• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python datasets.load_linnerud函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.datasets.load_linnerud函数的典型用法代码示例。如果您正苦于以下问题:Python load_linnerud函数的具体用法?Python load_linnerud怎么用?Python load_linnerud使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了load_linnerud函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_load_linnerud

def test_load_linnerud():
    res = load_linnerud()
    assert_equal(res.data.shape, (20, 3))
    assert_equal(res.target.shape, (20, 3))
    assert_equal(len(res.target_names), 3)
    assert_true(res.DESCR)

    # test return_X_y option
    X_y_tuple = load_linnerud(return_X_y=True)
    bunch = load_linnerud()
    assert_true(isinstance(X_y_tuple, tuple))
    assert_array_equal(X_y_tuple[0], bunch.data)
    assert_array_equal(X_y_tuple[1], bunch.target)
开发者ID:NazBen,项目名称:scikit-learn,代码行数:13,代码来源:test_base.py


示例2: test_convergence_fail

def test_convergence_fail():
    d = load_linnerud()
    X = d.data
    Y = d.target
    pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1],
                                     max_iter=2, tol=1e-10)
    assert_warns(ConvergenceWarning, pls_bynipals.fit, X, Y)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:7,代码来源:test_pls.py


示例3: test_pls_errors

def test_pls_errors():
    d = load_linnerud()
    X = d.data
    Y = d.target
    for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]:
        clf.n_components = 4
        assert_raise_message(ValueError, "Invalid number of components", clf.fit, X, Y)
开发者ID:antoinewdg,项目名称:scikit-learn,代码行数:7,代码来源:test_pls.py


示例4: test_eigsym

def test_eigsym():

    d = load_linnerud()
    X = d.data

    n = 3
    X = dot(X.T, X)

    eig = EIGSym(num_comp = n, tolerance = 5e-12)
    eig.fit(X)
    Xhat = dot(eig.V, dot(eig.D, eig.V.T))

    assert_array_almost_equal(X, Xhat, decimal=4, err_msg="EIGSym does not" \
            " give the correct reconstruction of the matrix")

    [D,V] = np.linalg.eig(X)
    # linalg.eig does not return the eigenvalues in order, so need to sort
    idx = np.argsort(D, axis=None).tolist()[::-1]
    D = D[idx]
    V = V[:,idx]

    Xhat = dot(V, dot(np.diag(D), V.T))

    V, eig.V = direct(V, eig.V, compare = True)
    assert_array_almost_equal(V, eig.V, decimal=5, err_msg="EIGSym does not" \
            " give the correct eigenvectors")
开发者ID:tomlof,项目名称:sandlada,代码行数:26,代码来源:test_multiblock.py


示例5: test_scale

def test_scale():

    d = load_linnerud()
    X = d.data
    Y = d.target

    # causes X[:, -1].std() to be zero
    X[:, -1] = 1.0
开发者ID:tomlof,项目名称:sandlada,代码行数:8,代码来源:test_multiblock.py


示例6: test_scale

def test_scale():
    d = load_linnerud()
    X = d.data
    Y = d.target

    # causes X[:, -1].std() to be zero
    X[:, -1] = 1.0

    for clf in [pls.PLSCanonical(), pls.PLSRegression(), pls.CCA(), pls.PLSSVD()]:
        clf.set_params(scale=True)
        clf.fit(X, Y)
开发者ID:calero2014,项目名称:scikit-learn,代码行数:11,代码来源:test_pls.py


示例7: test_PLSSVD

def test_PLSSVD():
    # Let's check the PLSSVD doesn't return all possible component but just
    # the specified number
    d = load_linnerud()
    X = d.data
    Y = d.target
    n_components = 2
    for clf in [pls_.PLSSVD, pls_.PLSRegression, pls_.PLSCanonical]:
        pls = clf(n_components=n_components)
        pls.fit(X, Y)
        assert_equal(n_components, pls.y_scores_.shape[1])
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:11,代码来源:test_pls.py


示例8: test_univariate_pls_regression

def test_univariate_pls_regression():
    # Ensure 1d Y is correctly interpreted
    d = load_linnerud()
    X = d.data
    Y = d.target

    clf = pls_.PLSRegression()
    # Compare 1d to column vector
    model1 = clf.fit(X, Y[:, 0]).coef_
    model2 = clf.fit(X, Y[:, :1]).coef_
    assert_array_almost_equal(model1, model2)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:11,代码来源:test_pls.py


示例9: test_load_linnerud

def test_load_linnerud():
    res = load_linnerud()
    assert_equal(res.data.shape, (20, 3))
    assert_equal(res.target.shape, (20, 3))
    assert_equal(len(res.target_names), 3)
    assert_true(res.DESCR)
    assert_true(os.path.exists(res.data_filename))
    assert_true(os.path.exists(res.target_filename))

    # test return_X_y option
    check_return_X_y(res, partial(load_linnerud))
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:11,代码来源:test_base.py


示例10: test_scale_and_stability

def test_scale_and_stability():
    # We test scale=True parameter
    # This allows to check numerical stability over platforms as well

    d = load_linnerud()
    X1 = d.data
    Y1 = d.target
    # causes X[:, -1].std() to be zero
    X1[:, -1] = 1.0

    # From bug #2821
    # Test with X2, T2 s.t. clf.x_score[:, 1] == 0, clf.y_score[:, 1] == 0
    # This test robustness of algorithm when dealing with value close to 0
    X2 = np.array([[0., 0., 1.],
                   [1., 0., 0.],
                   [2., 2., 2.],
                   [3., 5., 4.]])
    Y2 = np.array([[0.1, -0.2],
                   [0.9, 1.1],
                   [6.2, 5.9],
                   [11.9, 12.3]])

    for (X, Y) in [(X1, Y1), (X2, Y2)]:
        X_std = X.std(axis=0, ddof=1)
        X_std[X_std == 0] = 1
        Y_std = Y.std(axis=0, ddof=1)
        Y_std[Y_std == 0] = 1

        X_s = (X - X.mean(axis=0)) / X_std
        Y_s = (Y - Y.mean(axis=0)) / Y_std

        for clf in [CCA(), pls_.PLSCanonical(), pls_.PLSRegression(),
                    pls_.PLSSVD()]:
            clf.set_params(scale=True)
            X_score, Y_score = clf.fit_transform(X, Y)
            clf.set_params(scale=False)
            X_s_score, Y_s_score = clf.fit_transform(X_s, Y_s)
            assert_array_almost_equal(X_s_score, X_score)
            assert_array_almost_equal(Y_s_score, Y_score)
            # Scaling should be idempotent
            clf.set_params(scale=True)
            X_score, Y_score = clf.fit_transform(X_s, Y_s)
            assert_array_almost_equal(X_s_score, X_score)
            assert_array_almost_equal(Y_s_score, Y_score)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:44,代码来源:test_pls.py


示例11: load_linnerud

    def load_linnerud():
        from sklearn.datasets import load_linnerud
        linnerud = load_linnerud()

        # print(linnerud.DESCR)

        print(linnerud.keys())

        # print(linnerud.feature_names)
        # Chins     : 懸垂の回数
        # Situps    : 腹筋の回数
        # Jumps     : 跳躍

        # print(linnerud.target_names)
        # ['Weight', 'Waist', 'Pulse']

        X = linnerud.data
        y = linnerud.target
        return SklearnDataGenerator.shuffle(X, y)
开发者ID:Munetaka,项目名称:labo,代码行数:19,代码来源:sklearn_data_generator.py


示例12: test_predict_transform_copy

def test_predict_transform_copy():
    # check that the "copy" keyword works
    d = load_linnerud()
    X = d.data
    Y = d.target
    clf = pls_.PLSCanonical()
    X_copy = X.copy()
    Y_copy = Y.copy()
    clf.fit(X, Y)
    # check that results are identical with copy
    assert_array_almost_equal(clf.predict(X), clf.predict(X.copy(), copy=False))
    assert_array_almost_equal(clf.transform(X), clf.transform(X.copy(), copy=False))

    # check also if passing Y
    assert_array_almost_equal(clf.transform(X, Y), clf.transform(X.copy(), Y.copy(), copy=False))
    # check that copy doesn't destroy
    # we do want to check exact equality here
    assert_array_equal(X_copy, X)
    assert_array_equal(Y_copy, Y)
    # also check that mean wasn't zero before (to make sure we didn't touch it)
    assert_true(np.all(X.mean(axis=0) != 0))
开发者ID:antoinewdg,项目名称:scikit-learn,代码行数:21,代码来源:test_pls.py


示例13: scikitAlgorithms_UCIDataset

def scikitAlgorithms_UCIDataset(input_dict):
    from sklearn import datasets
    allDSets = {"iris":datasets.load_iris(), "boston":datasets.load_boston(), "diabetes":datasets.load_diabetes(), " linnerud":datasets.load_linnerud()}
    dataset = allDSets[input_dict['dsIn']]
    output_dict = {}
    output_dict['dtsOut'] = dataset#(dataset.data, dataset.target)
    return output_dict
开发者ID:Alshak,项目名称:clowdflows,代码行数:7,代码来源:library.py


示例14: test_pls

def test_pls():
    d = load_linnerud()
    X = d.data
    Y = d.target
    # 1) Canonical (symmetric) PLS (PLS 2 blocks canonical mode A)
    # ===========================================================
    # Compare 2 algo.: nipals vs. svd
    # ------------------------------
    pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1])
    pls_bynipals.fit(X, Y)
    pls_bysvd = pls_.PLSCanonical(algorithm="svd", n_components=X.shape[1])
    pls_bysvd.fit(X, Y)
    # check equalities of loading (up to the sign of the second column)
    assert_array_almost_equal(
        pls_bynipals.x_loadings_,
        pls_bysvd.x_loadings_, decimal=5,
        err_msg="nipals and svd implementations lead to different x loadings")

    assert_array_almost_equal(
        pls_bynipals.y_loadings_,
        pls_bysvd.y_loadings_, decimal=5,
        err_msg="nipals and svd implementations lead to different y loadings")

    # Check PLS properties (with n_components=X.shape[1])
    # ---------------------------------------------------
    plsca = pls_.PLSCanonical(n_components=X.shape[1])
    plsca.fit(X, Y)
    T = plsca.x_scores_
    P = plsca.x_loadings_
    Wx = plsca.x_weights_
    U = plsca.y_scores_
    Q = plsca.y_loadings_
    Wy = plsca.y_weights_

    def check_ortho(M, err_msg):
        K = np.dot(M.T, M)
        assert_array_almost_equal(K, np.diag(np.diag(K)), err_msg=err_msg)

    # Orthogonality of weights
    # ~~~~~~~~~~~~~~~~~~~~~~~~
    check_ortho(Wx, "x weights are not orthogonal")
    check_ortho(Wy, "y weights are not orthogonal")

    # Orthogonality of latent scores
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    check_ortho(T, "x scores are not orthogonal")
    check_ortho(U, "y scores are not orthogonal")

    # Check X = TP' and Y = UQ' (with (p == q) components)
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    # center scale X, Y
    Xc, Yc, x_mean, y_mean, x_std, y_std =\
        pls_._center_scale_xy(X.copy(), Y.copy(), scale=True)
    assert_array_almost_equal(Xc, np.dot(T, P.T), err_msg="X != TP'")
    assert_array_almost_equal(Yc, np.dot(U, Q.T), err_msg="Y != UQ'")

    # Check that rotations on training data lead to scores
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    Xr = plsca.transform(X)
    assert_array_almost_equal(Xr, plsca.x_scores_,
                              err_msg="rotation on X failed")
    Xr, Yr = plsca.transform(X, Y)
    assert_array_almost_equal(Xr, plsca.x_scores_,
                              err_msg="rotation on X failed")
    assert_array_almost_equal(Yr, plsca.y_scores_,
                              err_msg="rotation on Y failed")

    # "Non regression test" on canonical PLS
    # --------------------------------------
    # The results were checked against the R-package plspm
    pls_ca = pls_.PLSCanonical(n_components=X.shape[1])
    pls_ca.fit(X, Y)

    x_weights = np.array(
        [[-0.61330704,  0.25616119, -0.74715187],
         [-0.74697144,  0.11930791,  0.65406368],
         [-0.25668686, -0.95924297, -0.11817271]])
    # x_weights_sign_flip holds columns of 1 or -1, depending on sign flip
    # between R and python
    x_weights_sign_flip = pls_ca.x_weights_ / x_weights

    x_rotations = np.array(
        [[-0.61330704,  0.41591889, -0.62297525],
         [-0.74697144,  0.31388326,  0.77368233],
         [-0.25668686, -0.89237972, -0.24121788]])
    x_rotations_sign_flip = pls_ca.x_rotations_ / x_rotations

    y_weights = np.array(
        [[+0.58989127,  0.7890047,   0.1717553],
         [+0.77134053, -0.61351791,  0.16920272],
         [-0.23887670, -0.03267062,  0.97050016]])
    y_weights_sign_flip = pls_ca.y_weights_ / y_weights

    y_rotations = np.array(
        [[+0.58989127,  0.7168115,  0.30665872],
         [+0.77134053, -0.70791757,  0.19786539],
         [-0.23887670, -0.00343595,  0.94162826]])
    y_rotations_sign_flip = pls_ca.y_rotations_ / y_rotations

    # x_weights = X.dot(x_rotation)
#.........这里部分代码省略.........
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:101,代码来源:test_pls.py


示例15: zip

# coding=utf-8

from sklearn import datasets
import numpy as np
import matplotlib.pyplot as plt

d1 = datasets.load_iris() #
d2 = datasets.load_breast_cancer() #乳腺癌数据
d3 = datasets.load_digits() #手写数字
d4 = datasets.load_boston() #波士顿房价
d5 = datasets.load_linnerud() #体能数据集


print(d3.keys())
samples,features = d3.data.shape
print(samples,features)
print(d3.images.shape)

#print(d1.data)
#print(d1.target)
print(d3.target_names)

print(np.bincount(d1.target))

x_index = 3
colors = ['blue','red','green']

'''
for label,color in zip(range(len(d1.target_names)),colors):
    plt.hist(d1.data[d1.target==label,x_index],label=d1.target_names[label],color=color) #直方图
开发者ID:xxwei,项目名称:TraderCode,代码行数:30,代码来源:sklearnData.py


示例16: load_linnerud

# Import necessary library
import numpy as np
import pandas as pd

# Load the dataset
from sklearn.datasets import load_linnerud

linnerud_data = load_linnerud()
X = linnerud_data.data
y = linnerud_data.target

from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error as mse
from sklearn.linear_model import LinearRegression


# TODO: split the data into training and testing sets,
# using the standard settings for train_test_split.
# Then, train and test the classifiers with your newly split data instead of X and y.

#Solution
# Prepare the data as features and labels.
features = X
labels = y

# split the data into training and testing sets
from sklearn import cross_validation
features_train, features_test, labels_train, labels_test = cross_validation.train_test_split(features, labels, test_size=0.4, random_state=0)


# Create decision tree regressor/algorithm object
开发者ID:okeonwuka,项目名称:PycharmProjects,代码行数:31,代码来源:Mean_Squared_Error.py


示例17: test_predictions

def test_predictions():

    d = load_linnerud()
    X = d.data
    Y = d.target
    tol = 5e-12
    miter = 1000
    num_comp = 2
    Xorig = X.copy()
    Yorig = Y.copy()
#    SSY = np.sum(Yorig**2)
#    center = True
    scale  = False


    pls1 = PLSRegression(n_components = num_comp, scale = scale,
                 tol = tol, max_iter = miter, copy = True)
    pls1.fit(Xorig, Yorig)
    Yhat1 = pls1.predict(Xorig)

    SSYdiff1 = np.sum((Yorig-Yhat1)**2)
#    print "PLSRegression: R2Yhat = %.4f" % (1 - (SSYdiff1 / SSY))

    # Compare PLSR and sklearn.PLSRegression
    pls3 = PLSR(num_comp = num_comp, center = True, scale = scale,
                tolerance = tol, max_iter = miter)
    pls3.fit(X, Y)
    Yhat3 = pls3.predict(X)

    assert_array_almost_equal(Yhat1, Yhat3, decimal = 5,
            err_msg = "PLSR gives wrong prediction")

    SSYdiff3 = np.sum((Yorig-Yhat3)**2)
#    print "PLSR         : R2Yhat = %.4f" % (1 - (SSYdiff3 / SSY))

    assert abs(SSYdiff1 - SSYdiff3) < 0.00005


    pls2 = PLSCanonical(n_components = num_comp, scale = scale,
                        tol = tol, max_iter = miter, copy = True)
    pls2.fit(Xorig, Yorig)
    Yhat2 = pls2.predict(Xorig)

    SSYdiff2 = np.sum((Yorig-Yhat2)**2)
#    print "PLSCanonical : R2Yhat = %.4f" % (1 - (SSYdiff2 / SSY))

    # Compare PLSC and sklearn.PLSCanonical
    pls4 = PLSC(num_comp = num_comp, center = True, scale = scale,
                tolerance = tol, max_iter = miter)
    pls4.fit(X, Y)
    Yhat4 = pls4.predict(X)

    SSYdiff4 = np.sum((Yorig-Yhat4)**2)
#    print "PLSC         : R2Yhat = %.4f" % (1 - (SSYdiff4 / SSY))

    # Compare O2PLS and sklearn.PLSCanonical
    pls5 = O2PLS(num_comp = [num_comp, 1, 0], center = True, scale = scale,
                 tolerance = tol, max_iter = miter)
    pls5.fit(X, Y)
    Yhat5 = pls5.predict(X)

    SSYdiff5 = np.sum((Yorig-Yhat5)**2)
#    print "O2PLS        : R2Yhat = %.4f" % (1 - (SSYdiff5 / SSY))

    assert abs(SSYdiff2 - SSYdiff4) < 0.00005
    assert SSYdiff2 > SSYdiff5
开发者ID:tomlof,项目名称:sandlada,代码行数:66,代码来源:test_multiblock.py


示例18: load_linnerud

import numpy as np
from numpy.testing import assert_array_almost_equal
from sklearn.datasets import load_linnerud
from sklearn import pls

d = load_linnerud()
X = d.data
Y = d.target


def test_pls():
    n_components = 2
    # 1) Canonical (symetric) PLS (PLS 2 blocks canonical mode A)
    # ===========================================================
    # Compare 2 algo.: nipals vs. svd
    # ------------------------------
    pls_bynipals = pls.PLSCanonical(n_components=n_components)
    pls_bynipals.fit(X, Y)
    pls_bysvd = pls.PLSCanonical(algorithm="svd", n_components=n_components)
    pls_bysvd.fit(X, Y)
    # check that the loading vectors are highly correlated
    assert_array_almost_equal(
        [
            np.abs(np.corrcoef(pls_bynipals.x_loadings_[:, k], pls_bysvd.x_loadings_[:, k])[1, 0])
            for k in xrange(n_components)
        ],
        np.ones(n_components),
        err_msg="nipals and svd implementation lead to different x loadings",
    )

    assert_array_almost_equal(
开发者ID:njwilson,项目名称:scikit-learn,代码行数:31,代码来源:test_pls.py


示例19: load_UCI_dataset

def load_UCI_dataset(dsIn):
    '''Loads a UCI dataset

    :param dsIn: the dataset name
    :return: A SciKit dataset
    '''

    from sklearn import datasets
    allDSets = {"iris":datasets.load_iris(), "boston":datasets.load_boston(), "diabetes":datasets.load_diabetes(), " linnerud":datasets.load_linnerud()}
    dataset = allDSets[dsIn]
    return dataset
开发者ID:xflows,项目名称:cf_data_mining,代码行数:11,代码来源:utilities.py


示例20: experimentVariables

def experimentVariables(projectName):
    '''
    This function returns all the variables necessary to start a experiment including:
    name of the experiment
    datasets locations
    variables to report from the experiment
    what to report from the experiment
    '''
    computerName=os.environ.get('COMPUTERNAME')
    if projectName== 'unlabeledModelS':
        if computerName=='JULIAN':
            from sklearn.datasets import  load_boston, load_iris, load_diabetes, load_digits, load_linnerud
            
            datasets={'boston':load_boston(),'iris':load_iris(),'diabetes':load_diabetes(),'digits':load_digits(),'linnerud':load_linnerud()}
            print('working at [email protected]')
            dataset='digits'
            numTests=50
            experimentName='One'
            agmntlvl=0
            description='here the description of this experiment'
            data=datasets[dataset]['data']
            labels=datasets[dataset]['target']
            verbose=0
            plots=False
            signal2plot='f1_score_mv_predval_agmnt'
#             signal2plot='f1_score_val_predval_agmnt'
            
            #The next are variables that store the outcomes from the
            #experiment
            variables=\
            'spear=[]\n'

            return {'dataset':dataset,'numTests':numTests,'experimentName':experimentName,\
                    'description':description,'agmntlvl':agmntlvl,'variables':variables,'data':data,\
                    'labels':labels,'verbose':verbose,'plots':plots,'signal2plot':signal2plot}
        else:
            print('Variables not defined for [email protected]')
开发者ID:julian-ramos,项目名称:GeneralFunctions,代码行数:37,代码来源:General.py



注:本文中的sklearn.datasets.load_linnerud函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python datasets.load_svmlight_file函数代码示例发布时间:2022-05-27
下一篇:
Python datasets.load_iris函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap