本文整理汇总了Python中sklearn.datasets.load_iris函数的典型用法代码示例。如果您正苦于以下问题:Python load_iris函数的具体用法?Python load_iris怎么用?Python load_iris使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了load_iris函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_LabelBinarizer2
def test_LabelBinarizer2(self):
arr = np.array(['X', 'Y', 'Z', 'X'])
s = pdml.ModelSeries(arr)
lb = s.preprocessing.LabelBinarizer()
s.fit(lb)
binarized = s.transform(lb)
self.assertTrue(isinstance(binarized, pdml.ModelFrame))
expected = pd.DataFrame({0: [1, 0, 0, 1], 1: [0, 1, 0, 0], 2: [0, 0, 1, 0]})
self.assert_frame_equal(binarized, expected)
df = pdml.ModelFrame(datasets.load_iris())
df.target.fit(lb)
binarized = df.target.transform(lb)
expected = pd.DataFrame({0: [1] * 50 + [0] * 100,
1: [0] * 50 + [1] * 50 + [0] * 50,
2: [0] * 100 + [1] * 50})
self.assert_frame_equal(binarized, expected)
df = pdml.ModelFrame(datasets.load_iris())
df.target.fit(lb)
df.target = df.target.transform(lb)
self.assertEqual(df.shape, (150, 7))
self.assert_frame_equal(df.target, expected)
开发者ID:Sandy4321,项目名称:pandas-ml,代码行数:27,代码来源:test_preprocessing.py
示例2: main
def main():
all_targets = load_iris()['target']
data_set = load_iris()['data']
train_set, test_set, targets, targets_test = train_test_split(data_set, all_targets, train_size=0.9)
targets_class = (transform_target_vars(targets, class_num=0),
transform_target_vars(targets, class_num=1),
transform_target_vars(targets, class_num=2))
for n_trees in range(1, 150, 10):
classifiers = (GradientBoostingClassifier(n_trees=n_trees, max_tree_depth=1, n_features=3),
GradientBoostingClassifier(n_trees=n_trees, max_tree_depth=1, n_features=3),
GradientBoostingClassifier(n_trees=n_trees, max_tree_depth=1, n_features=3))
classifiers[0].fit(train_set, targets_class[0])
classifiers[1].fit(train_set, targets_class[1])
classifiers[2].fit(train_set, targets_class[2])
predicts = (classifiers[0].predict(test_set),
classifiers[1].predict(test_set),
classifiers[2].predict(test_set))
fin_predict = decision_function(predicts[0], predicts[1], predicts[2])
print "Number of trees:", n_trees, ":", accuracy_score(targets_test, fin_predict)
开发者ID:antongoy,项目名称:sfera_dm,代码行数:26,代码来源:gradient_boosting.py
示例3: setUp
def setUp(self):
self.x = datasets.load_iris().data
self.y = datasets.load_iris().target
# test without pretraining
self.model = dbn([nn.layer(4, linear, dlinear),
nn.layer(5, tanh, dtanh),
nn.layer(1, linear, dlinear, bias=False)], False)
开发者ID:arider,项目名称:riderml,代码行数:7,代码来源:test_dbn.py
示例4: main
def main():
data_set = load_iris()['data']
target_set = load_iris()['target']
cartTree = CartTree(min_leaf_size=5)
cartTree.fit(data_set, target_set)
print cartTree.tree
print target_set
print numpy.array([int(round(cartTree.predict([x]))) for x in data_set])
开发者ID:shayakhmetov,项目名称:sfera-DataMining,代码行数:11,代码来源:CART.py
示例5: createDataSet
def createDataSet():
dataSet = datasets.load_iris()
iris_X = dataSet.data
iris_y = dataSet.target
np.random.seed(1)
indices = np.random.permutation(len(iris_X))
iris_X_train = iris_X[indices[:-10]]
iris_y_train = iris_y[indices[:-10]]
iris_X_test = iris_X[indices[-10:]]
iris_y_test = iris_y[indices[-10:]]
dataSet = datasets.load_iris()
return iris_X_train, iris_y_train, iris_X_test, iris_y_test
开发者ID:LeonKennedy,项目名称:LearningByLanguage,代码行数:12,代码来源:decisionTress.py
示例6: test_load_iris
def test_load_iris():
res = load_iris()
assert_equal(res.data.shape, (150, 4))
assert_equal(res.target.size, 150)
assert_equal(res.target_names.size, 3)
assert_true(res.DESCR)
# test return_X_y option
X_y_tuple = load_iris(return_X_y=True)
bunch = load_iris()
assert_true(isinstance(X_y_tuple, tuple))
assert_array_equal(X_y_tuple[0], bunch.data)
assert_array_equal(X_y_tuple[1], bunch.target)
开发者ID:NazBen,项目名称:scikit-learn,代码行数:13,代码来源:test_base.py
示例7: load_iris_data
def load_iris_data() :
# load the iris dataset from the sklearn module
iris = datasets.load_iris()
# extract the elements of the data that are used in this exercise
return (iris.data, iris.target, iris.target_names)
开发者ID:ruslan-d,项目名称:GA_Homework,代码行数:7,代码来源:hw1.py
示例8: testIris_proba
def testIris_proba(self):
random.seed(42)
iris = datasets.load_iris()
classifier = skflow.TensorFlowClassifier(n_classes=3)
classifier.fit(iris.data, iris.target)
score = log_loss(iris.target, classifier.predict_proba(iris.data))
self.assertLess(score, 0.8, "Failed with score = {0}".format(score))
开发者ID:hellios78,项目名称:skflow,代码行数:7,代码来源:test_base.py
示例9: testIrisSummaries
def testIrisSummaries(self):
random.seed(42)
iris = datasets.load_iris()
classifier = skflow.TensorFlowLinearClassifier(n_classes=3)
classifier.fit(iris.data, iris.target, logdir='/tmp/skflow_tests/')
score = accuracy_score(classifier.predict(iris.data), iris.target)
self.assertGreater(score, 0.5, "Failed with score = {0}".format(score))
开发者ID:hellios78,项目名称:skflow,代码行数:7,代码来源:test_base.py
示例10: main
def main():
# http://scikit-learn.org/stable/tutorial/basic/tutorial.html#loading-an-example-dataset
# "A dataset is a dictionary-like object that holds all the data and some
# metadata about the data. This data is stored in the .data member, which
# is a n_samples, n_features array. In the case of supervised problem, one
# or more response variables are stored in the .target member."
# Toy datasets
iris = datasets.load_iris() # The iris dataset (classification)
digits = datasets.load_digits() # The digits dataset (classification)
#boston = datasets.load_boston() # The boston house-prices dataset (regression)
#diabetes = datasets.load_diabetes() # The diabetes dataset (regression)
#linnerud = datasets.load_linnerud() # The linnerud dataset (multivariate regression)
print(iris.feature_names)
print(iris.data)
print(iris.target_names)
print(iris.target)
print(digits.images[0])
print(digits.target_names)
print(digits.target)
plt.imshow(digits.images[0], cmap='gray', interpolation='nearest')
plt.show()
开发者ID:jeremiedecock,项目名称:snippets,代码行数:28,代码来源:datasets.py
示例11: test_sparse_fit_params
def test_sparse_fit_params():
iris = load_iris()
X, y = iris.data, iris.target
clf = MockClassifier()
fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))}
a = cval.cross_val_score(clf, X, y, fit_params=fit_params)
assert_array_equal(a, np.ones(3))
开发者ID:AppliedArtificialIntelligence,项目名称:scikit-learn,代码行数:7,代码来源:test_cross_validation.py
示例12: test_score_memmap
def test_score_memmap():
# Ensure a scalar score of memmap type is accepted
iris = load_iris()
X, y = iris.data, iris.target
clf = MockClassifier()
tf = tempfile.NamedTemporaryFile(mode='wb', delete=False)
tf.write(b'Hello world!!!!!')
tf.close()
scores = np.memmap(tf.name, dtype=np.float64)
score = np.memmap(tf.name, shape=(), mode='r', dtype=np.float64)
try:
cross_val_score(clf, X, y, scoring=lambda est, X, y: score)
# non-scalar should still fail
assert_raises(ValueError, cross_val_score, clf, X, y,
scoring=lambda est, X, y: scores)
finally:
# Best effort to release the mmap file handles before deleting the
# backing file under Windows
scores, score = None, None
for _ in range(3):
try:
os.unlink(tf.name)
break
except WindowsError:
sleep(1.)
开发者ID:YinongLong,项目名称:scikit-learn,代码行数:25,代码来源:test_validation.py
示例13: test_classification_report_multiclass_with_digits
def test_classification_report_multiclass_with_digits():
"""Test performance report with added digits in floating point values"""
iris = datasets.load_iris()
y_true, y_pred, _ = make_prediction(dataset=iris, binary=False)
# print classification report with class names
expected_report = """\
precision recall f1-score support
setosa 0.82609 0.79167 0.80851 24
versicolor 0.33333 0.09677 0.15000 31
virginica 0.41860 0.90000 0.57143 20
avg / total 0.51375 0.53333 0.47310 75
"""
report = classification_report(
y_true, y_pred, labels=np.arange(len(iris.target_names)),
target_names=iris.target_names, digits=5)
assert_equal(report, expected_report)
# print classification report with label detection
expected_report = """\
precision recall f1-score support
0 0.83 0.79 0.81 24
1 0.33 0.10 0.15 31
2 0.42 0.90 0.57 20
avg / total 0.51 0.53 0.47 75
"""
report = classification_report(y_true, y_pred)
assert_equal(report, expected_report)
开发者ID:nateyoder,项目名称:scikit-learn,代码行数:32,代码来源:test_classification.py
示例14: test_classification_report_multiclass
def test_classification_report_multiclass():
"""Test performance report"""
iris = datasets.load_iris()
y_true, y_pred, _ = make_prediction(dataset=iris, binary=False)
# print classification report with class names
expected_report = """\
precision recall f1-score support
setosa 0.83 0.79 0.81 24
versicolor 0.33 0.10 0.15 31
virginica 0.42 0.90 0.57 20
avg / total 0.51 0.53 0.47 75
"""
report = classification_report(
y_true, y_pred, labels=np.arange(len(iris.target_names)),
target_names=iris.target_names)
assert_equal(report, expected_report)
# print classification report with label detection
expected_report = """\
precision recall f1-score support
0 0.83 0.79 0.81 24
1 0.33 0.10 0.15 31
2 0.42 0.90 0.57 20
avg / total 0.51 0.53 0.47 75
"""
report = classification_report(y_true, y_pred)
assert_equal(report, expected_report)
开发者ID:nateyoder,项目名称:scikit-learn,代码行数:32,代码来源:test_classification.py
示例15: test_classification_report
def test_classification_report():
"""Test performance report"""
iris = datasets.load_iris()
y_true, y_pred, _ = make_prediction(dataset=iris, binary=False)
# print classification report with class names
expected_report = """\
precision recall f1-score support
setosa 0.82 0.92 0.87 25
versicolor 0.56 0.17 0.26 30
virginica 0.47 0.90 0.62 20
avg / total 0.62 0.61 0.56 75
"""
report = classification_report(
y_true, y_pred, labels=range(len(iris.target_names)),
target_names=iris.target_names)
assert_equal(report, expected_report)
# print classification report with label detection
expected_report = """\
precision recall f1-score support
0 0.82 0.92 0.87 25
1 0.56 0.17 0.26 30
2 0.47 0.90 0.62 20
avg / total 0.62 0.61 0.56 75
"""
report = classification_report(y_true, y_pred)
assert_equal(report, expected_report)
开发者ID:conradlee,项目名称:scikit-learn,代码行数:32,代码来源:test_metrics.py
示例16: test_check_estimator_clones
def test_check_estimator_clones():
# check that check_estimator doesn't modify the estimator it receives
from sklearn.datasets import load_iris
iris = load_iris()
for Estimator in [GaussianMixture, LinearRegression,
RandomForestClassifier, NMF, SGDClassifier,
MiniBatchKMeans]:
with ignore_warnings(category=FutureWarning):
# when 'est = SGDClassifier()'
est = Estimator()
set_checking_parameters(est)
set_random_state(est)
# without fitting
old_hash = joblib.hash(est)
check_estimator(est)
assert_equal(old_hash, joblib.hash(est))
with ignore_warnings(category=FutureWarning):
# when 'est = SGDClassifier()'
est = Estimator()
set_checking_parameters(est)
set_random_state(est)
# with fitting
est.fit(iris.data + 10, iris.target)
old_hash = joblib.hash(est)
check_estimator(est)
assert_equal(old_hash, joblib.hash(est))
开发者ID:ZIP97,项目名称:scikit-learn,代码行数:28,代码来源:test_estimator_checks.py
示例17: check_classifiers_input_shapes
def check_classifiers_input_shapes(name, Classifier):
iris = load_iris()
X, y = iris.data, iris.target
X, y = shuffle(X, y, random_state=1)
X = StandardScaler().fit_transform(X)
# catch deprecation warnings
with warnings.catch_warnings(record=True):
classifier = Classifier()
set_fast_parameters(classifier)
set_random_state(classifier)
# fit
classifier.fit(X, y)
y_pred = classifier.predict(X)
set_random_state(classifier)
# Check that when a 2D y is given, a DataConversionWarning is
# raised
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always", DataConversionWarning)
warnings.simplefilter("ignore", RuntimeWarning)
classifier.fit(X, y[:, np.newaxis])
msg = "expected 1 DataConversionWarning, got: %s" % (
", ".join([str(w_x) for w_x in w]))
assert_equal(len(w), 1, msg)
assert_array_equal(y_pred, classifier.predict(X))
开发者ID:AlexMarshall011,项目名称:scikit-learn,代码行数:25,代码来源:estimator_checks.py
示例18: test_svm
def test_svm():
iris = load_iris()
X, Y = zip(*[(x,y) for x,y in zip(iris.data,iris.target) if y in [0, 1]]) #Select 0, 1 data.
svm = SVM(C=1.0, kernel='rbf')
svm.fit(X, Y)
svm.assert_almost_equal(svm.cost, 2.4034163345438264, sv4)
开发者ID:homk,项目名称:watakit,代码行数:7,代码来源:test_svm.py
示例19: test_cross_val_predict_with_method
def test_cross_val_predict_with_method():
iris = load_iris()
X, y = iris.data, iris.target
X, y = shuffle(X, y, random_state=0)
classes = len(set(y))
kfold = KFold(len(iris.target))
methods = ['decision_function', 'predict_proba', 'predict_log_proba']
for method in methods:
est = LogisticRegression()
predictions = cross_val_predict(est, X, y, method=method)
assert_equal(len(predictions), len(y))
expected_predictions = np.zeros([len(y), classes])
func = getattr(est, method)
# Naive loop (should be same as cross_val_predict):
for train, test in kfold.split(X, y):
est.fit(X[train], y[train])
expected_predictions[test] = func(X[test])
predictions = cross_val_predict(est, X, y, method=method,
cv=kfold)
assert_array_almost_equal(expected_predictions, predictions)
开发者ID:447327642,项目名称:scikit-learn,代码行数:26,代码来源:test_validation.py
示例20: test_pipeline_methods_preprocessing_svm
def test_pipeline_methods_preprocessing_svm():
# Test the various methods of the pipeline (preprocessing + svm).
iris = load_iris()
X = iris.data
y = iris.target
n_samples = X.shape[0]
n_classes = len(np.unique(y))
scaler = StandardScaler()
pca = RandomizedPCA(n_components=2, whiten=True)
clf = SVC(probability=True, random_state=0)
for preprocessing in [scaler, pca]:
pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)])
pipe.fit(X, y)
# check shapes of various prediction functions
predict = pipe.predict(X)
assert_equal(predict.shape, (n_samples,))
proba = pipe.predict_proba(X)
assert_equal(proba.shape, (n_samples, n_classes))
log_proba = pipe.predict_log_proba(X)
assert_equal(log_proba.shape, (n_samples, n_classes))
decision_function = pipe.decision_function(X)
assert_equal(decision_function.shape, (n_samples, n_classes))
pipe.score(X, y)
开发者ID:Givonaldo,项目名称:scikit-learn,代码行数:29,代码来源:test_pipeline.py
注:本文中的sklearn.datasets.load_iris函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论