• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python testing.assert_array_almost_equal函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.utils.testing.assert_array_almost_equal函数的典型用法代码示例。如果您正苦于以下问题:Python assert_array_almost_equal函数的具体用法?Python assert_array_almost_equal怎么用?Python assert_array_almost_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了assert_array_almost_equal函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: check_transformer_pickle

def check_transformer_pickle(name, Transformer):
    X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]],
                      random_state=0, n_features=2, cluster_std=0.1)
    n_samples, n_features = X.shape
    X = StandardScaler().fit_transform(X)
    X -= X.min()
    # catch deprecation warnings
    with warnings.catch_warnings(record=True):
        transformer = Transformer()
    if not hasattr(transformer, 'transform'):
        return
    set_random_state(transformer)
    set_fast_parameters(transformer)

    # fit
    if name in CROSS_DECOMPOSITION:
        random_state = np.random.RandomState(seed=12345)
        y_ = np.vstack([y, 2 * y + random_state.randint(2, size=len(y))])
        y_ = y_.T
    else:
        y_ = y

    transformer.fit(X, y_)
    X_pred = transformer.fit(X, y_).transform(X)
    pickled_transformer = pickle.dumps(transformer)
    unpickled_transformer = pickle.loads(pickled_transformer)
    pickled_X_pred = unpickled_transformer.transform(X)

    assert_array_almost_equal(pickled_X_pred, X_pred)
开发者ID:AlexMarshall011,项目名称:scikit-learn,代码行数:29,代码来源:estimator_checks.py


示例2: test_feature_union_weights

def test_feature_union_weights():
    # test feature union with transformer weights
    iris = load_iris()
    X = iris.data
    y = iris.target
    pca = RandomizedPCA(n_components=2, random_state=0)
    select = SelectKBest(k=1)
    # test using fit followed by transform
    fs = FeatureUnion([("pca", pca), ("select", select)],
                      transformer_weights={"pca": 10})
    fs.fit(X, y)
    X_transformed = fs.transform(X)
    # test using fit_transform
    fs = FeatureUnion([("pca", pca), ("select", select)],
                      transformer_weights={"pca": 10})
    X_fit_transformed = fs.fit_transform(X, y)
    # test it works with transformers missing fit_transform
    fs = FeatureUnion([("mock", TransfT()), ("pca", pca), ("select", select)],
                      transformer_weights={"mock": 10})
    X_fit_transformed_wo_method = fs.fit_transform(X, y)
    # check against expected result

    # We use a different pca object to control the random_state stream
    assert_array_almost_equal(X_transformed[:, :-1], 10 * pca.fit_transform(X))
    assert_array_equal(X_transformed[:, -1],
                       select.fit_transform(X, y).ravel())
    assert_array_almost_equal(X_fit_transformed[:, :-1],
                              10 * pca.fit_transform(X))
    assert_array_equal(X_fit_transformed[:, -1],
                       select.fit_transform(X, y).ravel())
    assert_equal(X_fit_transformed_wo_method.shape, (X.shape[0], 7))
开发者ID:Givonaldo,项目名称:scikit-learn,代码行数:31,代码来源:test_pipeline.py


示例3: test_RadiusNeighborsClassifier_multioutput

def test_RadiusNeighborsClassifier_multioutput():
    """Test k-NN classifier on multioutput data"""
    rng = check_random_state(0)
    n_features = 2
    n_samples = 40
    n_output = 3

    X = rng.rand(n_samples, n_features)
    y = rng.randint(0, 3, (n_samples, n_output))

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    weights = [None, 'uniform', 'distance', _weight_func]

    for algorithm, weights in product(ALGORITHMS, weights):
        # Stack single output prediction
        y_pred_so = []
        for o in range(n_output):
            rnn = neighbors.RadiusNeighborsClassifier(weights=weights,
                                                      algorithm=algorithm)
            rnn.fit(X_train, y_train[:, o])
            y_pred_so.append(rnn.predict(X_test))

        y_pred_so = np.vstack(y_pred_so).T
        assert_equal(y_pred_so.shape, y_test.shape)

        # Multioutput prediction
        rnn_mo = neighbors.RadiusNeighborsClassifier(weights=weights,
                                                     algorithm=algorithm)
        rnn_mo.fit(X_train, y_train)
        y_pred_mo = rnn_mo.predict(X_test)

        assert_equal(y_pred_mo.shape, y_test.shape)
        assert_array_almost_equal(y_pred_mo, y_pred_so)
开发者ID:93sam,项目名称:scikit-learn,代码行数:34,代码来源:test_neighbors.py


示例4: test_primal_dual_relationship

def test_primal_dual_relationship():
    y = y_diabetes.reshape(-1, 1)
    coef = _solve_cholesky(X_diabetes, y, alpha=[1e-2])
    K = np.dot(X_diabetes, X_diabetes.T)
    dual_coef = _solve_cholesky_kernel(K, y, alpha=[1e-2])
    coef2 = np.dot(X_diabetes.T, dual_coef).T
    assert_array_almost_equal(coef, coef2)
开发者ID:BobChew,项目名称:scikit-learn,代码行数:7,代码来源:test_ridge.py


示例5: test_class_weights

def test_class_weights():
    # Test class weights.
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
                  [1.0, 1.0], [1.0, 0.0]])
    y = [1, 1, 1, -1, -1]

    clf = RidgeClassifier(class_weight=None)
    clf.fit(X, y)
    assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))

    # we give a small weights to class 1
    clf = RidgeClassifier(class_weight={1: 0.001})
    clf.fit(X, y)

    # now the hyperplane should rotate clock-wise and
    # the prediction on this point should shift
    assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1]))

    # check if class_weight = 'balanced' can handle negative labels.
    clf = RidgeClassifier(class_weight='balanced')
    clf.fit(X, y)
    assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))

    # class_weight = 'balanced', and class_weight = None should return
    # same values when y has equal number of all labels
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0]])
    y = [1, 1, -1, -1]
    clf = RidgeClassifier(class_weight=None)
    clf.fit(X, y)
    clfa = RidgeClassifier(class_weight='balanced')
    clfa.fit(X, y)
    assert_equal(len(clfa.classes_), 2)
    assert_array_almost_equal(clf.coef_, clfa.coef_)
    assert_array_almost_equal(clf.intercept_, clfa.intercept_)
开发者ID:BobChew,项目名称:scikit-learn,代码行数:34,代码来源:test_ridge.py


示例6: test_enet_l1_ratio

def test_enet_l1_ratio():
    # Test that an error message is raised if an estimator that
    # uses _alpha_grid is called with l1_ratio=0
    msg = ("Automatic alpha grid generation is not supported for l1_ratio=0. "
           "Please supply a grid by providing your estimator with the "
           "appropriate `alphas=` argument.")
    X = np.array([[1, 2, 4, 5, 8], [3, 5, 7, 7, 8]]).T
    y = np.array([12, 10, 11, 21, 5])

    assert_raise_message(ValueError, msg, ElasticNetCV(
        l1_ratio=0, random_state=42).fit, X, y)
    assert_raise_message(ValueError, msg, MultiTaskElasticNetCV(
        l1_ratio=0, random_state=42).fit, X, y[:, None])

    # Test that l1_ratio=0 is allowed if we supply a grid manually
    alphas = [0.1, 10]
    estkwds = {'alphas': alphas, 'random_state': 42}
    est_desired = ElasticNetCV(l1_ratio=0.00001, **estkwds)
    est = ElasticNetCV(l1_ratio=0, **estkwds)
    with ignore_warnings():
        est_desired.fit(X, y)
        est.fit(X, y)
    assert_array_almost_equal(est.coef_, est_desired.coef_, decimal=5)

    est_desired = MultiTaskElasticNetCV(l1_ratio=0.00001, **estkwds)
    est = MultiTaskElasticNetCV(l1_ratio=0, **estkwds)
    with ignore_warnings():
        est.fit(X, y[:, None])
        est_desired.fit(X, y[:, None])
    assert_array_almost_equal(est.coef_, est_desired.coef_, decimal=5)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:30,代码来源:test_coordinate_descent.py


示例7: test_inverse_transform

def test_inverse_transform():
    # Test FastICA.inverse_transform
    n_features = 10
    n_samples = 100
    n1, n2 = 5, 10
    rng = np.random.RandomState(0)
    X = rng.random_sample((n_samples, n_features))
    expected = {(True, n1): (n_features, n1),
                (True, n2): (n_features, n2),
                (False, n1): (n_features, n2),
                (False, n2): (n_features, n2)}
    for whiten in [True, False]:
        for n_components in [n1, n2]:
            n_components_ = (n_components if n_components is not None else
                             X.shape[1])
            ica = FastICA(n_components=n_components, random_state=rng,
                          whiten=whiten)
            with warnings.catch_warnings(record=True):
                # catch "n_components ignored" warning
                Xt = ica.fit_transform(X)
            expected_shape = expected[(whiten, n_components_)]
            assert_equal(ica.mixing_.shape, expected_shape)
            X2 = ica.inverse_transform(Xt)
            assert_equal(X.shape, X2.shape)

            # reversibility test in non-reduction case
            if n_components == X.shape[1]:
                assert_array_almost_equal(X, X2)
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:28,代码来源:test_fastica.py


示例8: test_nystroem_approximation

def test_nystroem_approximation():
    # some basic tests
    rnd = np.random.RandomState(0)
    X = rnd.uniform(size=(10, 4))

    # With n_components = n_samples this is exact
    X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X)
    K = rbf_kernel(X)
    assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K)

    trans = Nystroem(n_components=2, random_state=rnd)
    X_transformed = trans.fit(X).transform(X)
    assert_equal(X_transformed.shape, (X.shape[0], 2))

    # test callable kernel
    linear_kernel = lambda X, Y: np.dot(X, Y.T)
    trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd)
    X_transformed = trans.fit(X).transform(X)
    assert_equal(X_transformed.shape, (X.shape[0], 2))

    # test that available kernels fit and transform
    kernels_available = kernel_metrics()
    for kern in kernels_available:
        trans = Nystroem(n_components=2, kernel=kern, random_state=rnd)
        X_transformed = trans.fit(X).transform(X)
        assert_equal(X_transformed.shape, (X.shape[0], 2))
开发者ID:CheMcCandless,项目名称:scikit-learn,代码行数:26,代码来源:test_kernel_approximation.py


示例9: test_logistic_regression_class_weights

def test_logistic_regression_class_weights():
    # Multinomial case: remove 90% of class 0
    X = iris.data[45:, :]
    y = iris.target[45:]
    solvers = ("lbfgs", "newton-cg")
    class_weight_dict = _compute_class_weight_dictionary(y)

    for solver in solvers:
        clf1 = LogisticRegression(solver=solver, multi_class="multinomial",
                                  class_weight="balanced")
        clf2 = LogisticRegression(solver=solver, multi_class="multinomial",
                                  class_weight=class_weight_dict)
        clf1.fit(X, y)
        clf2.fit(X, y)
        assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=4)

    # Binary case: remove 90% of class 0 and 100% of class 2
    X = iris.data[45:100, :]
    y = iris.target[45:100]
    solvers = ("lbfgs", "newton-cg", "liblinear")
    class_weight_dict = _compute_class_weight_dictionary(y)

    for solver in solvers:
        clf1 = LogisticRegression(solver=solver, multi_class="ovr",
                                  class_weight="balanced")
        clf2 = LogisticRegression(solver=solver, multi_class="ovr",
                                  class_weight=class_weight_dict)
        clf1.fit(X, y)
        clf2.fit(X, y)
        assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=6)
开发者ID:huafengw,项目名称:scikit-learn,代码行数:30,代码来源:test_logistic.py


示例10: test_intercept_logistic_helper

def test_intercept_logistic_helper():
    n_samples, n_features = 10, 5
    X, y = make_classification(n_samples=n_samples, n_features=n_features,
                               random_state=0)

    # Fit intercept case.
    alpha = 1.
    w = np.ones(n_features + 1)
    grad_interp, hess_interp = _logistic_grad_hess(w, X, y, alpha)
    loss_interp = _logistic_loss(w, X, y, alpha)

    # Do not fit intercept. This can be considered equivalent to adding
    # a feature vector of ones, i.e column of one vectors.
    X_ = np.hstack((X, np.ones(10)[:, np.newaxis]))
    grad, hess = _logistic_grad_hess(w, X_, y, alpha)
    loss = _logistic_loss(w, X_, y, alpha)

    # In the fit_intercept=False case, the feature vector of ones is
    # penalized. This should be taken care of.
    assert_almost_equal(loss_interp + 0.5 * (w[-1] ** 2), loss)

    # Check gradient.
    assert_array_almost_equal(grad_interp[:n_features], grad[:n_features])
    assert_almost_equal(grad_interp[-1] + alpha * w[-1], grad[-1])

    rng = np.random.RandomState(0)
    grad = rng.rand(n_features + 1)
    hess_interp = hess_interp(grad)
    hess = hess(grad)
    assert_array_almost_equal(hess_interp[:n_features], hess[:n_features])
    assert_almost_equal(hess_interp[-1] + alpha * grad[-1], hess[-1])
开发者ID:huafengw,项目名称:scikit-learn,代码行数:31,代码来源:test_logistic.py


示例11: test_write_parameters

def test_write_parameters():
    # Test that we can write to coef_ and intercept_
    clf = LogisticRegression(random_state=0)
    clf.fit(X, Y1)
    clf.coef_[:] = 0
    clf.intercept_[:] = 0
    assert_array_almost_equal(clf.decision_function(X), 0)
开发者ID:huafengw,项目名称:scikit-learn,代码行数:7,代码来源:test_logistic.py


示例12: test_predict_iris

def test_predict_iris():
    # Test logistic regression with the iris dataset
    n_samples, n_features = iris.data.shape

    target = iris.target_names[iris.target]

    # Test that both multinomial and OvR solvers handle
    # multiclass data correctly and give good accuracy
    # score (>0.95) for the training data.
    for clf in [LogisticRegression(C=len(iris.data)),
                LogisticRegression(C=len(iris.data), solver='lbfgs',
                                   multi_class='multinomial'),
                LogisticRegression(C=len(iris.data), solver='newton-cg',
                                   multi_class='multinomial'),
                LogisticRegression(C=len(iris.data), solver='sag', tol=1e-2,
                                   multi_class='ovr', random_state=42),
                LogisticRegression(C=len(iris.data), solver='saga', tol=1e-2,
                                   multi_class='ovr', random_state=42)
                ]:
        clf.fit(iris.data, target)
        assert_array_equal(np.unique(target), clf.classes_)

        pred = clf.predict(iris.data)
        assert_greater(np.mean(pred == target), .95)

        probabilities = clf.predict_proba(iris.data)
        assert_array_almost_equal(probabilities.sum(axis=1),
                                  np.ones(n_samples))

        pred = iris.target_names[probabilities.argmax(axis=1)]
        assert_greater(np.mean(pred == target), .95)
开发者ID:huafengw,项目名称:scikit-learn,代码行数:31,代码来源:test_logistic.py


示例13: test_logistic_regressioncv_class_weights

def test_logistic_regressioncv_class_weights():
    X, y = make_classification(n_samples=20, n_features=20, n_informative=10,
                               n_classes=3, random_state=0)

    # Test the liblinear fails when class_weight of type dict is
    # provided, when it is multiclass. However it can handle
    # binary problems.
    clf_lib = LogisticRegressionCV(class_weight={0: 0.1, 1: 0.2},
                                   solver='liblinear')
    assert_raises(ValueError, clf_lib.fit, X, y)
    y_ = y.copy()
    y_[y == 2] = 1
    clf_lib.fit(X, y_)
    assert_array_equal(clf_lib.classes_, [0, 1])

    # Test for class_weight=auto
    X, y = make_classification(n_samples=20, n_features=20, n_informative=10,
                               random_state=0)
    clf_lbf = LogisticRegressionCV(solver='lbfgs', fit_intercept=False,
                                   class_weight='auto')
    clf_lbf.fit(X, y)
    clf_lib = LogisticRegressionCV(solver='liblinear', fit_intercept=False,
                                   class_weight='auto')
    clf_lib.fit(X, y)
    assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4)
开发者ID:AngelaGuoguo,项目名称:scikit-learn,代码行数:25,代码来源:test_logistic.py


示例14: test_liblinear_random_state

def test_liblinear_random_state():
    X, y = make_classification(n_samples=20)
    lr1 = LogisticRegression(random_state=0)
    lr1.fit(X, y)
    lr2 = LogisticRegression(random_state=0)
    lr2.fit(X, y)
    assert_array_almost_equal(lr1.coef_, lr2.coef_)
开发者ID:AngelaGuoguo,项目名称:scikit-learn,代码行数:7,代码来源:test_logistic.py


示例15: test_consistency_path

def test_consistency_path():
    """Test that the path algorithm is consistent"""
    rng = np.random.RandomState(0)
    X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2)))
    y = [1] * 100 + [-1] * 100
    Cs = np.logspace(0, 4, 10)

    f = ignore_warnings
    # can't test with fit_intercept=True since LIBLINEAR
    # penalizes the intercept
    for method in ('lbfgs', 'newton-cg', 'liblinear'):
        coefs, Cs = f(logistic_regression_path)(
            X, y, Cs=Cs, fit_intercept=False, tol=1e-16, solver=method)
        for i, C in enumerate(Cs):
            lr = LogisticRegression(C=C, fit_intercept=False, tol=1e-16)
            lr.fit(X, y)
            lr_coef = lr.coef_.ravel()
            assert_array_almost_equal(lr_coef, coefs[i], decimal=4)

    # test for fit_intercept=True
    for method in ('lbfgs', 'newton-cg', 'liblinear'):
        Cs = [1e3]
        coefs, Cs = f(logistic_regression_path)(
            X, y, Cs=Cs, fit_intercept=True, tol=1e-4, solver=method)
        lr = LogisticRegression(C=Cs[0], fit_intercept=True, tol=1e-4,
                                intercept_scaling=10000)
        lr.fit(X, y)
        lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_])
        assert_array_almost_equal(lr_coef, coefs[0], decimal=4)
开发者ID:AngelaGuoguo,项目名称:scikit-learn,代码行数:29,代码来源:test_logistic.py


示例16: check_regressors_int

def check_regressors_int(name, Regressor):
    X, _ = _boston_subset()
    X = X[:50]
    rnd = np.random.RandomState(0)
    y = rnd.randint(3, size=X.shape[0])
    y = multioutput_estimator_convert_y_2d(name, y)
    rnd = np.random.RandomState(0)
    # catch deprecation warnings
    with warnings.catch_warnings(record=True):
        # separate estimators to control random seeds
        regressor_1 = Regressor()
        regressor_2 = Regressor()
    set_fast_parameters(regressor_1)
    set_fast_parameters(regressor_2)
    set_random_state(regressor_1)
    set_random_state(regressor_2)

    if name in CROSS_DECOMPOSITION:
        y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))])
        y_ = y_.T
    else:
        y_ = y

    # fit
    regressor_1.fit(X, y_)
    pred1 = regressor_1.predict(X)
    regressor_2.fit(X, y_.astype(np.float))
    pred2 = regressor_2.predict(X)
    assert_array_almost_equal(pred1, pred2, 2, name)
开发者ID:AlexMarshall011,项目名称:scikit-learn,代码行数:29,代码来源:estimator_checks.py


示例17: check_regressors_pickle

def check_regressors_pickle(name, Regressor):
    X, y = _boston_subset()
    y = StandardScaler().fit_transform(y)   # X is already scaled
    y = multioutput_estimator_convert_y_2d(name, y)
    rnd = np.random.RandomState(0)
    # catch deprecation warnings
    with warnings.catch_warnings(record=True):
        regressor = Regressor()
    set_fast_parameters(regressor)
    if not hasattr(regressor, 'alphas') and hasattr(regressor, 'alpha'):
        # linear regressors need to set alpha, but not generalized CV ones
        regressor.alpha = 0.01

    if name in CROSS_DECOMPOSITION:
        y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))])
        y_ = y_.T
    else:
        y_ = y
    regressor.fit(X, y_)
    y_pred = regressor.predict(X)
    # store old predictions
    pickled_regressor = pickle.dumps(regressor)
    unpickled_regressor = pickle.loads(pickled_regressor)
    pickled_y_pred = unpickled_regressor.predict(X)
    assert_array_almost_equal(pickled_y_pred, y_pred)
开发者ID:AlexMarshall011,项目名称:scikit-learn,代码行数:25,代码来源:estimator_checks.py


示例18: test_multinomial_grad_hess

def test_multinomial_grad_hess():
    rng = np.random.RandomState(0)
    n_samples, n_features, n_classes = 100, 5, 3
    X = rng.randn(n_samples, n_features)
    w = rng.rand(n_classes, n_features)
    Y = np.zeros((n_samples, n_classes))
    ind = np.argmax(np.dot(X, w.T), axis=1)
    Y[range(0, n_samples), ind] = 1
    w = w.ravel()
    sample_weights = np.ones(X.shape[0])
    grad, hessp = _multinomial_grad_hess(w, X, Y, alpha=1.,
                                         sample_weight=sample_weights)
    # extract first column of hessian matrix
    vec = np.zeros(n_features * n_classes)
    vec[0] = 1
    hess_col = hessp(vec)

    # Estimate hessian using least squares as done in
    # test_logistic_grad_hess
    e = 1e-3
    d_x = np.linspace(-e, e, 30)
    d_grad = np.array([
        _multinomial_grad_hess(w + t * vec, X, Y, alpha=1.,
                               sample_weight=sample_weights)[0]
        for t in d_x
    ])
    d_grad -= d_grad.mean(axis=0)
    approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel()
    assert_array_almost_equal(hess_col, approx_hess_col)
开发者ID:huafengw,项目名称:scikit-learn,代码行数:29,代码来源:test_logistic.py


示例19: test_skewed_chi2_sampler

def test_skewed_chi2_sampler():
    """test that RBFSampler approximates kernel on random data"""

    # compute exact kernel
    c = 0.03
    # appreviations for easier formular
    X_c = (X + c)[:, np.newaxis, :]
    Y_c = (Y + c)[np.newaxis, :, :]

    # we do it in log-space in the hope that it's more stable
    # this array is n_samples_x x n_samples_y big x n_features
    log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) -
                  np.log(X_c + Y_c))
    # reduce to n_samples_x x n_samples_y by summing over features in log-space
    kernel = np.exp(log_kernel.sum(axis=2))

    # approximate kernel mapping
    transform = SkewedChi2Sampler(skewedness=c, n_components=1000,
                                  random_state=42)
    X_trans = transform.fit_transform(X)
    Y_trans = transform.transform(Y)

    kernel_approx = np.dot(X_trans, Y_trans.T)
    assert_array_almost_equal(kernel, kernel_approx, 1)

    # test error is raised on negative input
    Y_neg = Y.copy()
    Y_neg[0, 0] = -1
    assert_raises(ValueError, transform.transform, Y_neg)
开发者ID:CheMcCandless,项目名称:scikit-learn,代码行数:29,代码来源:test_kernel_approximation.py


示例20: test_classification_sample_weight

def test_classification_sample_weight():
    X = [[0], [0], [1]]
    y = [0, 1, 0]
    sample_weight = [0.1, 1., 0.1]

    clf = DummyClassifier().fit(X, y, sample_weight)
    assert_array_almost_equal(clf.class_prior_, [0.2 / 1.2, 1. / 1.2])
开发者ID:Aerlinger,项目名称:scikit-learn,代码行数:7,代码来源:test_dummy.py



注:本文中的sklearn.utils.testing.assert_array_almost_equal函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python testing.assert_array_equal函数代码示例发布时间:2022-05-27
下一篇:
Python testing.assert_almost_equal函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap