• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python transform.warp函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中skimage.transform.warp函数的典型用法代码示例。如果您正苦于以下问题:Python warp函数的具体用法?Python warp怎么用?Python warp使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了warp函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: random_trans_single_output

def random_trans_single_output(pic_array):
    # randomly transform the pic_array, which is a numpy nd array
    # flipping
    do_hori_flip = np.random.binomial(1, 0.5)
    if do_hori_flip:
        pic_array = np.fliplr(pic_array)

    do_vert_flip = np.random.binomial(1, 0.5)
    if do_vert_flip:
        pic_array = np.flipud(pic_array)

    # rotation
    pic_array = rotate(pic_array, np.random.random_integers(0, 360),
                       mode='constant', cval=1)

    # scaling
    scale_ratio = log(np.random.uniform(2.5, 4.5))
    afine_tf = tf.AffineTransform(scale=(scale_ratio, scale_ratio))
    pic_array = tf.warp(pic_array, afine_tf, mode='constant', cval=1)

    # translation
    trans_length = np.random.random_integers(-6, 6, 2)
    trans_length = (trans_length[0], trans_length[1])
    afine_tf = tf.AffineTransform(translation=trans_length)
    pic_array = tf.warp(pic_array, afine_tf, mode='constant', cval=1)

    return pic_array
开发者ID:Chris19920210,项目名称:machine_learning,代码行数:27,代码来源:sample_enlarge.py


示例2: test

def test():
    img = skimage.img_as_float(data.lena())
    img_size = img.shape[:2]

    trans = get_transform(20,15,1.05, 0.02, img_size)
    img_transformed = transform.warp(img, trans)
    obj_func = lambda x: transform_and_compare(img_transformed, img, x)
    x0 = np.array([0,0,1, 0])
    results = optimize.fmin_bfgs(obj_func, x0)

    transform_estimated = get_simple_transform(results) 
    transform_optimal = transform.AffineTransform(np.linalg.inv(trans._matrix))
    params_optimal = np.concatenate([transform_optimal.translation,
                                    transform_optimal.scale[0:1],
                                    [transform_optimal.rotation]])
    img_registered = transform.warp(img_transformed, 
                                    transform_estimated)
    err_original = mean_sq_diff(img_transformed, img)
    err_optimal = transform_and_compare(img_transformed, img, params_optimal) 
    err_actual = transform_and_compare(img_transformed, img, results) 
    err_relative = err_optimal/err_original
    
    print "Params optimal:", params_optimal
    print "Params estimated:", results
    print "Error without registration:", err_original
    print "Error of optimal registration:", err_optimal 
    print "Error of estimated transformation %f (%.2f %% of intial)" % (err_actual,
                                                            err_relative*100.)

    plt.figure()
    plt.subplot(121)
    plt.imshow(img_transformed)
    plt.subplot(122)
    plt.imshow(img_registered)
开发者ID:btel,项目名称:imageregistration,代码行数:34,代码来源:registration.py


示例3: random_translate_images

    def random_translate_images(self, data, xtrans_r=None, ytrans_r=None):
        if xtrans_r is None:
            if self.xtrans_bound is None:
                xtrans_r = [-5, 5]
            else:
                xtrans_r = self.xtrans_bound
        if ytrans_r is None:
            if self.ytrans_bound is None:
                ytrans_r = [-5, 5]
            else:
                ytrans_r = self.ytrans_bound
        if data.ndim == 3:
            for i in xrange(data[0].shape[0]):
                xtrans = self.rng.random_integers(xtrans_r[0], xtrans_r[1])
                ytrans = self.rng.random_integers(ytrans_r[0], ytrans_r[1])

                map_args = {
                    "xtranslate": xtrans,
                    "ytranslate": ytrans,
                }
                data[i] = st.warp(data, translate, map_args=map_args)
        else:
            xtrans = self.rng.random_integers(xtrans_r[0], xtrans_r[1])
            ytrans = self.rng.random_integers(ytrans_r[0], ytrans_r[1])

            map_args = {
                "xtranslate": xtrans,
                "ytranslate": ytrans,
            }
            data = st.warp(data, translate, map_args=map_args)
            return data
开发者ID:caglar,项目名称:ift6266-project,代码行数:31,代码来源:rnd_transformations.py


示例4: gen_data

def gen_data(name):
    reftracker = scio.loadmat('data/images_tracker.00047.mat')
    desttracker = scio.loadmat('data/images_tracker/'+name+'.mat')
    refpos = np.floor(np.mean(reftracker, 0))
    xxc, yyc = np.meshgrid(np.arange(1, 1801, dtype=np.int), np.arange(1, 2001, dtype=np.int))
    #normalize x and y channels
    xxc = (xxc - 600 - refpos[0]) * 1.0 / 600
    yyc = (yyc - 600 - refpos[1]) * 1.0 / 600
    maskimg = Image.open('data/meanask.png')
    maskc = np.array(maskimg, dtype=np.float)
    maskc = np.pad(maskc, (600, 600), 'minimum')
    tform = transform.ProjectiveTransform()
    tform.estimate(reftracker + 600, desttracker + 600)

    img_data = skio.imread('data/images_data/'+name+'.jpg')
    # save org mat
    warpedxx = transform.warp(img_data, tform, output_shape=xxc.shape)
    warpedyy = transform.warp(img_data, tform, output_shape=xxc.shape)
    warpedmask = transform.warp(img_data, tform, output_shape=xxc.shape)
    warpedxx = warpedxx[600:1400, 600:1200, :]
    warpedyy = warpedyy[600:1400, 600:1200, :]
    warpedmask = warpedmask[600:1400, 600:1200, :]
    img_h, img_w, _ = img_data.shape
    mat = np.zeros((img_h, img_w, 6), dtype=np.float)
    mat[:, :, 0] = (img_data[2] * 1.0 - 104.008) / 255
    mat[:, :, 1] = (img_data[1] * 1.0 - 116.669) / 255
    mat[:, :, 2] = (img_data[0] * 1.0 - 122.675) / 255
    scio.savemat('portraitFCN_data/' + name + '.mat', {'img':mat})
    mat_plus = np.zeros((img_h, img_w, 6), dtype=np.float)
    mat_plus[:, :, 0:3] = mat
    mat_plus[:, :, 3] = warpedxx
    mat_plus[:, :, 4] = warpedyy
    mat_plus[:, :, 5] = warpedmask
开发者ID:GirishaGarg,项目名称:AutoPortraitMatting,代码行数:33,代码来源:preprocess.py


示例5: generate_transformations

def generate_transformations(image, fileName):
    MAX_IMAGE_PIXEL = 96

    transformed_images = [image]
    # ======================
    # Scale 1 original image
    # ======================
    similarity_transform = SimilarityTransform(scale=0.75)
    image_scaled = warp(image, similarity_transform, mode='wrap')
    transformed_images.append(image_scaled)
    # sc.misc.imsave(folder + '/' + fileName.split('.')[0] + '/' + fileName.split('.')[0] + '_scale1.jpg', image_scaled)

    # ======================
    # Scale 2 original image
    # ======================
    similarity_transform = SimilarityTransform(scale=1.25)
    image_scaled = warp(image, similarity_transform, mode='wrap')
    transformed_images.append(image_scaled)
    # sc.misc.imsave(folder + '/' + fileName.split('.')[0] + '/' + fileName.split('.')[0]  + '_scale2.jpg', image_scaled)

    # =======================================
    # Rotate image by intervals of 45 degrees
    # =======================================
    result = (generate_tranformations_for_rotated_image(image,fileName, degrees) for degrees in [45, 90, 135, 180, 225, 270, 315])
    transformed_images.extend(flatten(result))
    return transformed_images
开发者ID:Coderx7,项目名称:Apollo,代码行数:26,代码来源:predict_augmented.py


示例6: find_alpha

def find_alpha(base_img, img, model_robust):
    # what type of interpolation
    # 0: nearest-neighbor
    # 1: bi-linear
    warp_order = 1

    output_shape, corner_min = find_output_shape(base_img, model_robust, channel)
    #print("output_shape", output_shape, corner_min)
    #print(model_robust.scale, model_robust.translation, model_robust.rotation)

    # This in-plane offset is the only necessary transformation for the base image
    offset = SimilarityTransform(translation= -corner_min)
    base_warped = warp(base_img[:,:,channel], offset.inverse, order=warp_order,
                      output_shape = output_shape, cval=-1)
    base_color = warp(base_img, offset.inverse, order=warp_order,
                      output_shape = output_shape, cval=-1)
    # warp image corners to new position in mosaic
    transform = (model_robust + offset).inverse

    #img_warped = warp(img[:,:,channel], transform, order=warp_order,
    #                  output_shape=output_shape, cval=-1)
    img_color = warp(img, transform, order=warp_order,
                      output_shape=output_shape, cval=-1)
    #base_mask = (base_warped != -1)
    #base_warped[~base_mask] = 0

    img_mask = (img_warped != -1)
    #img_warped[~img_mask] = 0

    #convert to rgb
    base_alpha = add_alpha(base_color, base_mask)
    img_alpha = np.dstack((img_color, img_mask))
    #base_alpha = np.dstack((base_color, base_mask))

    #plt.imsave(tmp_base, base_alpha )
    #plt.imsave(tmp_img, img_alpha )
    #cmd = [path_to_enblend, tmp_base, tmp_img, '-o', tmp_out]

    #p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE)
    #output, err = p.communicate(b"input data that is passed to subprocess' stdin")
    #rc = p.returncode
    # remove alpha channel

    if os.path.exists(tmp_out):
        out = imread(tmp_out)[:,:,:3]
    else:
        print("couldnt find out image")
        print(rc, output, err)
        plt.figure()
        plt.imshow(base_alpha)
        plt.figure()#

        plt.imshow(img_alpha)
        plt.show()
        out = base_alpha[:,:,:3]
    #if you don't have enblend, you can use one of these
    #merged_img = simple_merge(base_warped, img_warped, base_mask, img_mask)
    #merged_img = minimum_cost_merge(base_warped, img_warped, base_mask, img_mask)
    #merged_edges = remove_empty_edges(merged_img)
    return tmp_alpha
开发者ID:johannah,项目名称:iceview,代码行数:60,代码来源:mask.py


示例7: test_slow_warp_nonint_oshape

def test_slow_warp_nonint_oshape():
    image = np.random.rand(5, 5)

    assert_raises(ValueError, warp, image, lambda xy: xy,
                  output_shape=(13.1, 19.5))

    warp(image, lambda xy: xy, output_shape=(13.0001, 19.9999))
开发者ID:benlongo,项目名称:scikit-image,代码行数:7,代码来源:test_warps.py


示例8: test_slow_warp_nonint_oshape

def test_slow_warp_nonint_oshape():
    image = np.random.rand(5, 5)

    with testing.raises(ValueError):
        warp(image, lambda xy: xy,
             output_shape=(13.1, 19.5))

    warp(image, lambda xy: xy, output_shape=(13.0001, 19.9999))
开发者ID:Cadair,项目名称:scikit-image,代码行数:8,代码来源:test_warps.py


示例9: find_mask

def find_mask(base_name, base_img, img_name, img, model_robust, channel):
    # what type of interpolation
    # 0: nearest-neighbor
    # 1: bi-linear
    warp_order = 1
    output_shape, corner_min = find_output_shape(base_img, model_robust, channel)
    # This in-plane offset is the only necessary transformation for the base image
    offset = SimilarityTransform(translation= -corner_min)
    base_warped = warp(base_img[:,:,channel], offset.inverse, order=warp_order,
                      output_shape = output_shape, cval=-1)
    base_color = warp(base_img, offset.inverse, order=warp_order,
                      output_shape = output_shape, cval=-1)
    # warp image corners to new position in mosaic
    transform = (model_robust + offset).inverse

    img_warped = warp(img[:,:,channel], transform, order=warp_order,
                      output_shape=output_shape, cval=-1)
    img_color = warp(img, transform, order=warp_order,
                      output_shape=output_shape, cval=-1)
    base_mask = (base_warped != -1)
    base_warped[~base_mask] = 0

    img_mask = (img_warped != -1)
    img_warped[~img_mask] = 0
    plt.imsave("img_mask.jpg", img_mask)

    #convert to rgb
    img_alpha = np.dstack((img_color, img_mask))
    base_alpha = np.dstack((base_color, base_mask))

    td = config.tmp_dir
    tmp_base = os.path.join(td, 'tmp_' + '.'.join(base_name.split('.')[:-1]) + '.png')
    tmp_img = os.path.join(td, 'tmp_' + '.'.join(img_name.split('.')[:-1]) + '.png')
    tmp_out = os.path.join(td, 'tmp_out_' + '.'.join(base_name.split('.')[:-1]) + '.png')

    plt.imsave(tmp_base, base_alpha)
    plt.imsave(tmp_img, img_alpha)

    cmd = ['enblend', tmp_base, tmp_img, '-o', tmp_out]

    p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE)
    output, err = p.communicate(b"input data that is passed to subprocess' stdin")
    rc = p.returncode
    #if you don't have enblend, you can use one of these
    #merged_img = simple_merge(base_warped, img_warped, base_mask, img_mask)
    #merged_img = minimum_cost_merge(base_warped, img_warped, base_mask, img_mask)
    #merged_edges = remove_empty_edges(merged_img)
    # remove alpha channel
    if os.path.exists(tmp_out):
        out = imread(tmp_out)
        oute = remove_empty_alpha(out)
        os.remove(tmp_base)
        os.remove(tmp_img)
        os.remove(tmp_out)
        return oute[:,:,:3]
    else:
        print("Could not find out", tmp_out, rc)
        raise Exception("failed cmd %s" %cmd)
开发者ID:johannah,项目名称:iceview,代码行数:58,代码来源:mask.py


示例10: test_warp_clip

def test_warp_clip():
    x = 2 * np.ones((5, 5), dtype=np.double)
    matrix = np.eye(3)

    outx = warp(x, matrix, order=0, clip=False)
    assert_array_almost_equal(x, outx)

    outx = warp(x, matrix, order=0, clip=True)
    assert_array_almost_equal(x / 2, outx)
开发者ID:Rapternmn,项目名称:scikit-image,代码行数:9,代码来源:test_warps.py


示例11: test_warp_tform

def test_warp_tform():
    x = np.zeros((5, 5), dtype=np.double)
    x[2, 2] = 1
    theta = - np.pi / 2
    tform = SimilarityTransform(scale=1, rotation=theta, translation=(0, 4))

    x90 = warp(x, tform, order=1)
    assert_almost_equal(x90, np.rot90(x))

    x90 = warp(x, tform.inverse, order=1)
    assert_almost_equal(x90, np.rot90(x))
开发者ID:andreydung,项目名称:scikit-image,代码行数:11,代码来源:test_warps.py


示例12: translate_images

 def translate_images(self, data, xtrans=0, ytrans=0):
     map_args = {
             "xtrans": xtrans,
             "ytrans": ytrans,
             }
     if data.ndim == 3:
         for i in xrange(data[0].shape[0]):
             data[i] = st.warp(data, translate, map_args=map_args)
     else:
         data = st.warp(data, translate, map_args=map_args)
     return data
开发者ID:caglar,项目名称:ift6266-project,代码行数:11,代码来源:rnd_transformations.py


示例13: align_stack

def align_stack(im, alignNs=r_[0:100], print_status=True, do_plot=False):
    """Realign a stack to an image -- default to mean image from near the start

    Args:
        im
        alignNs: frameNs to average to give the alignment reference image
        print_status: give updates for long calcs to terminal
        do_plot: show a plot with alignment calculations

    Returns:
        aligned stack, same size as input stack, padded with zeros where shifted

    """
    
    # run alignment calculations, saving result in a dataframe
    aligntarg = im[:100,:,:].mean(axis=0)
    tL = []
    nfrdo = im.shape[0]
    if print_status: print('Computing offsets ({} frames)... '.format(nfrdo), end='')
    for iF in range(nfrdo):  
        tL.append(feature.register_translation(aligntarg, im[iF,:,:]))

    regDf = pd.DataFrame(tL, columns=('coords','err','phasediff'))
    regDf['row'] = [x[0][0] for x in tL]
    regDf['col'] = [x[0][1] for x in tL]

    if do_plot:
        gs = mpl.gridspec.GridSpec(2,2)
        fig = plt.figure()
        plt.subplot(gs[0,0])
        plt.plot(regDf.err)
        plt.title('translation-independent error')
        plt.ylabel('RMS error')
        plt.subplot(gs[0,1])
        plt.plot(regDf.col)
        plt.plot(regDf.row)
        plt.title('row and col pixel offsets')
        plt.legend(['col','row'])

    # do the shifts
    regim = im.copy()*0
    maxv = im.max()
    if print_status: print('Aligning frames... ', end='')
    for iF in range(nfrdo): #debug range(nframes):
        regim[iF,:,:] = transform.warp(im[iF,:,:]*1.0/maxv, \
                    transform.SimilarityTransform(translation=(-1*regDf.col[iF],-regDf.row[iF]))) * maxv
        t = transform.warp(im[iF,:,:]*1.0/maxv, \
                    transform.SimilarityTransform(translation=(-1*regDf.col[iF],-regDf.row[iF]))) * maxv
        if print_status and iF % 500 == 0:
            print('%d (%d,%d)'%(iF,-regDf.col[iF],-regDf.row[iF]), end=' ')
    if print_status: print('Done.')

    return regim
开发者ID:histed,项目名称:PyToolsMH,代码行数:53,代码来源:image.py


示例14: test_warp

def test_warp():
    x = np.zeros((5, 5), dtype=np.uint8)
    x[2, 2] = 255
    x = img_as_float(x)
    theta = - np.pi / 2
    tform = SimilarityTransform(scale=1, rotation=theta, translation=(0, 4))

    x90 = warp(x, tform, order=1)
    assert_array_almost_equal(x90, np.rot90(x))

    x90 = warp(x, tform.inverse, order=1)
    assert_array_almost_equal(x90, np.rot90(x))
开发者ID:aeweiwi,项目名称:scikit-image,代码行数:12,代码来源:test_warps.py


示例15: test_warp_identity

def test_warp_identity():
    img = img_as_float(rgb2gray(data.astronaut()))
    assert len(img.shape) == 2
    assert np.allclose(img, warp(img, AffineTransform(rotation=0)))
    assert not np.allclose(img, warp(img, AffineTransform(rotation=0.1)))
    rgb_img = np.transpose(np.asarray([img, np.zeros_like(img), img]),
                           (1, 2, 0))
    warped_rgb_img = warp(rgb_img, AffineTransform(rotation=0.1))
    assert np.allclose(rgb_img, warp(rgb_img, AffineTransform(rotation=0)))
    assert not np.allclose(rgb_img, warped_rgb_img)
    # assert no cross-talk between bands
    assert np.all(0 == warped_rgb_img[:, :, 1])
开发者ID:andreydung,项目名称:scikit-image,代码行数:12,代码来源:test_warps.py


示例16: test_warp_identity

def test_warp_identity():
    lena = img_as_float(rgb2gray(data.lena()))
    assert len(lena.shape) == 2
    assert np.allclose(lena, warp(lena, AffineTransform(rotation=0)))
    assert not np.allclose(lena, warp(lena, AffineTransform(rotation=0.1)))
    rgb_lena = np.transpose(np.asarray([lena, np.zeros_like(lena), lena]),
                            (1, 2, 0))
    warped_rgb_lena = warp(rgb_lena, AffineTransform(rotation=0.1))
    assert np.allclose(rgb_lena, warp(rgb_lena, AffineTransform(rotation=0)))
    assert not np.allclose(rgb_lena, warped_rgb_lena)
    # assert no cross-talk between bands
    assert np.all(0 == warped_rgb_lena[:, :, 1])
开发者ID:aeweiwi,项目名称:scikit-image,代码行数:12,代码来源:test_warps.py


示例17: random_transformation

def random_transformation(img1, img2):
    shape_x, shape_y = img1.shape
    rot = (random.random() - 0.5) * math.pi / 4
    trans_x = int((random.random() - 0.5) * shape_x / 8)
    trans_y = int((random.random() - 0.5) * shape_y / 8)
    scale = 1. / 1.1 + random.random() * (1.1 - 1. / 1.1)
    pixel_scale = 1. / 1.1 + random.random() * (1.1 - 1. / 1.1)

    trans = transform.SimilarityTransform(
        scale=scale, rotation=rot, translation=(trans_x, trans_y))
    return \
        (pixel_scale * transform.warp(img1.astype(float), trans, mode='nearest')), \
        (transform.warp(img2.astype(float), trans, mode='nearest'))
开发者ID:1nadequacy,项目名称:kaggle_ds2,代码行数:13,代码来源:create_db.py


示例18: test_warp_matrix

def test_warp_matrix():
    x = np.zeros((5, 5), dtype=np.double)
    x[2, 2] = 1
    refx = np.zeros((5, 5), dtype=np.double)
    refx[1, 1] = 1

    matrix = np.array([[1, 0, 1], [0, 1, 1], [0, 0, 1]])

    # _warp_fast
    outx = warp(x, matrix, order=1)
    assert_almost_equal(outx, refx)
    # check for ndimage.map_coordinates
    outx = warp(x, matrix, order=5)
开发者ID:andreydung,项目名称:scikit-image,代码行数:13,代码来源:test_warps.py


示例19: warp_image_by_corner_points_projection

def warp_image_by_corner_points_projection(corner_points, image):
    """Given corner points of a Sudoku, warps original selection to a square image.

    :param corner_points:
    :type: corner_points: list
    :param image:
    :type image:
    :return:
    :rtype:

    """
    # Clarify by storing in named variables.
    top_left, top_right, bottom_left, bottom_right = np.array(corner_points)

    top_edge = np.linalg.norm(top_right - top_left)
    bottom_edge = np.linalg.norm(bottom_right - bottom_left)
    left_edge = np.linalg.norm(top_left - bottom_left)
    right_edge = np.linalg.norm(top_right - bottom_right)

    L = int(np.ceil(max([top_edge, bottom_edge, left_edge, right_edge])))
    src = np.array([top_left, top_right, bottom_left, bottom_right])
    dst = np.array([[0, 0], [L - 1, 0], [0, L - 1], [L - 1, L - 1]])

    tr = ProjectiveTransform()
    tr.estimate(dst, src)
    warped_image = warp(image, tr, output_shape=(L, L))
    out = resize(warped_image, (500, 500))

    return out
开发者ID:Hu1-Li,项目名称:sudokuextract,代码行数:29,代码来源:geometry.py


示例20: run3

    def run3(self):
        """ Cette fonction test des alternatives à SIFT et ORB. Ne fonctionne pas."""
        for x in xrange(len(self.stack)-1):
            print('Traitement image ' + str(x+1))
            im1,im2 = 255.*gaussian_filter(self.stack[x,...], sqrt(self.initial_sigma**2 - 0.25)), 255.*gaussian_filter(self.stack[x+1,...], sqrt(self.initial_sigma**2 - 0.25))
            im1,im2 = enhance_contrast(normaliser(im1), square(3)), enhance_contrast(normaliser(im2), square(3))
            im1, im2 = normaliser(im1), normaliser(im2)
            
            b = cv2.BRISK()
            #b.create("Feature2D.BRISK")
            
            k1,d1 = b.detectAndCompute(im1,None)
            k2,d2 = b.detectAndCompute(im2,None)
            
            bf = cv2.BFMatcher(cv2.NORM_HAMMING)
            matches = bf.match(d1,d2)
            
            g1,g2 = [],[]
            for i in matches:
                g1.append(k1[i.queryIdx].pt)
                g2.append(k2[i.trainIdx].pt)

            model, inliers = ransac((np.array(g1), np.array(g2)), AffineTransform, min_samples=3, residual_threshold=self.min_epsilon, max_trials=self.max_trials, stop_residuals_sum=self.min_inlier_ratio)
            
            self.stack[x+1,...] = warp(self.stack[x+1,...], AffineTransform(rotation=model.rotation, translation=model.translation), output_shape=self.stack[x+1].shape)

        self.stack = self.stack.astype(np.uint8)
开发者ID:atbd,项目名称:PythonUtile,代码行数:27,代码来源:align.py



注:本文中的skimage.transform.warp函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python util.img_as_float函数代码示例发布时间:2022-05-27
下一篇:
Python transform.rotate函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap