本文整理汇总了Python中sklearn.utils.testing.assert_allclose_dense_sparse函数的典型用法代码示例。如果您正苦于以下问题:Python assert_allclose_dense_sparse函数的具体用法?Python assert_allclose_dense_sparse怎么用?Python assert_allclose_dense_sparse使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assert_allclose_dense_sparse函数的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_function_sampler_func
def test_function_sampler_func(X, y):
def func(X, y):
return X[:10], y[:10]
sampler = FunctionSampler(func=func)
X_res, y_res = sampler.fit_resample(X, y)
assert_allclose_dense_sparse(X_res, X[:10])
assert_array_equal(y_res, y[:10])
开发者ID:bodycat,项目名称:imbalanced-learn,代码行数:8,代码来源:test_base.py
示例2: test_tfidf_transformer_sparse
def test_tfidf_transformer_sparse():
X = sparse.rand(10, 20000, dtype=np.float64, random_state=42)
X_csc = sparse.csc_matrix(X)
X_csr = sparse.csr_matrix(X)
X_trans_csc = TfidfTransformer().fit_transform(X_csc)
X_trans_csr = TfidfTransformer().fit_transform(X_csr)
assert_allclose_dense_sparse(X_trans_csc, X_trans_csr)
assert X_trans_csc.format == X_trans_csr.format
开发者ID:as133,项目名称:scikit-learn,代码行数:9,代码来源:test_text.py
示例3: test_function_sampler_func_kwargs
def test_function_sampler_func_kwargs(X, y):
def func(X, y, ratio, random_state):
rus = RandomUnderSampler(ratio=ratio, random_state=random_state)
return rus.fit_sample(X, y)
sampler = FunctionSampler(func=func, kw_args={'ratio': 'auto',
'random_state': 0})
X_res, y_res = sampler.fit_sample(X, y)
X_res_2, y_res_2 = RandomUnderSampler(random_state=0).fit_sample(X, y)
assert_allclose_dense_sparse(X_res, X_res_2)
assert_array_equal(y_res, y_res_2)
开发者ID:zzhhoubin,项目名称:imbalanced-learn,代码行数:12,代码来源:test_base.py
示例4: test_column_transformer_sparse_array
def test_column_transformer_sparse_array():
X_sparse = sparse.eye(3, 2).tocsr()
# no distinction between 1D and 2D
X_res_first = X_sparse[:, 0]
X_res_both = X_sparse
for col in [0, [0], slice(0, 1)]:
for remainder, res in [('drop', X_res_first),
('passthrough', X_res_both)]:
ct = ColumnTransformer([('trans', Trans(), col)],
remainder=remainder,
sparse_threshold=0.8)
assert sparse.issparse(ct.fit_transform(X_sparse))
assert_allclose_dense_sparse(ct.fit_transform(X_sparse), res)
assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse),
res)
for col in [[0, 1], slice(0, 2)]:
ct = ColumnTransformer([('trans', Trans(), col)],
sparse_threshold=0.8)
assert sparse.issparse(ct.fit_transform(X_sparse))
assert_allclose_dense_sparse(ct.fit_transform(X_sparse), X_res_both)
assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse),
X_res_both)
开发者ID:kevin-coder,项目名称:scikit-learn-fork,代码行数:25,代码来源:test_column_transformer.py
示例5: test_incremental_pca_batch_rank
def test_incremental_pca_batch_rank():
# Test sample size in each batch is always larger or equal to n_components
rng = np.random.RandomState(1999)
n_samples = 100
n_features = 20
X = rng.randn(n_samples, n_features)
all_components = []
batch_sizes = np.arange(20, 90, 3)
for batch_size in batch_sizes:
ipca = IncrementalPCA(n_components=20, batch_size=batch_size).fit(X)
all_components.append(ipca.components_)
for components_i, components_j in zip(all_components[:-1],
all_components[1:]):
assert_allclose_dense_sparse(components_i, components_j)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:15,代码来源:test_incremental_pca.py
示例6: test_assert_allclose_dense_sparse
def test_assert_allclose_dense_sparse():
x = np.arange(9).reshape(3, 3)
msg = "Not equal to tolerance "
y = sparse.csc_matrix(x)
for X in [x, y]:
# basic compare
assert_raise_message(AssertionError, msg, assert_allclose_dense_sparse,
X, X * 2)
assert_allclose_dense_sparse(X, X)
assert_raise_message(ValueError, "Can only compare two sparse",
assert_allclose_dense_sparse, x, y)
A = sparse.diags(np.ones(5), offsets=0).tocsr()
B = sparse.csr_matrix(np.ones((1, 5)))
assert_raise_message(AssertionError, "Arrays are not equal",
assert_allclose_dense_sparse, B, A)
开发者ID:MartinThoma,项目名称:scikit-learn,代码行数:18,代码来源:test_testing.py
示例7: test_check_inverse
def test_check_inverse():
X_dense = np.array([1, 4, 9, 16], dtype=np.float64).reshape((2, 2))
X_list = [X_dense,
sparse.csr_matrix(X_dense),
sparse.csc_matrix(X_dense)]
for X in X_list:
if sparse.issparse(X):
accept_sparse = True
else:
accept_sparse = False
trans = FunctionTransformer(func=np.sqrt,
inverse_func=np.around,
accept_sparse=accept_sparse,
check_inverse=True,
validate=True)
assert_warns_message(UserWarning,
"The provided functions are not strictly"
" inverse of each other. If you are sure you"
" want to proceed regardless, set"
" 'check_inverse=False'.",
trans.fit, X)
trans = FunctionTransformer(func=np.expm1,
inverse_func=np.log1p,
accept_sparse=accept_sparse,
check_inverse=True,
validate=True)
Xt = assert_no_warnings(trans.fit_transform, X)
assert_allclose_dense_sparse(X, trans.inverse_transform(Xt))
# check that we don't check inverse when one of the func or inverse is not
# provided.
trans = FunctionTransformer(func=np.expm1, inverse_func=None,
check_inverse=True, validate=True)
assert_no_warnings(trans.fit, X_dense)
trans = FunctionTransformer(func=None, inverse_func=np.expm1,
check_inverse=True, validate=True)
assert_no_warnings(trans.fit, X_dense)
开发者ID:SuryodayBasak,项目名称:scikit-learn,代码行数:40,代码来源:test_function_transformer.py
示例8: test_imputation_constant_float
def test_imputation_constant_float(array_constructor):
# Test imputation using the constant strategy on floats
X = np.array([
[np.nan, 1.1, 0, np.nan],
[1.2, np.nan, 1.3, np.nan],
[0, 0, np.nan, np.nan],
[1.4, 1.5, 0, np.nan]
])
X_true = np.array([
[-1, 1.1, 0, -1],
[1.2, -1, 1.3, -1],
[0, 0, -1, -1],
[1.4, 1.5, 0, -1]
])
X = array_constructor(X)
X_true = array_constructor(X_true)
imputer = SimpleImputer(strategy="constant", fill_value=-1)
X_trans = imputer.fit_transform(X)
assert_allclose_dense_sparse(X_trans, X_true)
开发者ID:psorianom,项目名称:scikit-learn,代码行数:24,代码来源:test_impute.py
示例9: test_pipeline_consistency
def test_pipeline_consistency(estimator, build_dataset,
with_preprocessor):
# Adapted from scikit learn
# check that make_pipeline(est) gives same score as est
# we do this test on all except quadruplets (since they don't have a y
# in fit):
if estimator.__class__.__name__ not in [e.__class__.__name__
for (e, _) in
quadruplets_learners]:
input_data, y, preprocessor, _ = build_dataset(with_preprocessor)
def make_random_state(estimator, in_pipeline):
rs = {}
name_estimator = estimator.__class__.__name__
if name_estimator[-11:] == '_Supervised':
name_param = 'random_state'
if in_pipeline:
name_param = name_estimator.lower() + '__' + name_param
rs[name_param] = check_random_state(0)
return rs
estimator = clone(estimator)
estimator.set_params(preprocessor=preprocessor)
pipeline = make_pipeline(estimator)
estimator.fit(*remove_y_quadruplets(estimator, input_data, y),
**make_random_state(estimator, False))
pipeline.fit(*remove_y_quadruplets(estimator, input_data, y),
**make_random_state(estimator, True))
if hasattr(estimator, 'score'):
result = estimator.score(*remove_y_quadruplets(estimator,
input_data,
y))
result_pipe = pipeline.score(*remove_y_quadruplets(estimator,
input_data,
y))
assert_allclose_dense_sparse(result, result_pipe)
if hasattr(estimator, 'predict'):
result = estimator.predict(input_data)
result_pipe = pipeline.predict(input_data)
assert_allclose_dense_sparse(result, result_pipe)
if issubclass(estimator.__class__, TransformerMixin):
if hasattr(estimator, 'transform'):
result = estimator.transform(input_data)
result_pipe = pipeline.transform(input_data)
assert_allclose_dense_sparse(result, result_pipe)
开发者ID:all-umass,项目名称:metric-learn,代码行数:48,代码来源:test_sklearn_compat.py
示例10: test_check_array_force_all_finite_valid
def test_check_array_force_all_finite_valid(value, force_all_finite, retype):
X = retype(np.arange(4).reshape(2, 2).astype(np.float))
X[0, 0] = value
X_checked = check_array(X, force_all_finite=force_all_finite,
accept_sparse=True)
assert_allclose_dense_sparse(X, X_checked)
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:6,代码来源:test_validation.py
示例11: test_as_float_array_nan
def test_as_float_array_nan(X):
X[5, 0] = np.nan
X[6, 1] = np.nan
X_converted = as_float_array(X, force_all_finite='allow-nan')
assert_allclose_dense_sparse(X_converted, X)
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:5,代码来源:test_validation.py
示例12: test_function_sampler_identity
def test_function_sampler_identity(X, y):
sampler = FunctionSampler()
X_res, y_res = sampler.fit_sample(X, y)
assert_allclose_dense_sparse(X_res, X)
assert_array_equal(y_res, y)
开发者ID:zzhhoubin,项目名称:imbalanced-learn,代码行数:5,代码来源:test_base.py
注:本文中的sklearn.utils.testing.assert_allclose_dense_sparse函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论