本文整理汇总了Python中sklearn.utils.testing.assert_array_equal函数的典型用法代码示例。如果您正苦于以下问题:Python assert_array_equal函数的具体用法?Python assert_array_equal怎么用?Python assert_array_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assert_array_equal函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: check_classifiers_classes
def check_classifiers_classes(name, Classifier):
X, y = make_blobs(n_samples=30, random_state=0, cluster_std=0.1)
X, y = shuffle(X, y, random_state=7)
X = StandardScaler().fit_transform(X)
# We need to make sure that we have non negative data, for things
# like NMF
X -= X.min() - .1
y_names = np.array(["one", "two", "three"])[y]
for y_names in [y_names, y_names.astype('O')]:
if name in ["LabelPropagation", "LabelSpreading"]:
# TODO some complication with -1 label
y_ = y
else:
y_ = y_names
classes = np.unique(y_)
# catch deprecation warnings
with warnings.catch_warnings(record=True):
classifier = Classifier()
if name == 'BernoulliNB':
classifier.set_params(binarize=X.mean())
set_fast_parameters(classifier)
# fit
classifier.fit(X, y_)
y_pred = classifier.predict(X)
# training set performance
assert_array_equal(np.unique(y_), np.unique(y_pred))
if np.any(classifier.classes_ != classes):
print("Unexpected classes_ attribute for %r: "
"expected %s, got %s" %
(classifier, classes, classifier.classes_))
开发者ID:AlexMarshall011,项目名称:scikit-learn,代码行数:33,代码来源:estimator_checks.py
示例2: test_precision_recall_f1_score_binary
def test_precision_recall_f1_score_binary():
"""Test Precision Recall and F1 Score for binary classification task"""
y_true, y_pred, _ = make_prediction(binary=True)
# detailed measures for each class
p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None)
assert_array_almost_equal(p, [0.73, 0.85], 2)
assert_array_almost_equal(r, [0.88, 0.68], 2)
assert_array_almost_equal(f, [0.80, 0.76], 2)
assert_array_equal(s, [25, 25])
# individual scoring function that can be used for grid search: in the
# binary class case the score is the value of the measure for the positive
# class (e.g. label == 1)
ps = precision_score(y_true, y_pred)
assert_array_almost_equal(ps, 0.85, 2)
rs = recall_score(y_true, y_pred)
assert_array_almost_equal(rs, 0.68, 2)
fs = f1_score(y_true, y_pred)
assert_array_almost_equal(fs, 0.76, 2)
assert_almost_equal(fbeta_score(y_true, y_pred, beta=2),
(1 + 2 ** 2) * ps * rs / (2 ** 2 * ps + rs), 2)
开发者ID:nateyoder,项目名称:scikit-learn,代码行数:25,代码来源:test_classification.py
示例3: test_radius_neighbors_classifier_when_no_neighbors
def test_radius_neighbors_classifier_when_no_neighbors():
""" Test radius-based classifier when no neighbors found.
In this case it should rise an informative exception """
X = np.array([[1.0, 1.0], [2.0, 2.0]])
y = np.array([1, 2])
radius = 0.1
z1 = np.array([[1.01, 1.01], [2.01, 2.01]]) # no outliers
z2 = np.array([[1.01, 1.01], [1.4, 1.4]]) # one outlier
weight_func = _weight_func
for outlier_label in [0, -1, None]:
for algorithm in ALGORITHMS:
for weights in ['uniform', 'distance', weight_func]:
rnc = neighbors.RadiusNeighborsClassifier
clf = rnc(radius=radius, weights=weights, algorithm=algorithm,
outlier_label=outlier_label)
clf.fit(X, y)
assert_array_equal(np.array([1, 2]),
clf.predict(z1))
if outlier_label is None:
assert_raises(ValueError, clf.predict, z2)
elif False:
assert_array_equal(np.array([1, outlier_label]),
clf.predict(z2))
开发者ID:93sam,项目名称:scikit-learn,代码行数:27,代码来源:test_neighbors.py
示例4: test_kneighbors_classifier_predict_proba
def test_kneighbors_classifier_predict_proba():
"""Test KNeighborsClassifier.predict_proba() method"""
X = np.array([[0, 2, 0],
[0, 2, 1],
[2, 0, 0],
[2, 2, 0],
[0, 0, 2],
[0, 0, 1]])
y = np.array([4, 4, 5, 5, 1, 1])
cls = neighbors.KNeighborsClassifier(n_neighbors=3, p=1) # cityblock dist
cls.fit(X, y)
y_prob = cls.predict_proba(X)
real_prob = np.array([[0, 2. / 3, 1. / 3],
[1. / 3, 2. / 3, 0],
[1. / 3, 0, 2. / 3],
[0, 1. / 3, 2. / 3],
[2. / 3, 1. / 3, 0],
[2. / 3, 1. / 3, 0]])
assert_array_equal(real_prob, y_prob)
# Check that it also works with non integer labels
cls.fit(X, y.astype(str))
y_prob = cls.predict_proba(X)
assert_array_equal(real_prob, y_prob)
# Check that it works with weights='distance'
cls = neighbors.KNeighborsClassifier(
n_neighbors=2, p=1, weights='distance')
cls.fit(X, y)
y_prob = cls.predict_proba(np.array([[0, 2, 0], [2, 2, 2]]))
real_prob = np.array([[0, 1, 0], [0, 0.4, 0.6]])
assert_array_almost_equal(real_prob, y_prob)
开发者ID:93sam,项目名称:scikit-learn,代码行数:30,代码来源:test_neighbors.py
示例5: test_deprecated_score_func
def test_deprecated_score_func():
# test that old deprecated way of passing a score / loss function is still
# supported
X, y = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC(random_state=0)
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
cv.fit(X[:180], y[:180])
y_pred = cv.predict(X[180:])
C = cv.best_estimator_.C
clf = LinearSVC(random_state=0)
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, score_func=f1_score)
with warnings.catch_warnings(record=True):
# catch deprecation warning
cv.fit(X[:180], y[:180])
y_pred_func = cv.predict(X[180:])
C_func = cv.best_estimator_.C
assert_array_equal(y_pred, y_pred_func)
assert_equal(C, C_func)
# test loss where greater is worse
def f1_loss(y_true_, y_pred_):
return -f1_score(y_true_, y_pred_)
clf = LinearSVC(random_state=0)
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, loss_func=f1_loss)
with warnings.catch_warnings(record=True):
# catch deprecation warning
cv.fit(X[:180], y[:180])
y_pred_loss = cv.predict(X[180:])
C_loss = cv.best_estimator_.C
assert_array_equal(y_pred, y_pred_loss)
assert_equal(C, C_loss)
开发者ID:CheMcCandless,项目名称:scikit-learn,代码行数:35,代码来源:test_grid_search.py
示例6: test_int_input
def test_int_input():
X_list = [[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]]
for dtype in [np.int32, np.int64]:
X_int = np.array(X_list, dtype=dtype)
X_int_csr = sp.csr_matrix(X_int)
init_int = X_int[:2]
fitted_models = [
KMeans(n_clusters=2).fit(X_int),
KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_int),
# mini batch kmeans is very unstable on such a small dataset hence
# we use many inits
MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int),
MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int_csr),
MiniBatchKMeans(n_clusters=2, batch_size=2,
init=init_int, n_init=1).fit(X_int),
MiniBatchKMeans(n_clusters=2, batch_size=2,
init=init_int, n_init=1).fit(X_int_csr),
]
for km in fitted_models:
assert_equal(km.cluster_centers_.dtype, np.float64)
expected_labels = [0, 1, 1, 0, 0, 1]
scores = np.array([v_measure_score(expected_labels, km.labels_)
for km in fitted_models])
assert_array_equal(scores, np.ones(scores.shape[0]))
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:27,代码来源:test_k_means.py
示例7: test_sparse_fit_params
def test_sparse_fit_params():
iris = load_iris()
X, y = iris.data, iris.target
clf = MockClassifier()
fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))}
a = cval.cross_val_score(clf, X, y, fit_params=fit_params)
assert_array_equal(a, np.ones(3))
开发者ID:AppliedArtificialIntelligence,项目名称:scikit-learn,代码行数:7,代码来源:test_cross_validation.py
示例8: test_ovo_ties
def test_ovo_ties():
# test that ties are broken using the decision function, not defaulting to
# the smallest label
X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]])
y = np.array([2, 0, 1, 2])
multi_clf = OneVsOneClassifier(Perceptron())
ovo_prediction = multi_clf.fit(X, y).predict(X)
# recalculate votes to make sure we have a tie
predictions = np.vstack([clf.predict(X) for clf in multi_clf.estimators_])
scores = np.vstack([clf.decision_function(X)
for clf in multi_clf.estimators_])
# classifiers are in order 0-1, 0-2, 1-2
# aggregate votes:
votes = np.zeros((4, 3))
votes[np.arange(4), predictions[0]] += 1
votes[np.arange(4), 2 * predictions[1]] += 1
votes[np.arange(4), 1 + predictions[2]] += 1
# for the first point, there is one vote per class
assert_array_equal(votes[0, :], 1)
# for the rest, there is no tie and the prediction is the argmax
assert_array_equal(np.argmax(votes[1:], axis=1), ovo_prediction[1:])
# for the tie, the prediction is the class with the highest score
assert_equal(ovo_prediction[0], 0)
# in the zero-one classifier, the score for 0 is greater than the score for
# one.
assert_greater(scores[0][0], scores[0][1])
# score for one is greater than score for zero
assert_greater(scores[2, 0] - scores[0, 0], scores[0, 0] + scores[1, 0])
# score for one is greater than score for two
assert_greater(scores[2, 0] - scores[0, 0], -scores[1, 0] - scores[2, 0])
开发者ID:jaguila,项目名称:cert,代码行数:31,代码来源:test_multiclass.py
示例9: test_cross_val_generator_mask_indices_same
def test_cross_val_generator_mask_indices_same():
# Test that the cross validation generators return the same results when
# indices=True and when indices=False
y = np.array([0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2])
labels = np.array([1, 1, 2, 3, 3, 3, 4])
loo_mask = cval.LeaveOneOut(5, indices=False)
loo_ind = cval.LeaveOneOut(5, indices=True)
lpo_mask = cval.LeavePOut(10, 2, indices=False)
lpo_ind = cval.LeavePOut(10, 2, indices=True)
kf_mask = cval.KFold(10, 5, indices=False, shuffle=True, random_state=1)
kf_ind = cval.KFold(10, 5, indices=True, shuffle=True, random_state=1)
skf_mask = cval.StratifiedKFold(y, 3, indices=False)
skf_ind = cval.StratifiedKFold(y, 3, indices=True)
lolo_mask = cval.LeaveOneLabelOut(labels, indices=False)
lolo_ind = cval.LeaveOneLabelOut(labels, indices=True)
lopo_mask = cval.LeavePLabelOut(labels, 2, indices=False)
lopo_ind = cval.LeavePLabelOut(labels, 2, indices=True)
for cv_mask, cv_ind in [(loo_mask, loo_ind), (lpo_mask, lpo_ind),
(kf_mask, kf_ind), (skf_mask, skf_ind),
(lolo_mask, lolo_ind), (lopo_mask, lopo_ind)]:
for (train_mask, test_mask), (train_ind, test_ind) in \
zip(cv_mask, cv_ind):
assert_array_equal(np.where(train_mask)[0], train_ind)
assert_array_equal(np.where(test_mask)[0], test_ind)
开发者ID:GGXH,项目名称:scikit-learn,代码行数:26,代码来源:test_cross_validation.py
示例10: test_spectral_clustering
def test_spectral_clustering():
S = np.array([[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
[0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0],
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0]])
for eigen_solver in ('arpack', 'lobpcg'):
for assign_labels in ('kmeans', 'discretize'):
for mat in (S, sparse.csr_matrix(S)):
model = SpectralClustering(random_state=0, n_clusters=2,
affinity='precomputed',
eigen_solver=eigen_solver,
assign_labels=assign_labels
).fit(mat)
labels = model.labels_
if labels[0] == 0:
labels = 1 - labels
assert_array_equal(labels, [1, 1, 1, 0, 0, 0, 0])
model_copy = loads(dumps(model))
assert_equal(model_copy.n_clusters, model.n_clusters)
assert_equal(model_copy.eigen_solver, model.eigen_solver)
assert_array_equal(model_copy.labels_, model.labels_)
开发者ID:0x0all,项目名称:scikit-learn,代码行数:27,代码来源:test_spectral.py
示例11: test_predict_iris
def test_predict_iris():
# Test logistic regression with the iris dataset
n_samples, n_features = iris.data.shape
target = iris.target_names[iris.target]
# Test that both multinomial and OvR solvers handle
# multiclass data correctly and give good accuracy
# score (>0.95) for the training data.
for clf in [LogisticRegression(C=len(iris.data)),
LogisticRegression(C=len(iris.data), solver='lbfgs',
multi_class='multinomial'),
LogisticRegression(C=len(iris.data), solver='newton-cg',
multi_class='multinomial'),
LogisticRegression(C=len(iris.data), solver='sag', tol=1e-2,
multi_class='ovr', random_state=42),
LogisticRegression(C=len(iris.data), solver='saga', tol=1e-2,
multi_class='ovr', random_state=42)
]:
clf.fit(iris.data, target)
assert_array_equal(np.unique(target), clf.classes_)
pred = clf.predict(iris.data)
assert_greater(np.mean(pred == target), .95)
probabilities = clf.predict_proba(iris.data)
assert_array_almost_equal(probabilities.sum(axis=1),
np.ones(n_samples))
pred = iris.target_names[probabilities.argmax(axis=1)]
assert_greater(np.mean(pred == target), .95)
开发者ID:huafengw,项目名称:scikit-learn,代码行数:31,代码来源:test_logistic.py
示例12: test_logistic_regressioncv_class_weights
def test_logistic_regressioncv_class_weights():
X, y = make_classification(n_samples=20, n_features=20, n_informative=10,
n_classes=3, random_state=0)
# Test the liblinear fails when class_weight of type dict is
# provided, when it is multiclass. However it can handle
# binary problems.
clf_lib = LogisticRegressionCV(class_weight={0: 0.1, 1: 0.2},
solver='liblinear')
assert_raises(ValueError, clf_lib.fit, X, y)
y_ = y.copy()
y_[y == 2] = 1
clf_lib.fit(X, y_)
assert_array_equal(clf_lib.classes_, [0, 1])
# Test for class_weight=auto
X, y = make_classification(n_samples=20, n_features=20, n_informative=10,
random_state=0)
clf_lbf = LogisticRegressionCV(solver='lbfgs', fit_intercept=False,
class_weight='auto')
clf_lbf.fit(X, y)
clf_lib = LogisticRegressionCV(solver='liblinear', fit_intercept=False,
class_weight='auto')
clf_lib.fit(X, y)
assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4)
开发者ID:AngelaGuoguo,项目名称:scikit-learn,代码行数:25,代码来源:test_logistic.py
示例13: test_feature_union_weights
def test_feature_union_weights():
# test feature union with transformer weights
iris = load_iris()
X = iris.data
y = iris.target
pca = RandomizedPCA(n_components=2, random_state=0)
select = SelectKBest(k=1)
# test using fit followed by transform
fs = FeatureUnion([("pca", pca), ("select", select)],
transformer_weights={"pca": 10})
fs.fit(X, y)
X_transformed = fs.transform(X)
# test using fit_transform
fs = FeatureUnion([("pca", pca), ("select", select)],
transformer_weights={"pca": 10})
X_fit_transformed = fs.fit_transform(X, y)
# test it works with transformers missing fit_transform
fs = FeatureUnion([("mock", TransfT()), ("pca", pca), ("select", select)],
transformer_weights={"mock": 10})
X_fit_transformed_wo_method = fs.fit_transform(X, y)
# check against expected result
# We use a different pca object to control the random_state stream
assert_array_almost_equal(X_transformed[:, :-1], 10 * pca.fit_transform(X))
assert_array_equal(X_transformed[:, -1],
select.fit_transform(X, y).ravel())
assert_array_almost_equal(X_fit_transformed[:, :-1],
10 * pca.fit_transform(X))
assert_array_equal(X_fit_transformed[:, -1],
select.fit_transform(X, y).ravel())
assert_equal(X_fit_transformed_wo_method.shape, (X.shape[0], 7))
开发者ID:Givonaldo,项目名称:scikit-learn,代码行数:31,代码来源:test_pipeline.py
示例14: test_feature_union
def test_feature_union():
# basic sanity check for feature union
iris = load_iris()
X = iris.data
X -= X.mean(axis=0)
y = iris.target
svd = TruncatedSVD(n_components=2, random_state=0)
select = SelectKBest(k=1)
fs = FeatureUnion([("svd", svd), ("select", select)])
fs.fit(X, y)
X_transformed = fs.transform(X)
assert_equal(X_transformed.shape, (X.shape[0], 3))
# check if it does the expected thing
assert_array_almost_equal(X_transformed[:, :-1], svd.fit_transform(X))
assert_array_equal(X_transformed[:, -1],
select.fit_transform(X, y).ravel())
# test if it also works for sparse input
# We use a different svd object to control the random_state stream
fs = FeatureUnion([("svd", svd), ("select", select)])
X_sp = sparse.csr_matrix(X)
X_sp_transformed = fs.fit_transform(X_sp, y)
assert_array_almost_equal(X_transformed, X_sp_transformed.toarray())
# test setting parameters
fs.set_params(select__k=2)
assert_equal(fs.fit_transform(X, y).shape, (X.shape[0], 4))
# test it works with transformers missing fit_transform
fs = FeatureUnion([("mock", TransfT()), ("svd", svd), ("select", select)])
X_transformed = fs.fit_transform(X, y)
assert_equal(X_transformed.shape, (X.shape[0], 8))
开发者ID:Givonaldo,项目名称:scikit-learn,代码行数:33,代码来源:test_pipeline.py
示例15: test_staged_predict_proba
def test_staged_predict_proba():
# Test whether staged predict proba eventually gives
# the same prediction.
X, y = datasets.make_hastie_10_2(n_samples=1200,
random_state=1)
X_train, y_train = X[:200], y[:200]
X_test, y_test = X[200:], y[200:]
clf = GradientBoostingClassifier(n_estimators=20)
# test raise NotFittedError if not fitted
assert_raises(NotFittedError, lambda X: np.fromiter(
clf.staged_predict_proba(X), dtype=np.float64), X_test)
clf.fit(X_train, y_train)
# test if prediction for last stage equals ``predict``
for y_pred in clf.staged_predict(X_test):
assert_equal(y_test.shape, y_pred.shape)
assert_array_equal(clf.predict(X_test), y_pred)
# test if prediction for last stage equals ``predict_proba``
for staged_proba in clf.staged_predict_proba(X_test):
assert_equal(y_test.shape[0], staged_proba.shape[0])
assert_equal(2, staged_proba.shape[1])
assert_array_almost_equal(clf.predict_proba(X_test), staged_proba)
开发者ID:amueller,项目名称:scikit-learn,代码行数:26,代码来源:test_gradient_boosting.py
示例16: check_warm_start
def check_warm_start(name, random_state=42):
# Test if fitting incrementally with warm start gives a forest of the
# right size and the same results as a normal fit.
X, y = hastie_X, hastie_y
ForestEstimator = FOREST_ESTIMATORS[name]
clf_ws = None
for n_estimators in [5, 10]:
if clf_ws is None:
clf_ws = ForestEstimator(n_estimators=n_estimators,
random_state=random_state,
warm_start=True)
else:
clf_ws.set_params(n_estimators=n_estimators)
clf_ws.fit(X, y)
assert_equal(len(clf_ws), n_estimators)
clf_no_ws = ForestEstimator(n_estimators=10, random_state=random_state,
warm_start=False)
clf_no_ws.fit(X, y)
assert_equal(set([tree.random_state for tree in clf_ws]),
set([tree.random_state for tree in clf_no_ws]))
assert_array_equal(clf_ws.apply(X), clf_no_ws.apply(X),
err_msg="Failed with {0}".format(name))
开发者ID:henrywoo,项目名称:scikit-learn,代码行数:25,代码来源:test_forest.py
示例17: test_ovr_multilabel_predict_proba
def test_ovr_multilabel_predict_proba():
base_clf = MultinomialNB(alpha=1)
for au in (False, True):
X, Y = datasets.make_multilabel_classification(n_samples=100,
n_features=20,
n_classes=5,
n_labels=3,
length=50,
allow_unlabeled=au,
return_indicator=True,
random_state=0)
X_train, Y_train = X[:80], Y[:80]
X_test, Y_test = X[80:], Y[80:]
clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
# decision function only estimator. Fails in current implementation.
decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train)
assert_raises(AttributeError, decision_only.predict_proba, X_test)
# Estimator with predict_proba disabled, depending on parameters.
decision_only = OneVsRestClassifier(svm.SVC(probability=False))
decision_only.fit(X_train, Y_train)
assert_raises(AttributeError, decision_only.predict_proba, X_test)
Y_pred = clf.predict(X_test)
Y_proba = clf.predict_proba(X_test)
# predict assigns a label if the probability that the
# sample has the label is greater than 0.5.
pred = Y_proba > .5
assert_array_equal(pred, Y_pred)
开发者ID:jaguila,项目名称:cert,代码行数:31,代码来源:test_multiclass.py
示例18: test_Y_is_not_None
def test_Y_is_not_None():
rng = np.random.RandomState(0)
hm = HammingKernel()
X = rng.randint(0, 4, (5, 3))
hm = HammingKernel(length_scale=[1.0, 1.0, 1.0])
assert_array_equal(hm(X), hm(X, X))
开发者ID:MechCoder,项目名称:scikit-optimize,代码行数:7,代码来源:test_kernels.py
示例19: test_ovr_multilabel
def test_ovr_multilabel():
# Toy dataset where features correspond directly to labels.
X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]])
y = [["spam", "eggs"], ["spam"], ["ham", "eggs", "spam"],
["ham", "eggs"], ["ham"]]
#y = [[1, 2], [1], [0, 1, 2], [0, 2], [0]]
Y = np.array([[0, 1, 1],
[0, 1, 0],
[1, 1, 1],
[1, 0, 1],
[1, 0, 0]])
classes = set("ham eggs spam".split())
for base_clf in (MultinomialNB(), LinearSVC(random_state=0),
LinearRegression(), Ridge(),
ElasticNet(), Lasso(alpha=0.5)):
# test input as lists of tuples
clf = assert_warns(DeprecationWarning,
OneVsRestClassifier(base_clf).fit,
X, y)
assert_equal(set(clf.classes_), classes)
y_pred = clf.predict([[0, 4, 4]])[0]
assert_equal(set(y_pred), set(["spam", "eggs"]))
assert_true(clf.multilabel_)
# test input as label indicator matrix
clf = OneVsRestClassifier(base_clf).fit(X, Y)
y_pred = clf.predict([[0, 4, 4]])[0]
assert_array_equal(y_pred, [0, 1, 1])
assert_true(clf.multilabel_)
开发者ID:jaguila,项目名称:cert,代码行数:31,代码来源:test_multiclass.py
示例20: test_make_swiss_roll
def test_make_swiss_roll():
X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0)
assert_equal(X.shape, (5, 3), "X shape mismatch")
assert_equal(t.shape, (5,), "t shape mismatch")
assert_array_equal(X[:, 0], t * np.cos(t))
assert_array_equal(X[:, 2], t * np.sin(t))
开发者ID:Adrien-NK,项目名称:scikit-learn,代码行数:7,代码来源:test_samples_generator.py
注:本文中的sklearn.utils.testing.assert_array_equal函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论