == int(segment[2])] = prob_topic_doc[int(segment[0])][topic]
                    output = mark_boundaries(output, segments_res)
                    ax1 = fig.add_subplot(4,4, index, axisbg='grey')
                    # ax1 = fig.add_subplot(5,10, index, axisbg='grey')
                    ax1.set_xticks(()), ax1.set_yticks(())
                    ax1.imshow(output)
                    index += 1 
            ensure_path(output_dir+'/'+file_item+'/')
            plt.savefig(output_dir+'/'+file_item+'/topic-'+str(topic)+'-'+file_item+'.pdf')
            plt.clf()
            plt.close()
开发者ID:tttor,项目名称:lab1231-sun-prj,代码行数:34,代码来源:make_figure.py


示例5: get

    def get(self, uri):
        i = imread(uri)
        if len(i.shape) == 2:
            i = gray2rgb(i)
        else:
            i = i[:, :, :3]
        c = self._image_to_color.get(i)

        dbg = self._settings['debug']
        if dbg is None:
            return c

        c, imgs = c
        b = splitext(basename(uri))[0]
        imsave(join(dbg, b + '-resized.jpg'), imgs['resized'])
        imsave(join(dbg, b + '-back.jpg'), img_as_float(imgs['back']))
        imsave(join(dbg, b + '-skin.jpg'), img_as_float(imgs['skin']))
        imsave(join(dbg, b + '-clusters.jpg'), imgs['clusters'])

        return c, {
            'resized': join(dbg, b + '-resized.jpg'),
            'back': join(dbg, b + '-back.jpg'),
            'skin': join(dbg, b + '-skin.jpg'),
            'clusters': join(dbg, b + '-clusters.jpg'),
        }
开发者ID:algolia,项目名称:color-extractor,代码行数:25,代码来源:from_file.py


示例6: compute_mask

    def compute_mask(self, params):
        """Creates the mask for the base image.
        Needs the base image, an instance of imageloaderparams
        and the clip area, which should be already defined
        by the load_base_image method.
        Creates the mask by improving the base mask created by the
        compute_base_mask method. Applies the mask closing, dilation and
        fill holes parameters.
        """
        self.compute_base_mask(params)

        mask = np.copy(self.base_mask)
        closing_matrix = np.ones((params.mask_closing, params.mask_closing))

        if params.mask_closing > 0:
            # removes small dark spots and then small white spots
            mask = img_as_float(morphology.closing(
                mask, closing_matrix))
            mask = 1 - \
                img_as_float(morphology.closing(
                    1 - mask, closing_matrix))

        for f in range(params.mask_dilation):
            mask = morphology.erosion(mask, np.ones((3, 3)))

        if params.mask_fill_holes:
            # mask is inverted
            mask = 1 - img_as_float(ndimage.binary_fill_holes(1.0 - mask))

        self.mask = mask

        self.overlay_mask_base_image()
开发者ID:brunomsaraiva,项目名称:eHooke_1.0,代码行数:32,代码来源:images.py


示例7: svm_predict

def svm_predict(case,svm_classifier):
   print "svm predict"
   A = []
   b = []

   if case == 1:
      for i in range(uu_num_test):
         img_name = i + uu_num_train
         if img_name < 10:
            img_name = '0' + str(img_name)
         else:
            img_name = str(img_name)
         print "data %d " %(i+uu_num_train)
         #Read test images as floats
         img = img_as_float(io.imread('..\data\\training\image_2\uu_0000' + img_name + '.png'))
         gt_img = img_as_float(io.imread('..\data\\training\gt_image_2\uu_road_0000' + img_name + '.png'))

         #Create superpixels for test images
         image_segment = slic(img, n_segments = numSegments, sigma = 5)
         t, train_indices = np.unique(image_segment, return_index=True)
         images_train_indices.append(train_indices)
         image = np.reshape(img,(1,(img.shape[0]*img.shape[1]),3))
         images_train.append([image[0][i] for i in train_indices])

         #Create gt test image values index at train_indices and converted to 1 or 0
         gt_image = np.reshape(gt_img, (1,(gt_img.shape[0]*gt_img.shape[1]),3))
         gt_image = [1 if gt_image[0][i][2] > 0 else 0 for i in train_indices]
         print "len of gt_image: %d with ones: %d" %(len(gt_image),gt_image.count(1))

         gt_images_train.append(gt_image)

      for i in range(uu_num_test):
         for j in range(len(images_train[i])):
            A.append(images_train[i][j])
            b.append(gt_images_train[i][j])

   else:
      for i in range(uu_num_train,uu_num_train+uu_num_test):
         for j in range(len(images_train_hsv[i])):
            #val = np.zeros(6)
            #val[0:3] = images_train[i][j]
            #val[3:6] = images_train_hsv[i][j]
            #A.append(val)
            #A.append(images_train[i][j])
            A.append(images_train_hsv[i][j])
            b.append(gt_images_train[i][j])

   A = np.asarray(A)
   b = np.asarray(b)
   print "A.shape = %s, b.shape = %s" %(A.shape,b.shape)

   predicted = svm_classifier.predict(A)
   print svm_classifier.score(A,b)

   #for i in range(len(gt_images_train)):
   #   for j in range(len(gt_images_train[i])):
   #      print "%d, %d" %(gt_images_train[i][j], predicted[j])

   print("Classification report for classifier %s:\n%s\n" %(svm_classifier,metrics.classification_report(b,predicted)))
开发者ID:rudasi,项目名称:road-classification,代码行数:59,代码来源:old_svm_creator.py


示例8: run_metrics

def run_metrics(result_dir, metrics_initial_path, noisy_image_dir):
    # Add initial metric values
    csv_file = open(metrics_initial_path, 'r')
    csv_reader = csv.DictReader(csv_file)
    metrics_initial = {}
    for row in csv_reader:
        metrics_initial[row['image']] = {
            'q': float(row['q']),
            'ocr': float(row['ocr']),
            'mse': float(row['mse'])
        }
    csv_file.close()

    results = []
    DEFAULT_TEXT = 'Lorem ipsum\ndolor sit amet,\nconsectetur\n\nadipiscing elit.\n\nDonec vel\naliquet velit,\nid congue\nposuere.'
    runs = list(xrange(1, 10 + 1, 1))
    for run in runs:
        # print "--- RUN " + run
        run_dir = os.path.join(result_dir, str(run))
        for filename in os.listdir(run_dir):
            if not filename.endswith('.png'):
                continue
            image_name = os.path.splitext(filename)[0]
            blur, noise, contrast = _parse_image_name(image_name)
            image_path = os.path.join(run_dir, filename)
            image = util.img_as_float(io.imread(image_path))
            ocr = ocr_accuracy(image, DEFAULT_TEXT)
            try:
                result = next(
                    r for r in results
                    if r['image']['name'] == image_name)
            except StopIteration:
                result = {
                    'image': {
                        'name': image_name,
                        'blur': blur,
                        'noise': noise,
                        'contrast': contrast
                    },
                    'metrics_initial': metrics_initial[image_name],
                    'ocr': [],
                    'q': [],
                    'mse': [],
                }
                results.append(result)
            result['ocr'].append(ocr)
            result['q'].append(q_py(image))

            # MSE
            ideal_image_name = 'noisy-00-00-' + str(contrast).replace('.', '') + '.png'
            ideal_image_path = os.path.join(noisy_image_dir, ideal_image_name)
            ideal_image = util.img_as_float(io.imread(ideal_image_path))
            mse_val = mse(ideal_image, image)
            result['mse'].append(mse_val)
    return results
开发者ID:tomasra,项目名称:ga_sandbox,代码行数:55,代码来源:parse.py


示例9: get_images

def get_images(noisy_image_dir, clear_image_dir):
    images = []
    for noisy_image_file in sorted(os.listdir(noisy_image_dir)):
        name, ext = os.path.splitext(noisy_image_file)
        contrast = name.split('-')[::-1][0]
        clear_image_name = 'clear-00-00-' + contrast + ext
        noisy_image_path = os.path.join(noisy_image_dir, noisy_image_file)
        clear_image_path = os.path.join(clear_image_dir, clear_image_name)
        # Read images
        noisy_image = util.img_as_float(io.imread(noisy_image_path))
        clear_image = util.img_as_float(io.imread(clear_image_path))
        images.append((noisy_image, clear_image, name))
    return images
开发者ID:tomasra,项目名称:ga_sandbox,代码行数:13,代码来源:run.py


示例10: create_bin

def create_bin(img, otsu_method=True):
    # Binary image created from Threshold, then labelling is done on this image
    if otsu_method:
        int_img = rescale(img)
        t_otsu = threshold_otsu(int_img)
        bin_img = (int_img >= t_otsu)
        float_img = img_as_float(bin_img)

        return float_img
    else:
        thresh = 400
        int_img = rescale(img)
        bin_img = (int_img >= thresh)
        float_img = img_as_float(bin_img)
        return float_img
开发者ID:rtcolling,项目名称:Histology-IHC,代码行数:15,代码来源:ihc_analysis_RC.py


示例11: SegmentationFelz_run_2d

def SegmentationFelz_run_2d(rod):
    img = img_as_float(
        RodriguesToUnambiguousColor(rod["x"], rod["y"], rod["z"], maxRange=None, centerR=None).astype("uint8")
    )
    segments_slic = felzenszwalb(img, scale=100, sigma=0.0, min_size=10)
    print("Slic number of segments: %d" % len(np.unique(segments_slic)))
    return segments_slic
开发者ID:mattbierbaum,项目名称:cuda-plasticity,代码行数:7,代码来源:KMeansPruning.py


示例12: segment

 def segment(self):
     self.segments = slic(img_as_float(self.img), enforce_connectivity=True)
     self.mask = np.zeros(self.img.shape[:2],dtype='int' )
     self.mask = self.mask - 1
     for (i, segVal) in enumerate(np.unique(self.segments)):
         self.mask[segVal == self.segments] = i
         self.pixel_list.append(self.Pixel(i))
开发者ID:15cm,项目名称:clothing-classifier,代码行数:7,代码来源:superpixel.py


示例13: build_target

def build_target(args):
	target = img_as_float(io.imread(args['target']))	
	target = color.rgb2gray(target)
	ratio = float(target.shape[0]) / float(target.shape[1])
	target = transform.resize(target, (sz, int(sz/ratio)))

	return target
开发者ID:zverham,项目名称:cs6501_project,代码行数:7,代码来源:rank.py


示例14: superpixels

def superpixels(image):
    """ given an input image, create super pixels on it
    """
    # we could try to limit the problem of holes in boundary by first over segmenting the image
    import matplotlib.pyplot as plt
    from skimage.segmentation import felzenszwalb, slic, quickshift
    from skimage.segmentation import mark_boundaries
    from skimage.util import img_as_float
    
    jac_float = img_as_float(image)
    plt.imshow(jac_float)
    #segments_fz = felzenszwalb(jac_float, scale=100, sigma=0.5, min_size=50)
    segments_slic = slic(jac_float, n_segments=600, compactness=0.01, sigma=0.001
        #, multichannel = False
        , max_iter=50) 
      
    fig, ax = plt.subplots(1, 1, sharex=True, sharey=True, subplot_kw={'adjustable':'box-forced'})
    fig.set_size_inches(8, 3, forward=True)
    fig.subplots_adjust(0.05, 0.05, 0.95, 0.95, 0.05, 0.05)
    
    #ax[0].imshow(mark_boundaries(jac, segments_fz))
    #ax[0].set_title("Felzenszwalbs's method")
    ax.imshow(mark_boundaries(jac_float, segments_slic))
    ax.set_title("SLIC")           
    return segments_slic                     
开发者ID:Remi-C,项目名称:extract_data_from_old_paris_map,代码行数:25,代码来源:jacoubet_watershed.py


示例15: get_saliency_ft

def get_saliency_ft(img_path):

	# Saliency map calculation based on:

	img = skimage.io.imread(img_path)

	img_rgb = img_as_float(img)

	img_lab = skimage.color.rgb2lab(img_rgb) 

	mean_val = np.mean(img_rgb,axis=(0,1))

	kernel_h = (1.0/16.0) * np.array([[1,4,6,4,1]])
	kernel_w = kernel_h.transpose()

	blurred_l = scipy.signal.convolve2d(img_lab[:,:,0],kernel_h,mode='same')
	blurred_a = scipy.signal.convolve2d(img_lab[:,:,1],kernel_h,mode='same')
	blurred_b = scipy.signal.convolve2d(img_lab[:,:,2],kernel_h,mode='same')

	blurred_l = scipy.signal.convolve2d(blurred_l,kernel_w,mode='same')
	blurred_a = scipy.signal.convolve2d(blurred_a,kernel_w,mode='same')
	blurred_b = scipy.signal.convolve2d(blurred_b,kernel_w,mode='same')

	im_blurred = np.dstack([blurred_l,blurred_a,blurred_b])

	sal = np.linalg.norm(mean_val - im_blurred,axis = 2)
	sal_max = np.max(sal)
	sal_min = np.min(sal)
	sal = 255 * ((sal - sal_min) / (sal_max - sal_min))
	return sal
开发者ID:yhenon,项目名称:pyimgsaliency,代码行数:30,代码来源:saliency.py


示例16: recreate_images

def recreate_images(result_dir, noisy_image_dir):
    # Read noisy images first
    test_images = {}
    for image_name in os.listdir(noisy_image_dir):
        if image_name.endswith('.png'):
            image_path = os.path.join(noisy_image_dir, image_name)
            image = util.img_as_float(io.imread(image_path))
            image_name_noext = os.path.splitext(image_name)[0]
            test_images[image_name_noext] = image
    # Enumerate results - image directories
    for image_name in sorted(os.listdir(result_dir)):
        image_dir = os.path.join(result_dir, image_name)
        if os.path.isdir(image_dir):
            print image_name
            for result_file in sorted(os.listdir(image_dir)):
                if result_file.endswith('.net'):
                    # Instantiate trained ANN from .net file
                    net_path = os.path.join(image_dir, result_file)
                    ann = libfann.neural_net()
                    ann.create_from_file(net_path)
                    # Filter the same image which it was trained with
                    filtered_image = filter_fann(
                        test_images[image_name], ann)
                    param_set_name = os.path.splitext(result_file)[0]
                    io.imsave(
                        os.path.join(image_dir, param_set_name + '.png'),
                        filtered_image)
开发者ID:tomasra,项目名称:ga_sandbox,代码行数:27,代码来源:parse.py


示例17: run_ocr

def run_ocr(result_dir, output_file):
    DEFAULT_TEXT = 'Lorem ipsum\ndolor sit amet,\nconsectetur\n\nadipiscing elit.\n\nDonec vel\naliquet velit,\nid congue\nposuere.'
    csv_file = open(output_file, 'w')
    fieldnames = ['image', 'param_set', 'ocr']
    writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
    writer.writeheader()
    # Enumerate images
    for image_name in sorted(os.listdir(result_dir)):
        image_dir = os.path.join(result_dir, image_name)
        if os.path.isdir(image_dir):
            print image_name
            # Enumerate parameter sets
            for result_file in sorted(os.listdir(image_dir)):
                if result_file.endswith('.png'):
                    image_path = os.path.join(image_dir, result_file)
                    image = util.img_as_float(io.imread(image_path))
                    ocr = ocr_accuracy(image, DEFAULT_TEXT)

                    result_ps_name = os.path.splitext(result_file)[0]
                    # # Write into csv file
                    result_row = {
                        'image': image_name,
                        'param_set': result_ps_name,
                        'ocr': ocr,
                    }
                    writer.writerow(result_row)
    csv_file.close()
    return None
开发者ID:tomasra,项目名称:ga_sandbox,代码行数:28,代码来源:parse.py


示例18: harris_ones

def harris_ones(img, window_size, k=0.05):
    """Calculate the harris score based on a window function of diagonal ones.
    Args:
        img The image to use for corner detection.
        window_size Size of the window (NxN).
        k Weighting parameter during the final scoring (det vs. trace).
    Returns:
        Corner score image
    """
    # Gradients
    img = skiutil.img_as_float(img)
    imgy, imgx = np.gradient(img)

    imgxy = imgx * imgy
    imgxx = imgx ** 2
    imgyy = imgy ** 2

    # window function (matrix of diagonal ones)
    window = np.ones((window_size, window_size))

    # compute parts of harris matrix
    a11 = signal.correlate(imgxx, window, mode="same") / window_size
    a12 = signal.correlate(imgxy, window, mode="same") / window_size
    a21 = a12
    a22 = signal.correlate(imgyy, window, mode="same") / window_size

    # compute score per pixel
    det_a = a11 * a22 - a12 * a21
    trace_a = a11 + a22

    return det_a - k * trace_a ** 2
开发者ID:aleju,项目名称:computer-vision-algorithms,代码行数:31,代码来源:harris.py


示例19: harris_gauss

def harris_gauss(img, sigma=1, k=0.05):
    """Calculate the harris score based on a gauss window function.
    Args:
        img The image to use for corner detection.
        sigma The sigma value for the gauss functions.
        k Weighting parameter during the final scoring (det vs. trace).
    Returns:
        Corner score image"""
    # Gradients
    img = skiutil.img_as_float(img)
    imgy, imgx = np.gradient(img)

    imgxy = imgx * imgy
    imgxx = imgx ** 2
    imgyy = imgy ** 2

    # compute parts of harris matrix
    a11 = ndimage.gaussian_filter(imgxx, sigma=sigma, mode="constant")
    a12 = ndimage.gaussian_filter(imgxy, sigma=sigma, mode="constant")
    a21 = a12
    a22 = ndimage.gaussian_filter(imgyy, sigma=sigma, mode="constant")

    # compute score per pixel
    det_a = a11 * a22 - a12 * a21
    trace_a = a11 + a22
    score = det_a - k * trace_a ** 2

    return score
开发者ID:aleju,项目名称:computer-vision-algorithms,代码行数:28,代码来源:harris.py


示例20: showPredictionOutput

	def showPredictionOutput(self):
		image_withText = self.image.copy()

		# show the output of the prediction with text
		for (i, segVal) in enumerate(np.unique(self.segments)):
			CORD = self.centerList[i]
			if self.predictionList[i] == "other":
				colorFont = (255, 0, 0) # "Blue color for other"
			else:
				colorFont = (0, 0, 255) # "Red color for ocean"

			#textOrg = CORD
			#textOrg = tuple(numpy.subtract((10, 10), (4, 4)))

			testOrg = (40,40) # need this for the if statment bellow

			# for some yet unknown reason CORD does sometime contain somthing like this [[[210 209]] [[205 213]] ...]
			# the following if statemnet is to not get a error becouse of this
			if len(CORD) == len(testOrg):
				#textOrg = tuple(np.subtract(CORD, (12, 0)))
				textOrg = CORD
				cv2.putText(self.image, self.predictionList[i], textOrg, cv2.FONT_HERSHEY_SIMPLEX, 0.1, colorFont, 3)
				markedImage = mark_boundaries(img_as_float(cv2.cvtColor(self.image, cv2.COLOR_BGR2RGB)), self.segments)
			else:
				pass

		cv2.imshow("segmented image", markedImage)
		cv2.waitKey(0)
开发者ID:larssbr,项目名称:AURlabCVsimulator,代码行数:28,代码来源:slicSuperpixel_lbp_method.py



注:本文中的skimage.util.img_as_float函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python util.img_as_ubyte函数代码示例发布时间:2022-05-27
下一篇:
Python transform.warp函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap