本文整理汇总了Python中skimage.util.img_as_ubyte函数的典型用法代码示例。如果您正苦于以下问题:Python img_as_ubyte函数的具体用法?Python img_as_ubyte怎么用?Python img_as_ubyte使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了img_as_ubyte函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: get_tag_detections
def get_tag_detections(im):
#
# Because of a bug in the tag detector, it doesn't seem
# to detect tags larger than a certain size. To work-around
# this limitation, we detect tags on two different image
# scales and use the one with more detections
#
assert len(im.shape) == 2
im4 = imrescale(im, 1./4)
im = img_as_ubyte(im)
im4 = img_as_ubyte(im4)
detections1 = AprilTagDetector().detect(im)
detections4 = AprilTagDetector().detect(im4)
for d in detections4:
d.c[0] *= 4.
d.c[1] *= 4.
# note that everything other than the tag center is wrong
# in detections4
if len(detections4) > len(detections1):
return detections4
else:
return detections1
开发者ID:memorydump85,项目名称:zoomcalib,代码行数:26,代码来源:homography_at_center.py
示例2: insert_db
def insert_db(self, mode, image, label, features, channel_no, inverse):
if inverse:
image_ubyte = 255 - img_as_ubyte(image)
else:
image_ubyte = img_as_ubyte(image)
image_ubyte = numpy.transpose(image_ubyte, (2, 0, 1))
image_string = image_ubyte.tostring()
if features != None:
delimeter = '[email protected]#$'
self.datum.data = image_string + delimeter + features
elif channel_no > 3:
selem = disk(6)
w_tophat = white_tophat(image_ubyte, selem)
b_tophat = black_tophat(image_ubyte, selem)
self.datum.data = image_string + w_tophat.tostring() + b_tophat.tostring()
else:
self.datum.data = image_string
if label != None:
self.datum.label = int(label)
serialized = self.datum.SerializeToString()
if mode == 'train':
self.train_batch.Put("%08d" % self.train_no, serialized)
self.train_no += 1
elif mode == 'valid':
self.valid_batch.Put("%08d" % self.valid_no, serialized)
self.valid_no += 1
elif mode == 'test':
self.test_batch.Put("%08d" % self.test_no, serialized)
self.test_no += 1
开发者ID:only4hj,项目名称:fast-rcnn,代码行数:35,代码来源:convert_imagenet_data.py
示例3: mse
def mse(image_a, image_b):
# the 'Mean Squared Error' between the two images is the
# sum of the squared difference between the two images;
# NOTE: the two images must have the same dimension
image_a = util.img_as_ubyte(image_a)
image_b = util.img_as_ubyte(image_b)
err = np.sum((image_a.astype("float") - image_b.astype("float")) ** 2)
err /= float(image_a.shape[0] * image_a.shape[1])
# return the MSE, the lower the error, the more "similar"
# the two images are
return err
开发者ID:tomasra,项目名称:ga_sandbox,代码行数:12,代码来源:metrics.py
示例4: absolute_error
def absolute_error(image_a, image_b):
"""
Sum of pixel differences
Images - 2d numpy arrays
"""
image_a = util.img_as_ubyte(image_a)
image_b = util.img_as_ubyte(image_b)
return np.sum(
np.absolute(
image_a.view(np.ndarray).astype(np.int16) -
image_b.view(np.ndarray).astype(np.int16)
)
)
开发者ID:tomasra,项目名称:ga_sandbox,代码行数:13,代码来源:metrics.py
示例5: saver
def saver(stepName, img, dbg=None, mode=mode):
path = (processedDir / str(imgName)).with_suffix(".{}.png".format(stepName) if stepName else ".png")
if mode == 'cache' and processedDir and imgName:
mode = 'save'
if path.exists():
print("Loading cached image:", path)
img = ski.img_as_ubyte(io.imread(str(path)))
mode = 'done'
elif isinstance(img,type(None)):
print("Caching image:", path)
img = ski.img_as_ubyte(io.imread(str(imgName)))
assert not isinstance(img,type(None))
if mode == 'save' and processedDir and imgName:
try:
print("Saving:", img.shape, img.dtype, path.name, flush=True, )
pil_img = PIL.Image.fromarray(img_as_ubyte(img))
pil_img.save(str(path))
if dbg:
dbg.saved_path = path
except Exception as err:
print("Error Saving:",path, err, flush=True, )
elif mode == 'plot':
plt.imshow(img)
plt.suptitle(stepName+" "+imgName.name)
plt.show(block=True)
plt.close()
return img
开发者ID:manasdas17,项目名称:scilab-2,代码行数:32,代码来源:image_measurements_auto.py
示例6: compute
def compute(self, src):
image = img_as_ubyte(src)
# denoise image
denoised = denoise_tv_chambolle(image, weight=0.05)
denoised_equalize= exposure.equalize_hist(denoised)
# find continuous region (low gradient) --> markers
markers = rank.gradient(denoised_equalize, disk(5)) < 10
markers = ndi.label(markers)[0]
# local gradient
gradient = rank.gradient(denoised, disk(2))
# labels
labels = watershed(gradient, markers)
# display results
fig, axes = plt.subplots(2,3)
axes[0, 0].imshow(image)#, cmap=plt.cm.spectral, interpolation='nearest')
axes[0, 1].imshow(denoised, cmap=plt.cm.spectral, interpolation='nearest')
axes[0, 2].imshow(markers, cmap=plt.cm.spectral, interpolation='nearest')
axes[1, 0].imshow(gradient, cmap=plt.cm.spectral, interpolation='nearest')
axes[1, 1].imshow(labels, cmap=plt.cm.spectral, interpolation='nearest', alpha=.7)
plt.show()
开发者ID:roboticslab-uc3m,项目名称:textiles,代码行数:25,代码来源:GarmentAnalysis.py
示例7: fit
def fit(self, X, y=None):
num = self.patch_num // X.size
data = []
for item in X:
img = imread(str(item[0]))
img = img_as_ubyte(rgb2gray(img))
#img = self.binary(img) # 二值化
tmp = extract_patches_2d(img, self.patch_size, max_patches = num,\
random_state=np.random.RandomState())
data.append(tmp)
data = np.vstack(data)
data = data.reshape(data.shape[0], -1)
data = np.asarray(data, 'float32')
# 二值化后不需要0-1归化
data = data - np.min(data, 0)
data = data/(np.max(data, 0) + 0.0001) # 0-1 scaling
self.rbm = BernoulliRBM(n_components=self.n_components,\
learning_rate=self.learning_rate, \
n_iter=self.n_iter,\
batch_size=self.batch_size,\
verbose=True)
self.rbm.fit(data)
return self
开发者ID:AI42,项目名称:CNN-detection-tracking,代码行数:26,代码来源:rbm.py
示例8: save_windows
def save_windows(boxes, imagePath):
image_color = io.imread(imagePath, as_grey=False)
image_color = util.img_as_ubyte(image_color)
imageFilename = os.path.basename(imagePath) # Get the filename
imageBasename = os.path.splitext(imageFilename)[0] #Take out the extension
annotationsFilePath = cfg.annotationsFolderPath+'gt.'+imageBasename+'.txt'
annotatedBoxes = utils.readINRIAAnnotations(annotationsFilePath)
signalTypes = utils.readINRIAAnnotationsDetection(annotationsFilePath)
signalTypes = list(reversed(signalTypes))
count = 0
for box in boxes:
if box[0] < 0 or box[1] < 0:
continue
if box[2] >= image_color.shape[1].__int__() or \
box[3] >= image_color.shape[0].__int__():
continue
annotated = 'NONSIGNAL'
for idx in range(0, len(annotatedBoxes)):
aBox = annotatedBoxes[idx]
currentRatio = computeOverlap(box, aBox)
currentRatio = math.ceil(currentRatio*10)/10
if currentRatio > 0.5:
annotated = signalTypes[idx]
break
crop = image_color[box[1]:box[3],box[0]:box[2]]
imageName = imagePath.split('/') #Working on the crop name...
fileName = imageName[len(imageName)-1]
fileName = fileName[:len(fileName)-4]
fileName = (fileName+'.'+str(count))
filename = (fileName+'.'+annotated+'.jpg')
crop = resize(crop,(32,32))
io.imsave('Crops/'+filename, crop) #Save the crop
print('Crop saved')
count += 1
开发者ID:axelBarroso,项目名称:m3,代码行数:34,代码来源:test_folder_parallel.py
示例9: extractAndStoreFeatures
def extractAndStoreFeatures(inputFolder, outputFolder):
# List all files
fileList = os.listdir(inputFolder)
# Select only files that end with .png
imagesList = filter(lambda element: ".png" in element, fileList)
for filename in imagesList:
imagepath = inputFolder + "/" + filename
outputpath = outputFolder + "/" + filename + ".feat"
if os.path.exists(outputpath):
print "Features for " + imagepath + ". Delete the file if you want to replace."
continue
print "Extracting features for " + imagepath
image = io.imread(imagepath, as_grey=True)
# Read the image as bytes (pixels with values 0-255)
image = util.img_as_ubyte(image)
# Extract the features
feats = feature_extractor.extractFeatures(image)
# Save the features to a file
outputFile = open(outputpath, "wb")
pickle.dump(feats, outputFile)
outputFile.close()
开发者ID:YoshuaNava,项目名称:VisionPercepcion_USB2015,代码行数:28,代码来源:extract_features.py
示例10: HairRemover
def HairRemover(image, debug=None):
# =================================================================
# extract hair as morphologically thin structures
# -----------------------------------------------------------------
# convert to Lab color space
Lab_image = rgb2labnorm(image)
L = img_as_ubyte(Lab_image[..., 0])
# a hard threshold is then applied to the difference between
# the luminance before and after morphological closing
# the dark pigmented elements have a large intensity in the
# difference image
LClose = morph_close(L)
LDiff = LClose - L
# Threshold to create mask for inpainting
# set all pixels > 11.9 -> 255 and < 12 -> 0
# dilate by 1 to remove boundaries
threshold = 10.0 # original comment and code did not match... -JH
# threshold operation is directly performed on LDiff
mask = (morph_dilate(LDiff) >= threshold) * 1.
result = Inpainter(image, mask, 5)
if debug is not None:
debug["inpaintingMask"] = mask
debug["hairRemoved"] = result
return result
开发者ID:cmusatyalab,项目名称:dermshare,代码行数:31,代码来源:hairremover.py
示例11: test_compare_8bit_vs_16bit
def test_compare_8bit_vs_16bit():
# filters applied on 8-bit image ore 16-bit image (having only real 8-bit
# of dynamic) should be identical
image8 = util.img_as_ubyte(data.camera())
image16 = image8.astype(np.uint16)
assert_equal(image8, image16)
methods = [
"autolevel",
"bottomhat",
"equalize",
"gradient",
"maximum",
"mean",
"subtract_mean",
"median",
"minimum",
"modal",
"enhance_contrast",
"pop",
"threshold",
"tophat",
]
for method in methods:
func = getattr(rank, method)
f8 = func(image8, disk(3))
f16 = func(image16, disk(3))
assert_equal(f8, f16)
开发者ID:YangChuan80,项目名称:scikit-image,代码行数:30,代码来源:test_rank.py
示例12: _write_to_file
def _write_to_file(self, new_bands, pan, **kwargs):
# Read coverage from QBA
coverage = self._calculate_cloud_ice_perc()
self.output("Final Steps", normal=True, arrow=True)
suffix = 'bands_%s_pan' % "".join(map(str, self.bands))
output_file = join(self.dst_path, self._filename(suffix=suffix))
output = rasterio.open(output_file, 'w', **kwargs)
for i, band in enumerate(new_bands):
# Color Correction
band = numpy.multiply(band, pan)
band = self._color_correction(band, self.bands[i], 0, coverage)
output.write_band(i + 1, img_as_ubyte(band))
new_bands[i] = None
self.output("Writing to file", normal=True, color='green', indent=1)
return output_file
开发者ID:GEO-IASS,项目名称:landsat-util,代码行数:25,代码来源:image.py
示例13: extractAndStoreFeatures
def extractAndStoreFeatures(inputFolder, items, outputFolder):
extension = '.jpg'
X = np.zeros(shape=(cfg.num_train_images,cfg.num_features))
y = np.zeros(shape=(cfg.num_train_images,1))
number_of_images = 0
for index_label, name_label in enumerate(items): # For each item...
imagesPath = inputFolder + '/' + name_label # Each label corresponds to a folder
fileList = os.listdir(imagesPath) # List all files
imagesList = filter(lambda element: extension in element, fileList) # Select only the ones that ends with the desired extension
for filename in imagesList:
current_imagePath = imagesPath + '/' + filename
print 'Extracting features for ' + current_imagePath
image = io.imread(current_imagePath, as_grey=True)
image = util.img_as_ubyte(image) # Read the image as bytes (pixels with values 0-255)
X[number_of_images] = feature_extractor.extractFeatures(image) # Extract the features
y[number_of_images] = index_label # Assign the label at the end of X when saving the data set
number_of_images = number_of_images + 1
print number_of_images
#Save the data set to .data file in Data folder.
np.savetxt(
outputFolder, # file name
np.c_[X,y], # array to save
fmt='%.2f', # formatting, 2 digits in this case
delimiter=',', # column delimiter
newline='\n', # new line character
comments='# ') # character to use for comments
开发者ID:GerardMJuan,项目名称:MCV-M3,代码行数:27,代码来源:extract_features.py
示例14: convert_to_saturation
def convert_to_saturation(fn, out_fn, rescale=True):
"""
Generate saturation channel as a grayscale image.
"""
# ImageMagick 18s
# execute_command('convert %(fn)s -colorspace HSL -channel G %(out_fn)s' % {'fn': fn, 'out_fn': out_fn})
# t = time.time()
img = imread(fn)
# sys.stderr.write('Read image: %.2f seconds\n' % (time.time() - t)) # ~4s
# t1 = time.time()
ma = img.max(axis=-1)
mi = img.min(axis=-1)
# sys.stderr.write('compute min and max color components: %.2f seconds\n' % (time.time() - t1)) # ~5s
# t1 = time.time()
s = np.nan_to_num(mi/ma.astype(np.float))
# sys.stderr.write('min oiver max: %.2f seconds\n' % (time.time() - t1)) # ~2s
# t1 = time.time()
if rescale:
pmax = s.max()
pmin = s.min()
s = (s - pmin) / (pmax - pmin)
# sys.stderr.write('rescale: %.2f seconds\n' % (time.time() - t1)) # ~3s
# t1 = time.time()
cv2.imwrite(out_fn, img_as_ubyte(s))
开发者ID:mistycheney,项目名称:MouseBrainAtlas,代码行数:30,代码来源:generate_other_versions_v2.py
示例15: _write_to_file
def _write_to_file(self, new_bands, suffix=None, **kwargs):
# Read cloud coverage from mtl file
cloud_cover = self._read_cloud_cover()
self.output("Final Steps", normal=True, arrow=True)
output_file = '%s_bands_%s' % (self.scene, "".join(map(str, self.bands)))
if suffix:
output_file += suffix
output_file += '.TIF'
output_file = join(self.dst_path, output_file)
output = rasterio.open(output_file, 'w', **kwargs)
for i, band in enumerate(new_bands):
# Color Correction
band = self._color_correction(band, self.bands[i], 0, cloud_cover)
output.write_band(i+1, img_as_ubyte(band))
new_bands[i] = None
self.output("Writing to file", normal=True, color='green', indent=1)
return output_file
开发者ID:rcdosado,项目名称:landsat-util,代码行数:27,代码来源:image.py
示例16: ndarray_to_pil
def ndarray_to_pil(arr, format_str=None):
"""Export an ndarray to a PIL object.
Parameters
----------
Refer to ``imsave``.
"""
if arr.ndim == 3:
arr = img_as_ubyte(arr)
mode = {3: 'RGB', 4: 'RGBA'}[arr.shape[2]]
elif format_str in ['png', 'PNG']:
mode = 'I;16'
mode_base = 'I'
if arr.dtype.kind == 'f':
arr = img_as_uint(arr)
elif arr.max() < 256 and arr.min() >= 0:
arr = arr.astype(np.uint8)
mode = mode_base = 'L'
else:
arr = img_as_uint(arr)
else:
arr = img_as_ubyte(arr)
mode = 'L'
mode_base = 'L'
if arr.ndim == 2:
im = Image.new(mode_base, arr.T.shape)
try:
im.frombytes(arr.tobytes(), 'raw', mode)
except AttributeError:
im.frombytes(arr.tostring(), 'raw', mode)
else:
try:
im = Image.frombytes(mode, (arr.shape[1], arr.shape[0]),
arr.tobytes())
except AttributeError:
im = Image.frombytes(mode, (arr.shape[1], arr.shape[0]),
arr.tostring())
return im
开发者ID:haohao200609,项目名称:Hybrid,代码行数:46,代码来源:pil_plugin.py
示例17: prepare_for_display
def prepare_for_display(npy_img):
'''Convert a 2D or 3D numpy array of any dtype into a
3D numpy array with dtype uint8. This array will
be suitable for use in passing to gui toolkits for
image display purposes.
Parameters
----------
npy_img : ndarray, 2D or 3D
The image to convert for display
Returns
-------
out : ndarray, 3D dtype=np.uint8
The converted image. This is guaranteed to be a contiguous array.
Notes
-----
If the input image is floating point, it is assumed that the data
is in the range of 0.0 - 1.0. No check is made to assert this
condition. The image is then scaled to be in the range 0 - 255
and then cast to np.uint8
For all other dtypes, the array is simply cast to np.uint8
If a 2D array is passed, the single channel is replicated
to the 2nd and 3rd channels.
If the array contains an alpha channel, this channel is
ignored.
'''
if npy_img.ndim < 2:
raise ValueError('Image must be 2D or 3D array')
height = npy_img.shape[0]
width = npy_img.shape[1]
out = np.empty((height, width, 3), dtype=np.uint8)
npy_img = img_as_ubyte(npy_img)
if npy_img.ndim == 2 or \
(npy_img.ndim == 3 and npy_img.shape[2] == 1):
npy_plane = npy_img.reshape((height, width))
out[:, :, 0] = npy_plane
out[:, :, 1] = npy_plane
out[:, :, 2] = npy_plane
elif npy_img.ndim == 3:
if npy_img.shape[2] == 3 or npy_img.shape[2] == 4:
out[:, :, :3] = npy_img[:, :, :3]
else:
raise ValueError('Image must have 1, 3, or 4 channels')
else:
raise ValueError('Image must have 2 or 3 dimensions')
return out
开发者ID:ChrisBeaumont,项目名称:scikit-image,代码行数:58,代码来源:util.py
示例18: inplace_augment
def inplace_augment(data, outdir, fold=1, tparams=None, reset=False):
output_json = osp.join(outdir, 'inplace_augment/data.json')
if not os.path.exists(output_json) or reset:
od = osp.join(outdir, 'inplace_augment')
if not osp.exists(od):
os.makedirs(od)
if tparams == None:
tparams = {}
tparams['samples_per_image'] = 5
tparams['shear'] = (-5, 30)
tparams['order'] = 1 #bilinear
tparams['selem_size'] = (3, 4) #max size for square selem for erosion, dilation
tparams['rotate'] = (0, 1)
tparams['hpad'] = (0, 1)
tparams['vpad'] = (0, 1)
augmented = []
for datum in data:
dat = copy.deepcopy(datum)
augmented.append(dat)
if datum['split'] == 'train':
datum['region_proposals'] = datum['gt_boxes'][:2] #smaller memory footprint, needed
path, f = osp.split(datum['id'])
for i in range(tparams['samples_per_image']):
img = imread(datum['id'])
if img.ndim == 3:
img = img_as_ubyte(rgb2gray(img))
out = img.copy()
boxes = datum['gt_boxes']
for jj, b in enumerate(reversed(boxes)):
try: #Some random values for weird boxes give value errors, just handle and ignore
b = close_crop_box(img, b)
word = img[b[1]:b[3], b[0]:b[2]]
aug = augment(word, tparams, keep_size=True)
except ValueError:
continue
out[b[1]:b[3], b[0]:b[2]] = aug
new_path = osp.join(od, f[:-4] + '_%d.png' % i)
imsave(new_path, out)
new_datum = copy.deepcopy(datum)
new_datum['id'] = new_path
augmented.append(new_datum)
with open(output_json, 'w') as f:
json.dump(augmented, f)
else: #otherwise load the json
with open(output_json) as f:
augmented = json.load(f)
return augmented
开发者ID:tomfalainen,项目名称:neural-ctrlf,代码行数:58,代码来源:dataset_loader.py
示例19: get_gabor_desc
def get_gabor_desc(img, gdesc, w_size, scale=1.0, mask=None, _ncpus=None):
"""
Extract local Gabor descriptors by scanning an image.
:param img: numpy.ndarray
Input intensity (grey-scale) image.
:param gdesc: txtgrey.GaborDescriptor
The parameters of the Gabor wavelets to be used.
:param w_size: integer
Window size (the sliding window is square-shaped).
:param scale: float
The image may be scaled prior to any descriptor extraction.
:param mask: numpy.ndarray
A mask (logical image) indicating the object regions
in the image.
:return: list
A list with the local descriptors corresponding to each position
of the sliding window. Each element of the list is a vector
containing the coordinates of the local window (first 4 elements)
and the 2 vectors of values for the local Gabor descriptors (one
with the mean responses and one with the variances).
"""
assert (img.ndim == 2)
img_ = rescale(img, scale)
if mask is not None:
assert (mask.ndim == 2)
assert (mask.shape == img.shape)
mask = img_as_ubyte(resize(mask, img_.shape))
img_iterator = sliding_window(img_.shape, (w_size, w_size), step=(w_size, w_size)) # non-overlapping windows
res = []
if mask is None:
with ProcessPoolExecutor(max_workers=_ncpus) as executor:
for w_coords in img_iterator:
time.sleep(0.01)
res.append(executor.submit(_gabor_worker, img_, gdesc, w_coords))
else:
th = w_size * w_size / 20.0 # consider only those windows with more than 5% pixels from object
with ProcessPoolExecutor(max_workers=_ncpus) as executor:
for w_coords in img_iterator:
time.sleep(0.01)
if mask[w_coords[0]:w_coords[1], w_coords[2]:w_coords[3]].sum() > th:
res.append(executor.submit(_gabor_worker, img_, gdesc, w_coords))
desc = []
for f in as_completed(res):
desc.append(f.result())
return desc
开发者ID:gitter-badger,项目名称:WSItk,代码行数:57,代码来源:extract.py
示例20: punchhole_removal
def punchhole_removal(im):
import numpy as np
from PIL import Image
from skimage import io
from skimage.color import rgba2rgb, rgb2gray
from skimage.transform import hough_circle, hough_circle_peaks
from skimage.feature import canny
from skimage.draw import circle
from skimage.util import img_as_ubyte
''' check for punch holes and remove '''
max_peaks = 24 #maximum number of peaks to be found. changed from 99 to 24 for reducing the unnecessary punch holes being filled.
img = np.array(im)# Load picture .
img_rgb = rgba2rgb(img)# convert to RGB
img_gray = rgb2gray(img_rgb)# convert to gray
image = img_as_ubyte(img_gray)
width, height = image.shape
x1 = punchhole_margin
x2 = (int)(width - punchhole_margin)
y1 = (int)(height - punchhole_margin)
y2 = punchhole_margin
edges = canny(image, 3, 10, 40) # perform canny to detect the edges
hough_radii = np.arange(31, 34, 1) #get the radius range with step as 1.
hough_res = hough_circle(edges, hough_radii) # detect the circles centres coordinates
# Select the most prominent circles based on the max_peaks
accums, cx, cy, radii = hough_circle_peaks(hough_res, hough_radii,total_num_peaks=max_peaks)
for center_y, center_x, radius in zip(cy, cx, radii):
#if the circles centres fall in the border regions,
#get the dominant color near the hole and fill the hole with a linear gradient of the dominant color
if(((0 < center_y < width) and (0 < center_x < y2)) or \
((0 < center_y < width) and (y1 < center_x < height)) or\
((0 < center_y < x1) and (0 < center_x < height)) or \
((x2 < center_y < width) and (0 < center_x < height))):
index=0
rr, cc= circle(center_y, center_x, radius+1, img.shape)
dominantpix = dominantcolor(center_x, center_y, radius, img)
dark_grad = [dominantpix[0], dominantpix[1],dominantpix[2]]
light_grad = [dominantpix[0]+1, dominantpix[1]+1, dominantpix[2]+1]
#white_grad = [255,255,255]
RGBA_list = lineargradient(dark_grad,light_grad,len(list(rr)))
for i , j in zip(list(rr), list(cc)):
pixlist = RGBA_list[index]
pixtuple = tuple(pixlist)
img[i,j]= (pixtuple[0], pixtuple[1], pixtuple[2], 255)
index += 1
finalimage=Image.fromarray(img)
return finalimage
开发者ID:zdohnal,项目名称:hplip,代码行数:57,代码来源:imageprocessing.py
注:本文中的skimage.util.img_as_ubyte函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论