• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python testing.assert_almost_equal函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.utils.testing.assert_almost_equal函数的典型用法代码示例。如果您正苦于以下问题:Python assert_almost_equal函数的具体用法?Python assert_almost_equal怎么用?Python assert_almost_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了assert_almost_equal函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_check_scoring

def test_check_scoring():
    """Test all branches of check_scoring"""
    estimator = EstimatorWithoutFit()
    pattern = (r"estimator should a be an estimator implementing 'fit' method,"
               r" .* was passed")
    assert_raises_regexp(TypeError, pattern, check_scoring, estimator)

    estimator = EstimatorWithFitAndScore()
    estimator.fit([[1]], [1])
    scorer = check_scoring(estimator)
    assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0)

    estimator = EstimatorWithFitAndPredict()
    estimator.fit([[1]], [1])
    pattern = (r"If no scoring is specified, the estimator passed should have"
               r" a 'score' method\. The estimator .* does not\.")
    assert_raises_regexp(TypeError, pattern, check_scoring, estimator)

    scorer = check_scoring(estimator, "accuracy")
    assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0)

    estimator = EstimatorWithFit()
    pattern = (r"The estimator passed should have a 'score'"
               r" or a 'predict' method\. The estimator .* does not\.")
    assert_raises_regexp(TypeError, pattern, check_scoring, estimator,
                         "accuracy")

    estimator = EstimatorWithFit()
    scorer = check_scoring(estimator, allow_none=True)
    assert_true(scorer is None)
开发者ID:adammendoza,项目名称:scikit-learn,代码行数:30,代码来源:test_score_objects.py


示例2: test_accessible_kl_divergence

def test_accessible_kl_divergence():
    # Ensures that the accessible kl_divergence matches the computed value
    random_state = check_random_state(0)
    X = random_state.randn(100, 2)
    tsne = TSNE(n_iter_without_progress=2, verbose=2,
                random_state=0, method='exact')

    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        tsne.fit_transform(X)
    finally:
        out = sys.stdout.getvalue()
        sys.stdout.close()
        sys.stdout = old_stdout

    # The output needs to contain the accessible kl_divergence as the error at
    # the last iteration
    for line in out.split('\n')[::-1]:
        if 'Iteration' in line:
            _, _, error = line.partition('error = ')
            if error:
                error, _, _ = error.partition(',')
                break
    assert_almost_equal(tsne.kl_divergence_, float(error), decimal=5)
开发者ID:BasilBeirouti,项目名称:scikit-learn,代码行数:25,代码来源:test_t_sne.py


示例3: test_randomized_pca_check_list

def test_randomized_pca_check_list():
    """Test that the projection by RandomizedPCA on list data is correct"""
    X = [[1.0, 0.0], [0.0, 1.0]]
    X_transformed = RandomizedPCA(n_components=1, random_state=0).fit(X).transform(X)
    assert_equal(X_transformed.shape, (2, 1))
    assert_almost_equal(X_transformed.mean(), 0.00, 2)
    assert_almost_equal(X_transformed.std(), 0.71, 2)
开发者ID:Garrett-R,项目名称:scikit-learn,代码行数:7,代码来源:test_pca.py


示例4: test_randomized_svd_low_rank_with_noise

def test_randomized_svd_low_rank_with_noise():
    """Check that extmath.randomized_svd can handle noisy matrices"""
    n_samples = 100
    n_features = 500
    rank = 5
    k = 10

    # generate a matrix X wity structure approximate rank `rank` and an
    # important noisy component
    X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
                             effective_rank=rank, tail_strength=0.5,
                             random_state=0)
    assert_equal(X.shape, (n_samples, n_features))

    # compute the singular values of X using the slow exact method
    _, s, _ = linalg.svd(X, full_matrices=False)

    # compute the singular values of X using the fast approximate method
    # without the iterated power method
    _, sa, _ = randomized_svd(X, k, n_iter=0)

    # the approximation does not tolerate the noise:
    assert_greater(np.abs(s[:k] - sa).max(), 0.05)

    # compute the singular values of X using the fast approximate method with
    # iterated power method
    _, sap, _ = randomized_svd(X, k, n_iter=5)

    # the iterated power method is helping getting rid of the noise:
    assert_almost_equal(s[:k], sap, decimal=3)
开发者ID:93sam,项目名称:scikit-learn,代码行数:30,代码来源:test_extmath.py


示例5: test_symmetry

def test_symmetry():
    """Test the symmetry of score and loss functions"""
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 2, size=(20, ))
    y_pred = random_state.randint(0, 2, size=(20, ))

    # We shouldn't forget any metrics
    assert_equal(set(SYMMETRIC_METRICS).union(NOT_SYMMETRIC_METRICS,
                                              THRESHOLDED_METRICS,
                                              METRIC_UNDEFINED_MULTICLASS),
                 set(ALL_METRICS))

    assert_equal(
        set(SYMMETRIC_METRICS).intersection(set(NOT_SYMMETRIC_METRICS)),
        set([]))

    # Symmetric metric
    for name in SYMMETRIC_METRICS:
        metric = ALL_METRICS[name]
        assert_almost_equal(metric(y_true, y_pred),
                            metric(y_pred, y_true),
                            err_msg="%s is not symmetric" % name)

    # Not symmetric metrics
    for name in NOT_SYMMETRIC_METRICS:
        metric = ALL_METRICS[name]
        assert_true(np.any(metric(y_true, y_pred) != metric(y_pred, y_true)),
                    msg="%s seems to be symmetric" % name)
开发者ID:AniketSaki,项目名称:scikit-learn,代码行数:28,代码来源:test_common.py


示例6: test_fetch_rcv1

def test_fetch_rcv1():
    try:
        data1 = fetch_rcv1(shuffle=False, download_if_missing=False)
    except IOError as e:
        if e.errno == errno.ENOENT:
            raise SkipTest("Download RCV1 dataset to run this test.")

    X1, Y1 = data1.data, data1.target
    cat_list, s1 = data1.target_names.tolist(), data1.sample_id

    # test sparsity
    assert_true(sp.issparse(X1))
    assert_true(sp.issparse(Y1))
    assert_equal(60915113, X1.data.size)
    assert_equal(2606875, Y1.data.size)

    # test shapes
    assert_equal((804414, 47236), X1.shape)
    assert_equal((804414, 103), Y1.shape)
    assert_equal((804414,), s1.shape)
    assert_equal(103, len(cat_list))

    # test ordering of categories
    first_categories = [u'C11', u'C12', u'C13', u'C14', u'C15', u'C151']
    assert_array_equal(first_categories, cat_list[:6])

    # test number of sample for some categories
    some_categories = ('GMIL', 'E143', 'CCAT')
    number_non_zero_in_cat = (5, 1206, 381327)
    for num, cat in zip(number_non_zero_in_cat, some_categories):
        j = cat_list.index(cat)
        assert_equal(num, Y1[:, j].data.size)

    # test shuffling and subset
    data2 = fetch_rcv1(shuffle=True, subset='train', random_state=77,
                       download_if_missing=False)
    X2, Y2 = data2.data, data2.target
    s2 = data2.sample_id

    # test return_X_y option
    fetch_func = partial(fetch_rcv1, shuffle=False, subset='train',
                         download_if_missing=False)
    check_return_X_y(data2, fetch_func)

    # The first 23149 samples are the training samples
    assert_array_equal(np.sort(s1[:23149]), np.sort(s2))

    # test some precise values
    some_sample_ids = (2286, 3274, 14042)
    for sample_id in some_sample_ids:
        idx1 = s1.tolist().index(sample_id)
        idx2 = s2.tolist().index(sample_id)

        feature_values_1 = X1[idx1, :].toarray()
        feature_values_2 = X2[idx2, :].toarray()
        assert_almost_equal(feature_values_1, feature_values_2)

        target_values_1 = Y1[idx1, :].toarray()
        target_values_2 = Y2[idx2, :].toarray()
        assert_almost_equal(target_values_1, target_values_2)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:60,代码来源:test_rcv1.py


示例7: test_multilabel_hamming_loss

def test_multilabel_hamming_loss():
    # Dense label indicator matrix format
    y1 = np.array([[0, 1, 1], [1, 0, 1]])
    y2 = np.array([[0, 0, 1], [1, 0, 1]])

    assert_equal(hamming_loss(y1, y2), 1 / 6)
    assert_equal(hamming_loss(y1, y1), 0)
    assert_equal(hamming_loss(y2, y2), 0)
    assert_equal(hamming_loss(y2, np.logical_not(y2)), 1)
    assert_equal(hamming_loss(y1, np.logical_not(y1)), 1)
    assert_equal(hamming_loss(y1, np.zeros(y1.shape)), 4 / 6)
    assert_equal(hamming_loss(y2, np.zeros(y1.shape)), 0.5)

    with ignore_warnings():  # sequence of sequences is deprecated
        # List of tuple of label
        y1 = [(1, 2,), (0, 2,)]
        y2 = [(2,), (0, 2,)]

        assert_equal(hamming_loss(y1, y2), 1 / 6)
        assert_equal(hamming_loss(y1, y1), 0)
        assert_equal(hamming_loss(y2, y2), 0)
        assert_equal(hamming_loss(y2, [(), ()]), 0.75)
        assert_equal(hamming_loss(y1, [tuple(), (10, )]), 0.625)
        assert_almost_equal(hamming_loss(y2, [tuple(), (10, )],
                                         classes=np.arange(11)), 0.1818, 2)
开发者ID:nateyoder,项目名称:scikit-learn,代码行数:25,代码来源:test_classification.py


示例8: test_average_binary_computed_correctly

    def test_average_binary_computed_correctly(self):
        """Checks the SGDClassifier correctly computes the average weights"""
        eta = 0.1
        alpha = 2.0
        n_samples = 20
        n_features = 10
        rng = np.random.RandomState(0)
        X = rng.normal(size=(n_samples, n_features))
        w = rng.normal(size=n_features)

        clf = self.factory(
            loss="squared_loss",
            learning_rate="constant",
            eta0=eta,
            alpha=alpha,
            fit_intercept=True,
            n_iter=1,
            average=True,
            shuffle=False,
        )

        # simple linear function without noise
        y = np.dot(X, w)
        y = np.sign(y)

        clf.fit(X, y)

        average_weights, average_intercept = self.asgd(X, y, eta, alpha)
        average_weights = average_weights.reshape(1, -1)
        assert_array_almost_equal(clf.coef_, average_weights, decimal=14)
        assert_almost_equal(clf.intercept_, average_intercept, decimal=14)
开发者ID:richlewis42,项目名称:scikit-learn,代码行数:31,代码来源:test_sgd.py


示例9: test_sgd_multiclass_average

    def test_sgd_multiclass_average(self):
        eta = 0.001
        alpha = 0.01
        """Multi-class average test case"""
        clf = self.factory(
            loss="squared_loss",
            learning_rate="constant",
            eta0=eta,
            alpha=alpha,
            fit_intercept=True,
            n_iter=1,
            average=True,
            shuffle=False,
        )

        np_Y2 = np.array(Y2)
        clf.fit(X2, np_Y2)
        classes = np.unique(np_Y2)

        for i, cl in enumerate(classes):
            y_i = np.ones(np_Y2.shape[0])
            y_i[np_Y2 != cl] = -1
            average_coef, average_intercept = self.asgd(X2, y_i, eta, alpha)
            assert_array_almost_equal(average_coef, clf.coef_[i], decimal=16)
            assert_almost_equal(average_intercept, clf.intercept_[i], decimal=16)
开发者ID:richlewis42,项目名称:scikit-learn,代码行数:25,代码来源:test_sgd.py


示例10: test_dtype_match_cholesky

def test_dtype_match_cholesky():
    # Test different alphas in cholesky solver to ensure full coverage.
    # This test is separated from test_dtype_match for clarity.
    rng = np.random.RandomState(0)
    alpha = (1.0, 0.5)

    n_samples, n_features, n_target = 6, 7, 2
    X_64 = rng.randn(n_samples, n_features)
    y_64 = rng.randn(n_samples, n_target)
    X_32 = X_64.astype(np.float32)
    y_32 = y_64.astype(np.float32)

    # Check type consistency 32bits
    ridge_32 = Ridge(alpha=alpha, solver='cholesky')
    ridge_32.fit(X_32, y_32)
    coef_32 = ridge_32.coef_

    # Check type consistency 64 bits
    ridge_64 = Ridge(alpha=alpha, solver='cholesky')
    ridge_64.fit(X_64, y_64)
    coef_64 = ridge_64.coef_

    # Do all the checks at once, like this is easier to debug
    assert coef_32.dtype == X_32.dtype
    assert coef_64.dtype == X_64.dtype
    assert ridge_32.predict(X_32).dtype == X_32.dtype
    assert ridge_64.predict(X_64).dtype == X_64.dtype
    assert_almost_equal(ridge_32.coef_, ridge_64.coef_, decimal=5)
开发者ID:Moler1995,项目名称:scikit-learn,代码行数:28,代码来源:test_ridge.py


示例11: test_lasso_cv

def test_lasso_cv():
    X, y, X_test, y_test = build_dataset()
    max_iter = 150
    clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter).fit(X, y)
    assert_almost_equal(clf.alpha_, 0.056, 2)

    clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter, precompute=True)
    clf.fit(X, y)
    assert_almost_equal(clf.alpha_, 0.056, 2)

    # Check that the lars and the coordinate descent implementation
    # select a similar alpha
    lars = LassoLarsCV(normalize=False, max_iter=30).fit(X, y)
    # for this we check that they don't fall in the grid of
    # clf.alphas further than 1
    assert_true(np.abs(
        np.searchsorted(clf.alphas_[::-1], lars.alpha_) -
        np.searchsorted(clf.alphas_[::-1], clf.alpha_)) <= 1)
    # check that they also give a similar MSE
    mse_lars = interpolate.interp1d(lars.cv_alphas_, lars.cv_mse_path_.T)
    np.testing.assert_approx_equal(mse_lars(clf.alphas_[5]).mean(),
                                   clf.mse_path_[5].mean(), significant=2)

    # test set
    assert_greater(clf.score(X_test, y_test), 0.99)
开发者ID:chribsen,项目名称:simple-machine-learning-examples,代码行数:25,代码来源:test_coordinate_descent.py


示例12: test_dtype_match

def test_dtype_match():
    rng = np.random.RandomState(0)
    alpha = 1.0

    n_samples, n_features = 6, 5
    X_64 = rng.randn(n_samples, n_features)
    y_64 = rng.randn(n_samples)
    X_32 = X_64.astype(np.float32)
    y_32 = y_64.astype(np.float32)

    solvers = ["svd", "sparse_cg", "cholesky", "lsqr"]
    for solver in solvers:

        # Check type consistency 32bits
        ridge_32 = Ridge(alpha=alpha, solver=solver)
        ridge_32.fit(X_32, y_32)
        coef_32 = ridge_32.coef_

        # Check type consistency 64 bits
        ridge_64 = Ridge(alpha=alpha, solver=solver)
        ridge_64.fit(X_64, y_64)
        coef_64 = ridge_64.coef_

        # Do the actual checks at once for easier debug
        assert coef_32.dtype == X_32.dtype
        assert coef_64.dtype == X_64.dtype
        assert ridge_32.predict(X_32).dtype == X_32.dtype
        assert ridge_64.predict(X_64).dtype == X_64.dtype
        assert_almost_equal(ridge_32.coef_, ridge_64.coef_, decimal=5)
开发者ID:Moler1995,项目名称:scikit-learn,代码行数:29,代码来源:test_ridge.py


示例13: test_ovr_partial_fit

def test_ovr_partial_fit():
    # Test if partial_fit is working as intented
    X, y = shuffle(iris.data, iris.target, random_state=0)
    ovr = OneVsRestClassifier(MultinomialNB())
    ovr.partial_fit(X[:100], y[:100], np.unique(y))
    ovr.partial_fit(X[100:], y[100:])
    pred = ovr.predict(X)
    ovr2 = OneVsRestClassifier(MultinomialNB())
    pred2 = ovr2.fit(X, y).predict(X)

    assert_almost_equal(pred, pred2)
    assert_equal(len(ovr.estimators_), len(np.unique(y)))
    assert_greater(np.mean(y == pred), 0.65)

    # Test when mini batches doesn't have all classes
    ovr = OneVsRestClassifier(MultinomialNB())
    ovr.partial_fit(iris.data[:60], iris.target[:60], np.unique(iris.target))
    ovr.partial_fit(iris.data[60:], iris.target[60:])
    pred = ovr.predict(iris.data)
    ovr2 = OneVsRestClassifier(MultinomialNB())
    pred2 = ovr2.fit(iris.data, iris.target).predict(iris.data)
    
    assert_almost_equal(pred, pred2)
    assert_equal(len(ovr.estimators_), len(np.unique(iris.target)))
    assert_greater(np.mean(iris.target == pred), 0.65)
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:25,代码来源:test_multiclass.py


示例14: test_ovo_partial_fit_predict

def test_ovo_partial_fit_predict():
    X, y = shuffle(iris.data, iris.target)
    ovo1 = OneVsOneClassifier(MultinomialNB())
    ovo1.partial_fit(X[:100], y[:100], np.unique(y))
    ovo1.partial_fit(X[100:], y[100:])
    pred1 = ovo1.predict(X)

    ovo2 = OneVsOneClassifier(MultinomialNB())
    ovo2.fit(X, y)
    pred2 = ovo2.predict(X)
    assert_equal(len(ovo1.estimators_), n_classes * (n_classes - 1) / 2)
    assert_greater(np.mean(y == pred1), 0.65)
    assert_almost_equal(pred1, pred2)

    # Test when mini-batches don't have all target classes
    ovo1 = OneVsOneClassifier(MultinomialNB())
    ovo1.partial_fit(iris.data[:60], iris.target[:60], np.unique(iris.target))
    ovo1.partial_fit(iris.data[60:], iris.target[60:])
    pred1 = ovo1.predict(iris.data)
    ovo2 = OneVsOneClassifier(MultinomialNB())
    pred2 = ovo2.fit(iris.data, iris.target).predict(iris.data)

    assert_almost_equal(pred1, pred2)
    assert_equal(len(ovo1.estimators_), len(np.unique(iris.target)))
    assert_greater(np.mean(iris.target == pred1), 0.65)
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:25,代码来源:test_multiclass.py


示例15: test_pca

def test_pca():
    # PCA on dense arrays
    X = iris.data

    for n_comp in np.arange(X.shape[1]):
        pca = PCA(n_components=n_comp, svd_solver='full')

        X_r = pca.fit(X).transform(X)
        np.testing.assert_equal(X_r.shape[1], n_comp)

        X_r2 = pca.fit_transform(X)
        assert_array_almost_equal(X_r, X_r2)

        X_r = pca.transform(X)
        X_r2 = pca.fit_transform(X)
        assert_array_almost_equal(X_r, X_r2)

        # Test get_covariance and get_precision
        cov = pca.get_covariance()
        precision = pca.get_precision()
        assert_array_almost_equal(np.dot(cov, precision),
                                  np.eye(X.shape[1]), 12)

    # test explained_variance_ratio_ == 1 with all components
    pca = PCA(svd_solver='full')
    pca.fit(X)
    assert_almost_equal(pca.explained_variance_ratio_.sum(), 1.0, 3)
开发者ID:amueller,项目名称:scikit-learn,代码行数:27,代码来源:test_pca.py


示例16: test_sgd_averaged_computed_correctly

    def test_sgd_averaged_computed_correctly(self):
        """Tests the average regressor matches the naive implementation"""

        eta = 0.001
        alpha = 0.01
        n_samples = 20
        n_features = 10
        rng = np.random.RandomState(0)
        X = rng.normal(size=(n_samples, n_features))
        w = rng.normal(size=n_features)

        # simple linear function without noise
        y = np.dot(X, w)

        clf = self.factory(
            loss="squared_loss",
            learning_rate="constant",
            eta0=eta,
            alpha=alpha,
            fit_intercept=True,
            n_iter=1,
            average=True,
            shuffle=False,
        )

        clf.fit(X, y)
        average_weights, average_intercept = self.asgd(X, y, eta, alpha)

        assert_array_almost_equal(clf.coef_, average_weights, decimal=16)
        assert_almost_equal(clf.intercept_, average_intercept, decimal=16)
开发者ID:richlewis42,项目名称:scikit-learn,代码行数:30,代码来源:test_sgd.py


示例17: test_enet_path

def test_enet_path():
    # We use a large number of samples and of informative features so that
    # the l1_ratio selected is more toward ridge than lasso
    X, y, X_test, y_test = build_dataset(n_samples=200, n_features=100, n_informative_features=100)
    max_iter = 150

    with warnings.catch_warnings():
        # Here we have a small number of iterations, and thus the
        # ElasticNet might not converge. This is to speed up tests
        warnings.simplefilter("ignore", UserWarning)
        clf = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter)
        clf.fit(X, y)
        # Well-conditionned settings, we should have selected our
        # smallest penalty
        assert_almost_equal(clf.alpha_, min(clf.alphas_))
        # Non-sparse ground truth: we should have seleted an elastic-net
        # that is closer to ridge than to lasso
        assert_equal(clf.l1_ratio_, min(clf.l1_ratio))

        clf = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter, precompute=True)
        clf.fit(X, y)

    # Well-conditionned settings, we should have selected our
    # smallest penalty
    assert_almost_equal(clf.alpha_, min(clf.alphas_))
    # Non-sparse ground truth: we should have seleted an elastic-net
    # that is closer to ridge than to lasso
    assert_equal(clf.l1_ratio_, min(clf.l1_ratio))

    # We are in well-conditionned settings with low noise: we should
    # have a good test-set performance
    assert_greater(clf.score(X_test, y_test), 0.99)
开发者ID:mugiro,项目名称:elm-python,代码行数:32,代码来源:test_coordinate_descent.py


示例18: test_sgd_averaged_partial_fit

    def test_sgd_averaged_partial_fit(self):
        """Tests whether the partial fit yields the same average as the fit"""
        eta = 0.001
        alpha = 0.01
        n_samples = 20
        n_features = 10
        rng = np.random.RandomState(0)
        X = rng.normal(size=(n_samples, n_features))
        w = rng.normal(size=n_features)

        # simple linear function without noise
        y = np.dot(X, w)

        clf = self.factory(
            loss="squared_loss",
            learning_rate="constant",
            eta0=eta,
            alpha=alpha,
            fit_intercept=True,
            n_iter=1,
            average=True,
            shuffle=False,
        )

        clf.partial_fit(X[: int(n_samples / 2)][:], y[: int(n_samples / 2)])
        clf.partial_fit(X[int(n_samples / 2) :][:], y[int(n_samples / 2) :])
        average_weights, average_intercept = self.asgd(X, y, eta, alpha)

        assert_array_almost_equal(clf.coef_, average_weights, decimal=16)
        assert_almost_equal(clf.intercept_[0], average_intercept, decimal=16)
开发者ID:richlewis42,项目名称:scikit-learn,代码行数:30,代码来源:test_sgd.py


示例19: test_precision_recall_f1_score_binary

def test_precision_recall_f1_score_binary():
    """Test Precision Recall and F1 Score for binary classification task"""
    y_true, y_pred, _ = make_prediction(binary=True)

    # detailed measures for each class
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None)
    assert_array_almost_equal(p, [0.73, 0.85], 2)
    assert_array_almost_equal(r, [0.88, 0.68], 2)
    assert_array_almost_equal(f, [0.80, 0.76], 2)
    assert_array_equal(s, [25, 25])

    # individual scoring function that can be used for grid search: in the
    # binary class case the score is the value of the measure for the positive
    # class (e.g. label == 1)
    ps = precision_score(y_true, y_pred)
    assert_array_almost_equal(ps, 0.85, 2)

    rs = recall_score(y_true, y_pred)
    assert_array_almost_equal(rs, 0.68, 2)

    fs = f1_score(y_true, y_pred)
    assert_array_almost_equal(fs, 0.76, 2)

    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2),
                        (1 + 2 ** 2) * ps * rs / (2 ** 2 * ps + rs), 2)
开发者ID:nateyoder,项目名称:scikit-learn,代码行数:25,代码来源:test_classification.py


示例20: test_multiclass_multioutput_estimator_predict_proba

def test_multiclass_multioutput_estimator_predict_proba():
    seed = 542

    # make test deterministic
    rng = np.random.RandomState(seed)

    # random features
    X = rng.normal(size=(5, 5))

    # random labels
    y1 = np.array(['b', 'a', 'a', 'b', 'a']).reshape(5, 1)  # 2 classes
    y2 = np.array(['d', 'e', 'f', 'e', 'd']).reshape(5, 1)  # 3 classes

    Y = np.concatenate([y1, y2], axis=1)

    clf = MultiOutputClassifier(LogisticRegression(random_state=seed))

    clf.fit(X, Y)

    y_result = clf.predict_proba(X)
    y_actual = [np.array([[0.23481764, 0.76518236],
                          [0.67196072, 0.32803928],
                          [0.54681448, 0.45318552],
                          [0.34883923, 0.65116077],
                          [0.73687069, 0.26312931]]),
                np.array([[0.5171785, 0.23878628, 0.24403522],
                          [0.22141451, 0.64102704, 0.13755846],
                          [0.16751315, 0.18256843, 0.64991843],
                          [0.27357372, 0.55201592, 0.17441036],
                          [0.65745193, 0.26062899, 0.08191907]])]

    for i in range(len(y_actual)):
        assert_almost_equal(y_result[i], y_actual[i])
开发者ID:MechCoder,项目名称:scikit-learn,代码行数:33,代码来源:test_multioutput.py



注:本文中的sklearn.utils.testing.assert_almost_equal函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap