本文整理汇总了Python中sklearn.datasets.load_svmlight_file函数的典型用法代码示例。如果您正苦于以下问题:Python load_svmlight_file函数的具体用法?Python load_svmlight_file怎么用?Python load_svmlight_file使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了load_svmlight_file函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: classification_subfeature
def classification_subfeature(train, test, outclss):
fields = iot.read_fields()
print len(fields)
foi = ['liwc_anal.result.i',
'liwc_anal.result.we',
'liwc_anal.result.affect',
'liwc_anal.result.posemo',
'liwc_anal.result.negemo',
'liwc_anal.result.bio',
'liwc_anal.result.body',
'liwc_anal.result.health',
'liwc_anal.result.ingest']
indeces = [np.where(fields==f)[0][0] for f in foi]
print fields[indeces]
'''Load Training data'''
X_train, y_train = load_svmlight_file(train)
X_train = X_train.toarray()[:, indeces]
scaler = preprocessing.StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
print X_train.shape
'''Load Test data'''
X_test, y_test = load_svmlight_file(test)
X_test = X_test.toarray()[:, indeces]
X_test = scaler.transform(X_test)
print X_test.shape
svc_lin = SVC(kernel='linear', class_weight='balanced')
y_lin = svc_lin.fit(X_train, y_train).predict(X_test)
# pickle.dump(y_test, open(outid, 'w'))
pickle.dump(y_lin, open(outclss, 'w'))
开发者ID:wtgme,项目名称:ohsn,代码行数:31,代码来源:classification.py
示例2: test_dump
def test_dump():
Xs, y = load_svmlight_file(datafile)
Xd = Xs.toarray()
for X in (Xs, Xd):
for zero_based in (True, False):
for dtype in [np.float32, np.float64]:
f = BytesIO()
# we need to pass a comment to get the version info in;
# LibSVM doesn't grok comments so they're not put in by
# default anymore.
dump_svmlight_file(X.astype(dtype), y, f, comment="test",
zero_based=zero_based)
f.seek(0)
comment = f.readline()
assert_in("scikit-learn %s" % sklearn.__version__, comment)
comment = f.readline()
assert_in(["one", "zero"][zero_based] + "-based", comment)
X2, y2 = load_svmlight_file(f, dtype=dtype,
zero_based=zero_based)
assert_equal(X2.dtype, dtype)
if dtype == np.float32:
assert_array_almost_equal(
# allow a rounding error at the last decimal place
Xd.astype(dtype), X2.toarray(), 4)
else:
assert_array_almost_equal(
# allow a rounding error at the last decimal place
Xd.astype(dtype), X2.toarray(), 15)
assert_array_equal(y, y2)
开发者ID:yzhy,项目名称:scikit-learn,代码行数:32,代码来源:test_svmlight_format.py
示例3: train
def train(self, examples, outDir, parameters, classifyExamples=None, dummy=False):
outDir = os.path.abspath(outDir)
examples = self.getExampleFile(examples, dummy=dummy)
classifyExamples = self.getExampleFile(classifyExamples, dummy=dummy)
# Return a new classifier instance for following the training process and using the model
classifier = copy.copy(self)
classifier.parameters = parameters
classifier._filesToRelease = [examples, classifyExamples]
if not os.path.exists(outDir):
os.makedirs(outDir)
trainFeatures, trainClasses = datasets.load_svmlight_file(examples)
if classifyExamples != None:
develFeatures, develClasses = datasets.load_svmlight_file(classifyExamples, trainFeatures.shape[1])
binarizer = preprocessing.LabelBinarizer()
binarizer.fit(trainClasses)
trainClasses = binarizer.transform(trainClasses)
if classifyExamples != None:
develClasses = binarizer.transform(develClasses)
print >> sys.stderr, "Training Keras model with parameters:", parameters
parameters = Parameters.get(parameters, {"TEES.classifier":"KerasClassifier", "layers":5, "lr":0.001, "epochs":1, "batch_size":64, "patience":10})
np.random.seed(10)
classifier.kerasModel = classifier._defineModel(outDir, parameters, trainFeatures, trainClasses, develFeatures, develClasses)
classifier._fitModel(outDir, parameters, trainFeatures, trainClasses, develFeatures, develClasses)
开发者ID:jbjorne,项目名称:TEES,代码行数:28,代码来源:KerasClassifier.py
示例4: gridSearch
def gridSearch():
X_train, y_train = load_svmlight_file(svmPath + "/" + trainFile)
X_test, y_test = load_svmlight_file(svmPath + "/" + testFile, n_features=X_train.shape[1])
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000]}]#, {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]
#training
# clf = svm.SVC(kernel='linear')
# clf.fit(X_features, trainingLabels)
scores = ['precision', 'recall']
for score in scores:
print("# Tuning hyper-parameters for %s" % score)
print()
clf = GridSearchCV(SVC(C=1), tuned_parameters, cv=5, scoring=score)
clf.fit(X_train, y_train)
print("Best parameters set found on development set:")
print()
print(clf.best_estimator_)
print()
print("Grid scores on development set:")
print()
for params, mean_score, scores in clf.grid_scores_:
print("%0.3f (+/-%0.03f) for %r" % (mean_score, scores.std() / 2, params))
print()
print("Detailed classification report:")
print()
print("The model is trained on the full development set.")
print("The scores are computed on the full evaluation set.")
print()
开发者ID:debanjanghosh,项目名称:argessay_ACL2016,代码行数:34,代码来源:scikit_expr_embedding.py
示例5: load
def load(self, dataset = None, data_dir = "/home/drunkeneye/lab/data", verbose = None):
if verbose == None:
verbose = self.verbose
if dataset == None:
dataset = self.name
# first try to load the data 'directly'
try:
filePath = os.path.join(data_dir, dataset, dataset)
if verbose:
print(" Trying to load data set from {}". format(filePath))
self.X, self.y = load_svmlight_file(filePath)
self.X = np.asarray(self.X.todense())
if verbose:
print (" Loaded from {}". format( filePath))
return
except:
pass
# next try
try:
filePath = os.path.join(data_dir, dataset, dataset + ".combined.scaled")
if verbose:
print(" Trying to load data set from {}". format(filePath))
self.X, self.y = load_svmlight_file(filePath)
self.X = np.asarray(self.X.todense())
if verbose:
print (" Loaded from {}". format( filePath))
return
except:
pass
开发者ID:aydindemircioglu,项目名称:MixMex,代码行数:31,代码来源:DataSet.py
示例6: run
def run(train_fp, test_fp, pred_fp, key_fp):
keys = []
load(key_fp, keys)
X_train, y_train = load_svmlight_file(train_fp)
X_test, y_test = load_svmlight_file(test_fp)
#dtrain = xgb.DMatrix(train_fp)
#dtest = xgb.DMatrix(test_fp)
params = {}
with open("lr_reg.params", 'r') as f:
params = json.load(f)
print "[%s] [INFO] params: %s\n" % (t_now(), str(params))
model = linear_model.Ridge (alpha = params['alpha'])
model.fit(X_train, y_train)
pred = model.predict(X_test)
#model = xgb.train( params, dtrain, params['n_round'])
#model = xgb.train( params, dtrain, params['n_round'], obj = customed_obj_1)
#pred = model.predict(dtest, ntree_limit=params['n_round'])
#pred = model.predict(dtest)
f = open(pred_fp, 'w')
for i in range(len(keys)):
f.write(keys[i] + "," + str(max(1.0, pred[i])) + "\n")
f.close()
return 0
开发者ID:HouJP,项目名称:di-tech-16,代码行数:30,代码来源:lr_reg.py
示例7: main
def main():
# svm_para = {'C': 10.0, 'kernel': 'rbf', 'gamma': 1.667, 'verbose': False}
# svm_para = {'kernel': 'linear', 'verbose': False}
# loading data
# X_train, y_train = datasets.load_svmlight_file(r'./dataset/mnist_train_784_poly_8vr.dat')
# X_train, y_train = datasets.load_svmlight_file(r'./dataset/covtype_tr_2vr.data')
# svm_para = {'C': 10.0, 'kernel': 'rbf', 'gamma': 0.00002, 'tol': 0.01, 'verbose': False}
# census
svm_para = {"C": 10.0, "kernel": "rbf", "gamma": 1.667, "verbose": False}
X_train, y_train = datasets.load_svmlight_file(r"./dataset/census.train")
# test ramdom sampling
RS_SVM = RandomSamplingSVM(svm_para)
start_time = time.time()
model = RS_SVM.train_one_half_v2(X_train, y_train)
print("Remain SVs: " + str(model.n_support_), flush=True)
print("--- %s seconds ---" % (time.time() - start_time), flush=True)
if model is None:
print("Can not train the dataset", flush=True)
else:
# X_test, y_test = datasets.load_svmlight_file(r'./dataset/mnist_test_784_poly_8vr.dat')
# X_test, y_test = datasets.load_svmlight_file(r'./dataset/covtype_tst_2vr.data')
X_test, y_test = datasets.load_svmlight_file(r"./dataset/census.train")
ratio = model.score(X_test, y_test)
print(ratio)
print("--- %s seconds ---" % (time.time() - start_time), flush=True)
开发者ID:viethoangcr,项目名称:thesis,代码行数:32,代码来源:RS_SVM_v2.py
示例8: train_predict
def train_predict(train_file, test_file, predict_valid_file, predict_test_file,
n_fold=5):
feature_name = os.path.basename(train_file)[:-10]
logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s',
level=logging.DEBUG,
filename='esb_xg_grid_colsub_{}.log'.format(feature_name))
logging.info('Loading training and test data...')
X, y = load_svmlight_file(train_file)
X_tst, _ = load_svmlight_file(test_file)
xg = xgb.XGBClassifier()
param = {'learning_rate': [.01, .03, .05], 'max_depth': [4, 5, 6],
'n_estimators': [400, 600]}
cv = StratifiedKFold(y, n_folds=n_fold, shuffle=True, random_state=2015)
clf = GridSearchCV(xg, param, scoring='log_loss', verbose=1, cv=cv)
logging.info('Cross validation for grid search...')
clf.fit(X, y)
p = clf.predict_proba(X)[:, 1]
logging.info('best model = {}'.format(clf.best_estimator_))
logging.info('best score = {:.4f}'.format(clf.best_score_))
logging.info('Retraining with 100% data...')
clf.best_estimator_.fit(X, y)
p_tst = clf.best_estimator_.predict_proba(X_tst)[:, 1]
logging.info('Saving predictions...')
np.savetxt(predict_valid_file, p, fmt='%.6f')
np.savetxt(predict_test_file, p_tst, fmt='%.6f')
开发者ID:drivendata,项目名称:countable-care-3rd-place,代码行数:32,代码来源:train_predict_esb_xg_grid_colsub.py
示例9: scale_mnist8m
def scale_mnist8m():
from sklearn.datasets import load_svmlight_file
print "loading train",datetime.datetime.now()
dd_train = load_svmlight_file(base_folder_mnist + "mnist8m_6_8_train.libsvm")
print "loading test", datetime.datetime.now()
dd_test = load_svmlight_file(base_folder_mnist + "mnist8m_6_8_test.libsvm")
Xtrain = dd_train[0]
Xtest = dd_test[0]
Ytrain = dd_train[1]
Ytest = dd_test[1]
Xtrain = csr_matrix((Xtrain.data, Xtrain.indices, Xtrain.indptr), shape=(Xtrain.shape[0], 786))
Xtest = csr_matrix((Xtest.data, Xtest.indices, Xtest.indptr), shape=(Xtest.shape[0], 786))
from sklearn.externals import joblib
print "densifying train",datetime.datetime.now()
Xtrain = Xtrain.todense()
print "densifying test",datetime.datetime.now()
Xtest = Xtest.todense()
print "dumping train",datetime.datetime.now()
joblib.dump((np.asarray(Xtrain),Ytrain),base_folder_mnist + "mnist8m_6_8_train_reshaped")
#joblib.load(base_folder + "mnist8m_6_8_train_touple_small")
print "dumping test",datetime.datetime.now()
joblib.dump((np.asarray(Xtest),Ytest),base_folder_mnist + "mnist8m_6_8_test_reshaped")
print "finished",datetime.datetime.now()
开发者ID:nikste,项目名称:doubly_random_svm,代码行数:30,代码来源:dataio.py
示例10: svm
def svm():
#load data
x_train,y_train=load_svmlight_file("12trainset")
x_train.todense()
x_test,y_test=load_svmlight_file("12testdata")
x_test.todense()
sk=SelectKBest(f_classif,9).fit(x_train,y_train)
x_new=sk.transform(x_train)
x_newtest=sk.transform(x_test)
print(sk.scores_)
print(x_new.shape)
print(sk.get_support())
#classfier
clf=SVC(C=2,gamma=2)
ovrclf=OneVsRestClassifier(clf,-1)
ovrclf.fit(x_train,y_train)
y_pred=ovrclf.predict(x_test)
# write result
with open("result.txt","w") as fw:
for st in y_pred.tolist():
fw.write(str(st)+'\n')
print(np.array(y_pred).shape)
target_names=['0','1','2','3']
#result
#sum_y = np.sum((np.array(y_pred)-np.array(y_test))**2)
#print(classification_report(y_test,y_pred,target_names=target_names))
#print("sougouVal: ",float(sum_y)/y_pred.shape[0])
print(time.time()-start_time)
开发者ID:lkprof,项目名称:sema,代码行数:29,代码来源:svm.py
示例11: test_dump
def test_dump():
Xs, y = load_svmlight_file(datafile)
Xd = Xs.toarray()
for X in (Xs, Xd):
for zero_based in (True, False):
for dtype in [np.float32, np.float64]:
f = BytesIO()
dump_svmlight_file(X.astype(dtype), y, f, zero_based=zero_based)
f.seek(0)
comment = f.readline()
assert_in("scikit-learn %s" % sklearn.__version__, comment)
comment = f.readline()
assert_in(["one", "zero"][zero_based] + "-based", comment)
X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based)
assert_equal(X2.dtype, dtype)
if dtype == np.float32:
assert_array_almost_equal(
# allow a rounding error at the last decimal place
Xd.astype(dtype),
X2.toarray(),
4,
)
else:
assert_array_almost_equal(
# allow a rounding error at the last decimal place
Xd.astype(dtype),
X2.toarray(),
15,
)
assert_array_equal(y, y2)
开发者ID:kkuunnddaann,项目名称:scikit-learn,代码行数:33,代码来源:test_svmlight_format.py
示例12: test_load_with_long_qid
def test_load_with_long_qid():
# load svmfile with longint qid attribute
data = b("""
1 qid:0 0:1 1:2 2:3
0 qid:72048431380967004 0:1440446648 1:72048431380967004 2:236784985
0 qid:-9223372036854775807 0:1440446648 1:72048431380967004 2:236784985
3 qid:9223372036854775807 0:1440446648 1:72048431380967004 2:236784985""")
X, y, qid = load_svmlight_file(BytesIO(data), query_id=True)
true_X = [[1, 2, 3],
[1440446648, 72048431380967004, 236784985],
[1440446648, 72048431380967004, 236784985],
[1440446648, 72048431380967004, 236784985]]
true_y = [1, 0, 0, 3]
trueQID = [0, 72048431380967004, -9223372036854775807, 9223372036854775807]
assert_array_equal(y, true_y)
assert_array_equal(X.toarray(), true_X)
assert_array_equal(qid, trueQID)
f = BytesIO()
dump_svmlight_file(X, y, f, query_id=qid, zero_based=True)
f.seek(0)
X, y, qid = load_svmlight_file(f, query_id=True, zero_based=True)
assert_array_equal(y, true_y)
assert_array_equal(X.toarray(), true_X)
assert_array_equal(qid, trueQID)
f.seek(0)
X, y = load_svmlight_file(f, query_id=False, zero_based=True)
assert_array_equal(y, true_y)
assert_array_equal(X.toarray(), true_X)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:32,代码来源:test_svmlight_format.py
示例13: test_load_with_offsets
def test_load_with_offsets(sparsity, n_samples, n_features):
rng = np.random.RandomState(0)
X = rng.uniform(low=0.0, high=1.0, size=(n_samples, n_features))
if sparsity:
X[X < sparsity] = 0.0
X = sp.csr_matrix(X)
y = rng.randint(low=0, high=2, size=n_samples)
f = BytesIO()
dump_svmlight_file(X, y, f)
f.seek(0)
size = len(f.getvalue())
# put some marks that are likely to happen anywhere in a row
mark_0 = 0
mark_1 = size // 3
length_0 = mark_1 - mark_0
mark_2 = 4 * size // 5
length_1 = mark_2 - mark_1
# load the original sparse matrix into 3 independent CSR matrices
X_0, y_0 = load_svmlight_file(f, n_features=n_features,
offset=mark_0, length=length_0)
X_1, y_1 = load_svmlight_file(f, n_features=n_features,
offset=mark_1, length=length_1)
X_2, y_2 = load_svmlight_file(f, n_features=n_features,
offset=mark_2)
y_concat = np.concatenate([y_0, y_1, y_2])
X_concat = sp.vstack([X_0, X_1, X_2])
assert_array_almost_equal(y, y_concat)
assert_array_almost_equal(X.toarray(), X_concat.toarray())
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:33,代码来源:test_svmlight_format.py
示例14: loadData
def loadData():
data1, target = load_svmlight_file('dataset/text.scale')
data2, target = load_svmlight_file('dataset/following.scale')
data1, data2, target = shuffle(data1, data2, target)
return (data1, data2, target)
开发者ID:pyongjoo,项目名称:twitter-research,代码行数:7,代码来源:ml_cotrain.py
示例15: check_data_compatibility
def check_data_compatibility(self):
try:
load_svmlight_file(self.input_path)
return True
except Exception as ex:
print ex.message
return False
开发者ID:patrickyeh,项目名称:datalabsdk-python,代码行数:7,代码来源:DataType.py
示例16: load_data
def load_data(dataset1, dataset2=None, make_dense=False):
"""Loads the dataset(s) given in the the svmlight / libsvm format
**Parameters**
* dataset1 (*str*) - Path to the file of the first dataset.
* dataset2 (*str or None*) - If not None, path to the file of second dataset
* make_dense (*boolean*) - Whether to return dense matrices instead of sparse ones
**Returns**
* (X_pool, X_test, y_pool, y_test) - Pool and test files if two files are provided
* (X, y) - The single dataset
"""
if dataset2:
X_pool, y_pool = load_svmlight_file(dataset1)
_, num_feat = X_pool.shape
X_test, y_test = load_svmlight_file(dataset2, n_features=num_feat)
if make_dense:
X_pool = X_pool.todense()
X_test = X_test.todense()
return (X_pool, X_test, y_pool, y_test)
else:
X, y = load_svmlight_file(dataset1)
if make_dense:
X = X.todense()
return X, y
开发者ID:haiamour,项目名称:AL,代码行数:29,代码来源:run_al_cl.py
示例17: test
def test():
x_train,y_train=load_svmlight_file("D:/traindata/12trainset")
x_train.todense()
x_test,y_test=load_svmlight_file("D:/traindata/12testset")
x_test.todense()
print(x_train.shape)
#classifier
clf=SVC(kernel='rbf')
ovrclf=OneVsRestClassifier(clf,-1)
#parameter
parameters=[{'estimator__C':[2**-5,2**-4,2**-3,2**-2,2**-1,1,2**1,2**2,2**3,2**4,2**5],
'estimator__kernel':['rbf'],
'estimator__gamma':[2**-5,2**-4,2**-3,2**-2,2**-1,1,2**1,2**2,2**3,2**4,2**5]},
{'estimator__C':[2**-5,2**-4,2**-3,2**-2,2**-1,1,2**1,2**2,2**3,2**4,2**5],
'estimator__kernel':['linear']}]
para={'estimator__C':[2**-5,2**-4],
'estimator__kernel':['rbf'],
'estimator__gamma':[2**-1,1]}
#scoring
sougou_score=make_scorer(score_func,greater_is_better=False)
#cross_validation iterator
sfk=c_v.StratifiedKFold(y_train,shuffle=True,n_folds=5,random_state=0)
#grid search
gsclf=g_s.GridSearchCV(ovrclf,param_grid=para,cv=sfk,scoring=sougou_score)
gsclf.fit(x_train,y_train)
print("best score: ",gsclf.best_score_)
print("best parameters: ",gsclf.best_params_)
y_pred=gsclf.predict(x_test)
#result
target_names=['0','1','2','3']
sum_y = np.sum((np.array(y_pred)-np.array(y_test))**2)
print(classification_report(y_test,y_pred,target_names=target_names))
print("sougouVal: ",float(sum_y)/y_pred.shape[0])
print(time.time()-start_time)
开发者ID:lkprof,项目名称:sema,代码行数:35,代码来源:svm.py
示例18: test_load_compressed
def test_load_compressed():
X, y = load_svmlight_file(datafile)
with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp:
tmp.close() # necessary under windows
with open(datafile, "rb") as f:
with gzip.open(tmp.name, "wb") as fh_out:
shutil.copyfileobj(f, fh_out)
Xgz, ygz = load_svmlight_file(tmp.name)
# because we "close" it manually and write to it,
# we need to remove it manually.
os.remove(tmp.name)
assert_array_almost_equal(X.toarray(), Xgz.toarray())
assert_array_almost_equal(y, ygz)
with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp:
tmp.close() # necessary under windows
with open(datafile, "rb") as f:
with BZ2File(tmp.name, "wb") as fh_out:
shutil.copyfileobj(f, fh_out)
Xbz, ybz = load_svmlight_file(tmp.name)
# because we "close" it manually and write to it,
# we need to remove it manually.
os.remove(tmp.name)
assert_array_almost_equal(X.toarray(), Xbz.toarray())
assert_array_almost_equal(y, ybz)
开发者ID:mikebotazzo,项目名称:scikit-learn,代码行数:26,代码来源:test_svmlight_format.py
示例19: train_and_test
def train_and_test(domain_dir, sentences):
train_dir = os.path.join(domain_dir, "train")
test_dir = os.path.join(domain_dir, "test")
X_train, y_train = load_svmlight_file(os.path.join(train_dir, "feature_vector"))
X_test, y_test = load_svmlight_file(os.path.join(test_dir, "feature_vector"))
clf = LogisticRegression(C=1.0, intercept_scaling=1, dual=False,
fit_intercept=True, penalty="l2", tol=0.0001)
print("fit..")
clf.fit(X_train, y_train)
print("fit end...")
y_train_predict = clf.predict(X_train)
print(f1_score(y_train, y_train_predict))
y = clf.predict(X_test)
f = open(os.path.join(test_dir, "relation.classifier"), "w", encoding="utf8")
i = 0
for sentence in sentences:
flag = False
str_list = []
str_list.append("S\t{0}".format(sentence.text))
for pair in sentence.candidate_relation:
if y[i] != 0:
flag = True
str_list.append("R\t{0}\t{1}\t{2}\t{3}".format(
sentence.print_phrase(pair[0]).lower(),
sentence.print_phrase(pair[1]).lower(),
list(pair[0]),
list(pair[1])))
i += 1
if flag:
for s in str_list:
print(s, file=f)
f.close()
开发者ID:AntNLP,项目名称:opie,代码行数:32,代码来源:test_relation.py
示例20: train_predict
def train_predict(train_file, test_file, predict_valid_file, predict_test_file,
C, n_fold=5):
logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s',
level=logging.DEBUG, filename='lr_{}.log'.format(C))
logging.info('Loading training and test data...')
X, y = load_svmlight_file(train_file)
X_tst, _ = load_svmlight_file(test_file)
clf = LR(penalty='l2', dual=True, C=C, class_weight='auto',
random_state=2015)
cv = StratifiedKFold(y, n_folds=n_fold, shuffle=True, random_state=2015)
logging.info('Cross validation...')
p_val = np.zeros_like(y)
lloss = 0.
for i_trn, i_val in cv:
clf.fit(X[i_trn], y[i_trn])
p_val[i_val] = clf.predict_proba(X[i_val])[:, 1]
lloss += log_loss(y[i_val], p_val[i_val])
logging.info('Log Loss = {:.4f}'.format(lloss))
logging.info('Retraining with 100% data...')
clf.fit(X, y)
p_tst = clf.predict_proba(X_tst)[:, 1]
logging.info('Saving predictions...')
np.savetxt(predict_valid_file, p_val, fmt='%.6f')
np.savetxt(predict_test_file, p_tst, fmt='%.6f')
开发者ID:drivendata,项目名称:countable-care-3rd-place,代码行数:32,代码来源:train_predict_lr.py
注:本文中的sklearn.datasets.load_svmlight_file函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论