• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python testing.assert_allclose函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.utils.testing.assert_allclose函数的典型用法代码示例。如果您正苦于以下问题:Python assert_allclose函数的具体用法?Python assert_allclose怎么用?Python assert_allclose使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了assert_allclose函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_allknn_fit_resample

def test_allknn_fit_resample():
    allknn = AllKNN()
    X_resampled, y_resampled = allknn.fit_resample(X, Y)

    X_gt = np.array([[-0.53171468, -0.53735182], [-0.88864036, -0.33782387], [
        -0.46226554, -0.50481004
    ], [-0.34474418, 0.21969797], [1.02956816, 0.36061601], [
        1.12202806, 0.33811558
    ], [-1.10146139, 0.91782682], [0.73489726, 0.43915195], [
        0.50307437, 0.498805
    ], [0.84929742, 0.41042894], [0.62649535, 0.46600596], [
        0.98382284, 0.37184502
    ], [0.69804044, 0.44810796], [0.04296502, -0.37981873], [
        0.28294738, -1.00125525
    ], [0.34218094, -0.58781961], [0.2096964, -0.61814058], [
        1.59068979, -0.96622933
    ], [0.73418199, -0.02222847], [0.79270821, -0.41386668], [
        1.16606871, -0.25641059
    ], [1.0304995, -0.16955962], [0.48921682, -1.38504507],
                     [-0.03918551, -0.68540745], [0.24991051, -1.00864997],
                     [0.80541964, -0.34465185], [0.1732627, -1.61323172]])
    y_gt = np.array([
        0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2
    ])
    assert_allclose(X_resampled, X_gt, rtol=R_TOL)
    assert_allclose(y_resampled, y_gt, rtol=R_TOL)
开发者ID:bodycat,项目名称:imbalanced-learn,代码行数:27,代码来源:test_allknn.py


示例2: test_ridge_regression_dtype_stability

def test_ridge_regression_dtype_stability(solver):
    random_state = np.random.RandomState(0)
    n_samples, n_features = 6, 5
    X = random_state.randn(n_samples, n_features)
    coef = random_state.randn(n_features)
    y = np.dot(X, coef) + 0.01 * rng.randn(n_samples)
    alpha = 1.0
    rtol = 1e-2 if os.name == 'nt' and _IS_32BIT else 1e-5

    results = dict()
    for current_dtype in (np.float32, np.float64):
        results[current_dtype] = ridge_regression(X.astype(current_dtype),
                                                  y.astype(current_dtype),
                                                  alpha=alpha,
                                                  solver=solver,
                                                  random_state=random_state,
                                                  sample_weight=None,
                                                  max_iter=500,
                                                  tol=1e-10,
                                                  return_n_iter=False,
                                                  return_intercept=False)

    assert results[np.float32].dtype == np.float32
    assert results[np.float64].dtype == np.float64
    assert_allclose(results[np.float32], results[np.float64], rtol=rtol)
开发者ID:kevin-coder,项目名称:scikit-learn-fork,代码行数:25,代码来源:test_ridge.py


示例3: test_partial_dependence_helpers

def test_partial_dependence_helpers(est, method, target_feature):
    # Check that what is returned by _partial_dependence_brute or
    # _partial_dependence_recursion is equivalent to manually setting a target
    # feature to a given value, and computing the average prediction over all
    # samples.
    # This also checks that the brute and recursion methods give the same
    # output.

    X, y = make_regression(random_state=0)
    # The 'init' estimator for GBDT (here the average prediction) isn't taken
    # into account with the recursion method, for technical reasons. We set
    # the mean to 0 to that this 'bug' doesn't have any effect.
    y = y - y.mean()
    est.fit(X, y)

    # target feature will be set to .5 and then to 123
    features = np.array([target_feature], dtype=np.int32)
    grid = np.array([[.5],
                     [123]])

    if method == 'brute':
        pdp = _partial_dependence_brute(est, grid, features, X,
                                        response_method='auto')
    else:
        pdp = _partial_dependence_recursion(est, grid, features)

    mean_predictions = []
    for val in (.5, 123):
        X_ = X.copy()
        X_[:, target_feature] = val
        mean_predictions.append(est.predict(X_).mean())

    pdp = pdp[0]  # (shape is (1, 2) so make it (2,))
    assert_allclose(pdp, mean_predictions, atol=1e-3)
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:34,代码来源:test_partial_dependence.py


示例4: test_wpearsonr

    def test_wpearsonr(self):
        # TODO: if unweight version changes, wp[0] format should be changed
        wp = wpearsonr(self.a, self.b)
        assert_allclose(wp[0], 0.6956083, atol=0.01)

        wp = wpearsonr(self.a, self.b, w=self.w)
        assert_allclose(wp, 0.5477226, atol=0.01)
开发者ID:flaviassantos,项目名称:pyod,代码行数:7,代码来源:test_stat_models.py


示例5: test_score_to_label

    def test_score_to_label(self):
        manual_scores = [0.1, 0.4, 0.2, 0.3, 0.5, 0.9, 0.7, 1, 0.8, 0.6]
        labels = score_to_label(manual_scores, outliers_fraction=0.1)
        assert_allclose(labels, [0, 0, 0, 0, 0, 0, 0, 1, 0, 0])

        labels = score_to_label(manual_scores, outliers_fraction=0.3)
        assert_allclose(labels, [0, 0, 0, 0, 0, 1, 0, 1, 1, 0])
开发者ID:flaviassantos,项目名称:pyod,代码行数:7,代码来源:test_utility.py


示例6: test_iterative_imputer_additive_matrix

def test_iterative_imputer_additive_matrix():
    rng = np.random.RandomState(0)
    n = 100
    d = 10
    A = rng.randn(n, d)
    B = rng.randn(n, d)
    X_filled = np.zeros(A.shape)
    for i in range(d):
        for j in range(d):
            X_filled[:, (i+j) % d] += (A[:, i] + B[:, j]) / 2
    # a quarter is randomly missing
    nan_mask = rng.rand(n, d) < 0.25
    X_missing = X_filled.copy()
    X_missing[nan_mask] = np.nan

    # split up data
    n = n // 2
    X_train = X_missing[:n]
    X_test_filled = X_filled[n:]
    X_test = X_missing[n:]

    imputer = IterativeImputer(max_iter=10,
                               verbose=1,
                               random_state=rng).fit(X_train)
    X_test_est = imputer.transform(X_test)
    assert_allclose(X_test_filled, X_test_est, rtol=1e-3, atol=0.01)
开发者ID:psorianom,项目名称:scikit-learn,代码行数:26,代码来源:test_impute.py


示例7: test_iterative_imputer_early_stopping

def test_iterative_imputer_early_stopping():
    rng = np.random.RandomState(0)
    n = 50
    d = 5
    A = rng.rand(n, 1)
    B = rng.rand(1, d)
    X = np.dot(A, B)
    nan_mask = rng.rand(n, d) < 0.5
    X_missing = X.copy()
    X_missing[nan_mask] = np.nan

    imputer = IterativeImputer(max_iter=100,
                               tol=1e-3,
                               sample_posterior=False,
                               verbose=1,
                               random_state=rng)
    X_filled_100 = imputer.fit_transform(X_missing)
    assert len(imputer.imputation_sequence_) == d * imputer.n_iter_

    imputer = IterativeImputer(max_iter=imputer.n_iter_,
                               sample_posterior=False,
                               verbose=1,
                               random_state=rng)
    X_filled_early = imputer.fit_transform(X_missing)
    assert_allclose(X_filled_100, X_filled_early, atol=1e-7)

    imputer = IterativeImputer(max_iter=100,
                               tol=0,
                               sample_posterior=False,
                               verbose=1,
                               random_state=rng)
    imputer.fit(X_missing)
    assert imputer.n_iter_ == imputer.max_iter
开发者ID:psorianom,项目名称:scikit-learn,代码行数:33,代码来源:test_impute.py


示例8: test_dtype_match

def test_dtype_match(solver):
    rng = np.random.RandomState(0)
    alpha = 1.0

    n_samples, n_features = 6, 5
    X_64 = rng.randn(n_samples, n_features)
    y_64 = rng.randn(n_samples)
    X_32 = X_64.astype(np.float32)
    y_32 = y_64.astype(np.float32)

    # Check type consistency 32bits
    ridge_32 = Ridge(alpha=alpha, solver=solver, max_iter=500, tol=1e-10,)
    ridge_32.fit(X_32, y_32)
    coef_32 = ridge_32.coef_

    # Check type consistency 64 bits
    ridge_64 = Ridge(alpha=alpha, solver=solver, max_iter=500, tol=1e-10,)
    ridge_64.fit(X_64, y_64)
    coef_64 = ridge_64.coef_

    # Do the actual checks at once for easier debug
    assert coef_32.dtype == X_32.dtype
    assert coef_64.dtype == X_64.dtype
    assert ridge_32.predict(X_32).dtype == X_32.dtype
    assert ridge_64.predict(X_64).dtype == X_64.dtype
    assert_allclose(ridge_32.coef_, ridge_64.coef_, rtol=1e-4)
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:26,代码来源:test_ridge.py


示例9: test_fit_resample_nn_obj

def test_fit_resample_nn_obj():
    kind = 'borderline1'
    nn_m = NearestNeighbors(n_neighbors=11)
    nn_k = NearestNeighbors(n_neighbors=6)
    smote = SMOTE(
        random_state=RND_SEED, kind=kind, k_neighbors=nn_k, m_neighbors=nn_m)
    X_resampled, y_resampled = smote.fit_resample(X, Y)
    X_gt = np.array([[0.11622591, -0.0317206], [0.77481731, 0.60935141], [
        1.25192108, -0.22367336
    ], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [
        -0.28162401, -2.10400981
    ], [0.83680821, 1.72827342], [0.3084254, 0.33299982], [
        0.70472253, -0.73309052
    ], [0.28893132, -0.38761769], [1.15514042, 0.0129463], [
        0.88407872, 0.35454207
    ], [1.31301027, -0.92648734], [-1.11515198, -0.93689695], [
        -0.18410027, -0.45194484
    ], [0.9281014, 0.53085498], [-0.14374509, 0.27370049], [
        -0.41635887, -0.38299653
    ], [0.08711622, 0.93259929], [1.70580611, -0.11219234],
                     [0.3765279, -0.2009615], [0.55276636, -0.10550373],
                     [0.45413452, -0.08883319], [1.21118683, -0.22817957]])
    y_gt = np.array([
        0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0
    ])
    assert_allclose(X_resampled, X_gt, rtol=R_TOL)
    assert_array_equal(y_resampled, y_gt)
开发者ID:chkoar,项目名称:imbalanced-learn,代码行数:27,代码来源:test_smote.py


示例10: test_sample_with_nn_svm

def test_sample_with_nn_svm():
    kind = 'svm'
    nn_k = NearestNeighbors(n_neighbors=6)
    svm = SVC(gamma='scale', random_state=RND_SEED)
    smote = SMOTE(
        random_state=RND_SEED, kind=kind, k_neighbors=nn_k, svm_estimator=svm)
    X_resampled, y_resampled = smote.fit_resample(X, Y)
    X_gt = np.array([[0.11622591, -0.0317206],
                     [0.77481731, 0.60935141],
                     [1.25192108, -0.22367336],
                     [0.53366841, -0.30312976],
                     [1.52091956, -0.49283504],
                     [-0.28162401, -2.10400981],
                     [0.83680821, 1.72827342],
                     [0.3084254, 0.33299982],
                     [0.70472253, -0.73309052],
                     [0.28893132, -0.38761769],
                     [1.15514042, 0.0129463],
                     [0.88407872, 0.35454207],
                     [1.31301027, -0.92648734],
                     [-1.11515198, -0.93689695],
                     [-0.18410027, -0.45194484],
                     [0.9281014, 0.53085498],
                     [-0.14374509, 0.27370049],
                     [-0.41635887, -0.38299653],
                     [0.08711622, 0.93259929],
                     [1.70580611, -0.11219234],
                     [0.47436887, -0.2645749],
                     [1.07844562, -0.19435291],
                     [1.44228238, -1.31256615],
                     [1.25636713, -1.04463226]])
    y_gt = np.array([0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,
                     1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0])
    assert_allclose(X_resampled, X_gt, rtol=R_TOL)
    assert_array_equal(y_resampled, y_gt)
开发者ID:chkoar,项目名称:imbalanced-learn,代码行数:35,代码来源:test_smote.py


示例11: test_multilabel_representation_invariance

def test_multilabel_representation_invariance():
    # Generate some data
    n_classes = 4
    n_samples = 50

    _, y1 = make_multilabel_classification(n_features=1, n_classes=n_classes,
                                           random_state=0, n_samples=n_samples,
                                           allow_unlabeled=True)
    _, y2 = make_multilabel_classification(n_features=1, n_classes=n_classes,
                                           random_state=1, n_samples=n_samples,
                                           allow_unlabeled=True)

    # To make sure at least one empty label is present
    y1 = np.vstack([y1, [[0] * n_classes]])
    y2 = np.vstack([y2, [[0] * n_classes]])

    y1_sparse_indicator = sp.coo_matrix(y1)
    y2_sparse_indicator = sp.coo_matrix(y2)

    for name in MULTILABELS_METRICS:
        metric = ALL_METRICS[name]

        # XXX cruel hack to work with partial functions
        if isinstance(metric, partial):
            metric.__module__ = 'tmp'
            metric.__name__ = name

        measure = metric(y1, y2)

        # Check representation invariance
        assert_allclose(metric(y1_sparse_indicator, y2_sparse_indicator),
                        measure,
                        err_msg="%s failed representation invariance between "
                                "dense and sparse indicator formats." % name)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:34,代码来源:test_common.py


示例12: test_normalize_option_multilabel_classification

def test_normalize_option_multilabel_classification():
    # Test in the multilabel case
    n_classes = 4
    n_samples = 100

    # for both random_state 0 and 1, y_true and y_pred has at least one
    # unlabelled entry
    _, y_true = make_multilabel_classification(n_features=1,
                                               n_classes=n_classes,
                                               random_state=0,
                                               allow_unlabeled=True,
                                               n_samples=n_samples)
    _, y_pred = make_multilabel_classification(n_features=1,
                                               n_classes=n_classes,
                                               random_state=1,
                                               allow_unlabeled=True,
                                               n_samples=n_samples)

    # To make sure at least one empty label is present
    y_true += [0]*n_classes
    y_pred += [0]*n_classes

    for name in METRICS_WITH_NORMALIZE_OPTION:
        metrics = ALL_METRICS[name]
        measure = metrics(y_true, y_pred, normalize=True)
        assert_array_less(-1.0 * measure, 0,
                          err_msg="We failed to test correctly the normalize "
                                  "option")
        assert_allclose(metrics(y_true, y_pred, normalize=False) / n_samples,
                        measure, err_msg="Failed with %s" % name)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:30,代码来源:test_common.py


示例13: test_symmetry

def test_symmetry():
    # Test the symmetry of score and loss functions
    random_state = check_random_state(0)
    y_true = random_state.randint(0, 2, size=(20, ))
    y_pred = random_state.randint(0, 2, size=(20, ))

    # We shouldn't forget any metrics
    assert_equal(SYMMETRIC_METRICS.union(
        NOT_SYMMETRIC_METRICS, set(THRESHOLDED_METRICS),
        METRIC_UNDEFINED_BINARY_MULTICLASS),
        set(ALL_METRICS))

    assert_equal(
        SYMMETRIC_METRICS.intersection(NOT_SYMMETRIC_METRICS),
        set([]))

    # Symmetric metric
    for name in SYMMETRIC_METRICS:
        metric = ALL_METRICS[name]
        assert_allclose(metric(y_true, y_pred), metric(y_pred, y_true),
                        err_msg="%s is not symmetric" % name)

    # Not symmetric metrics
    for name in NOT_SYMMETRIC_METRICS:
        metric = ALL_METRICS[name]

        # use context manager to supply custom error message
        with assert_raises(AssertionError) as cm:
            assert_array_equal(metric(y_true, y_pred), metric(y_pred, y_true))
            cm.msg = ("%s seems to be symmetric" % name)
开发者ID:SuryodayBasak,项目名称:scikit-learn,代码行数:30,代码来源:test_common.py


示例14: test_ridge_gcv_vs_ridge_loo_cv

def test_ridge_gcv_vs_ridge_loo_cv(
        gcv_mode, X_constructor, X_shape, y_shape,
        fit_intercept, normalize, noise):
    n_samples, n_features = X_shape
    n_targets = y_shape[-1] if len(y_shape) == 2 else 1
    X, y = _make_sparse_offset_regression(
        n_samples=n_samples, n_features=n_features, n_targets=n_targets,
        random_state=0, shuffle=False, noise=noise, n_informative=5
    )
    y = y.reshape(y_shape)

    alphas = [1e-3, .1, 1., 10., 1e3]
    loo_ridge = RidgeCV(cv=n_samples, fit_intercept=fit_intercept,
                        alphas=alphas, scoring='neg_mean_squared_error',
                        normalize=normalize)
    gcv_ridge = RidgeCV(gcv_mode=gcv_mode, fit_intercept=fit_intercept,
                        alphas=alphas, normalize=normalize)

    loo_ridge.fit(X, y)

    X_gcv = X_constructor(X)
    gcv_ridge.fit(X_gcv, y)

    assert gcv_ridge.alpha_ == pytest.approx(loo_ridge.alpha_)
    assert_allclose(gcv_ridge.coef_, loo_ridge.coef_, rtol=1e-3)
    assert_allclose(gcv_ridge.intercept_, loo_ridge.intercept_, rtol=1e-3)
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:26,代码来源:test_ridge.py


示例15: test_ridge_regression_dtype_stability

def test_ridge_regression_dtype_stability(solver, seed):
    random_state = np.random.RandomState(seed)
    n_samples, n_features = 6, 5
    X = random_state.randn(n_samples, n_features)
    coef = random_state.randn(n_features)
    y = np.dot(X, coef) + 0.01 * random_state.randn(n_samples)
    alpha = 1.0
    results = dict()
    # XXX: Sparse CG seems to be far less numerically stable than the
    # others, maybe we should not enable float32 for this one.
    atol = 1e-3 if solver == "sparse_cg" else 1e-5
    for current_dtype in (np.float32, np.float64):
        results[current_dtype] = ridge_regression(X.astype(current_dtype),
                                                  y.astype(current_dtype),
                                                  alpha=alpha,
                                                  solver=solver,
                                                  random_state=random_state,
                                                  sample_weight=None,
                                                  max_iter=500,
                                                  tol=1e-10,
                                                  return_n_iter=False,
                                                  return_intercept=False)

    assert results[np.float32].dtype == np.float32
    assert results[np.float64].dtype == np.float64
    assert_allclose(results[np.float32], results[np.float64], atol=atol)
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:26,代码来源:test_ridge.py


示例16: test_transform_target_regressor_multi_to_single

def test_transform_target_regressor_multi_to_single():
    X = friedman[0]
    y = np.transpose([friedman[1], (friedman[1] ** 2 + 1)])

    def func(y):
        out = np.sqrt(y[:, 0] ** 2 + y[:, 1] ** 2)
        return out[:, np.newaxis]

    def inverse_func(y):
        return y

    tt = TransformedTargetRegressor(func=func, inverse_func=inverse_func,
                                    check_inverse=False)
    tt.fit(X, y)
    y_pred_2d_func = tt.predict(X)
    assert y_pred_2d_func.shape == (100, 1)

    # force that the function only return a 1D array
    def func(y):
        return np.sqrt(y[:, 0] ** 2 + y[:, 1] ** 2)

    tt = TransformedTargetRegressor(func=func, inverse_func=inverse_func,
                                    check_inverse=False)
    tt.fit(X, y)
    y_pred_1d_func = tt.predict(X)
    assert y_pred_1d_func.shape == (100, 1)

    assert_allclose(y_pred_1d_func, y_pred_2d_func)
开发者ID:TaihuaLi,项目名称:scikit-learn,代码行数:28,代码来源:test_target.py


示例17: test_sensitivity_specificity_extra_labels

def test_sensitivity_specificity_extra_labels(average, expected_specificty):
    y_true = [1, 3, 3, 2]
    y_pred = [1, 1, 3, 2]

    actual = specificity_score(
        y_true, y_pred, labels=[0, 1, 2, 3, 4], average=average)
    assert_allclose(expected_specificty, actual, rtol=R_TOL)
开发者ID:chkoar,项目名称:imbalanced-learn,代码行数:7,代码来源:test_classification.py


示例18: test_geometric_mean_support_binary

def test_geometric_mean_support_binary():
    y_true, y_pred, _ = make_prediction(binary=True)

    # compute the geometric mean for the binary problem
    geo_mean = geometric_mean_score(y_true, y_pred)

    assert_allclose(geo_mean, 0.77, rtol=R_TOL)
开发者ID:chkoar,项目名称:imbalanced-learn,代码行数:7,代码来源:test_classification.py


示例19: test_iterative_imputer_all_missing

def test_iterative_imputer_all_missing():
    n = 100
    d = 3
    X = np.zeros((n, d))
    imputer = IterativeImputer(missing_values=0, max_iter=1)
    X_imputed = imputer.fit_transform(X)
    assert_allclose(X_imputed, imputer.initial_imputer_.transform(X))
开发者ID:psorianom,项目名称:scikit-learn,代码行数:7,代码来源:test_impute.py


示例20: test_pairwise_distances_data_derived_params

def test_pairwise_distances_data_derived_params(n_jobs, metric, dist_function,
                                                y_is_x):
    # check that pairwise_distances give the same result in sequential and
    # parallel, when metric has data-derived parameters.
    with config_context(working_memory=1):  # to have more than 1 chunk
        rng = np.random.RandomState(0)
        X = rng.random_sample((1000, 10))

        if y_is_x:
            Y = X
            expected_dist_default_params = squareform(pdist(X, metric=metric))
            if metric == "seuclidean":
                params = {'V': np.var(X, axis=0, ddof=1)}
            else:
                params = {'VI': np.linalg.inv(np.cov(X.T)).T}
        else:
            Y = rng.random_sample((1000, 10))
            expected_dist_default_params = cdist(X, Y, metric=metric)
            if metric == "seuclidean":
                params = {'V': np.var(np.vstack([X, Y]), axis=0, ddof=1)}
            else:
                params = {'VI': np.linalg.inv(np.cov(np.vstack([X, Y]).T)).T}

        expected_dist_explicit_params = cdist(X, Y, metric=metric, **params)
        dist = np.vstack(tuple(dist_function(X, Y,
                                             metric=metric, n_jobs=n_jobs)))

        assert_allclose(dist, expected_dist_explicit_params)
        assert_allclose(dist, expected_dist_default_params)
开发者ID:scikit-learn,项目名称:scikit-learn,代码行数:29,代码来源:test_pairwise.py



注:本文中的sklearn.utils.testing.assert_allclose函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python testing.assert_allclose_dense_sparse函数代码示例发布时间:2022-05-27
下一篇:
Python testing.all_estimators函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap