• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python testing.assert_raises_regex函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.utils.testing.assert_raises_regex函数的典型用法代码示例。如果您正苦于以下问题:Python assert_raises_regex函数的具体用法?Python assert_raises_regex怎么用?Python assert_raises_regex使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了assert_raises_regex函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_graphviz_errors

def test_graphviz_errors():
    # Check for errors of export_graphviz
    clf = DecisionTreeClassifier(max_depth=3, min_samples_split=2)

    # Check not-fitted decision tree error
    out = StringIO()
    assert_raises(NotFittedError, export_graphviz, clf, out)

    clf.fit(X, y)

    # Check if it errors when length of feature_names
    # mismatches with number of features
    message = ("Length of feature_names, "
               "1 does not match number of features, 2")
    assert_raise_message(ValueError, message, export_graphviz, clf, None,
                         feature_names=["a"])

    message = ("Length of feature_names, "
               "3 does not match number of features, 2")
    assert_raise_message(ValueError, message, export_graphviz, clf, None,
                         feature_names=["a", "b", "c"])

    # Check class_names error
    out = StringIO()
    assert_raises(IndexError, export_graphviz, clf, out, class_names=[])

    # Check precision error
    out = StringIO()
    assert_raises_regex(ValueError, "should be greater or equal",
                        export_graphviz, clf, out, precision=-1)
    assert_raises_regex(ValueError, "should be an integer",
                        export_graphviz, clf, out, precision="1")
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:32,代码来源:test_export.py


示例2: test_one_hot_encoder_specified_categories

def test_one_hot_encoder_specified_categories():
    X = np.array([['a', 'b']], dtype=object).T

    enc = OneHotEncoder(categories=[['a', 'b', 'c']])
    exp = np.array([[1., 0., 0.],
                    [0., 1., 0.]])
    assert_array_equal(enc.fit_transform(X).toarray(), exp)
    assert enc.categories[0] == ['a', 'b', 'c']
    assert enc.categories_[0].tolist() == ['a', 'b', 'c']
    assert np.issubdtype(enc.categories_[0].dtype, np.str_)

    # unsorted passed categories raises for now
    enc = OneHotEncoder(categories=[['c', 'b', 'a']])
    msg = re.escape('Unsorted categories are not yet supported')
    assert_raises_regex(ValueError, msg, enc.fit_transform, X)

    # multiple columns
    X = np.array([['a', 'b'], [0, 2]], dtype=object).T
    enc = OneHotEncoder(categories=[['a', 'b', 'c'], [0, 1, 2]])
    exp = np.array([[1., 0., 0., 1., 0., 0.],
                    [0., 1., 0., 0., 0., 1.]])
    assert_array_equal(enc.fit_transform(X).toarray(), exp)
    assert enc.categories_[0].tolist() == ['a', 'b', 'c']
    assert np.issubdtype(enc.categories_[0].dtype, np.str_)
    assert enc.categories_[1].tolist() == [0, 1, 2]
    assert np.issubdtype(enc.categories_[1].dtype, np.integer)

    # when specifying categories manually, unknown categories should already
    # raise when fitting
    X = np.array([['a', 'b', 'c']]).T
    enc = OneHotEncoder(categories=[['a', 'b']])
    assert_raises(ValueError, enc.fit, X)
    enc = OneHotEncoder(categories=[['a', 'b']], handle_unknown='ignore')
    exp = np.array([[1., 0.], [0., 1.], [0., 0.]])
    assert_array_equal(enc.fit(X).transform(X).toarray(), exp)
开发者ID:gab3s,项目名称:scikit-learn,代码行数:35,代码来源:test_encoders.py


示例3: test_fit_predict_on_pipeline_without_fit_predict

def test_fit_predict_on_pipeline_without_fit_predict():
    # tests that a pipeline does not have fit_predict method when final
    # step of pipeline does not have fit_predict defined
    scaler = StandardScaler()
    pca = PCA(svd_solver="full")
    pipe = Pipeline([("scaler", scaler), ("pca", pca)])
    assert_raises_regex(AttributeError, "'PCA' object has no attribute 'fit_predict'", getattr, pipe, "fit_predict")
开发者ID:cheral,项目名称:scikit-learn,代码行数:7,代码来源:test_pipeline.py


示例4: test_ridgecv_store_cv_values

def test_ridgecv_store_cv_values():
    rng = np.random.RandomState(42)

    n_samples = 8
    n_features = 5
    x = rng.randn(n_samples, n_features)
    alphas = [1e-1, 1e0, 1e1]
    n_alphas = len(alphas)

    r = RidgeCV(alphas=alphas, cv=None, store_cv_values=True)

    # with len(y.shape) == 1
    y = rng.randn(n_samples)
    r.fit(x, y)
    assert r.cv_values_.shape == (n_samples, n_alphas)

    # with len(y.shape) == 2
    n_targets = 3
    y = rng.randn(n_samples, n_targets)
    r.fit(x, y)
    assert r.cv_values_.shape == (n_samples, n_targets, n_alphas)

    r = RidgeCV(cv=3, store_cv_values=True)
    assert_raises_regex(ValueError, 'cv!=None and store_cv_values',
                        r.fit, x, y)
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:25,代码来源:test_ridge.py


示例5: test_one_hot_encoder_invalid_params

def test_one_hot_encoder_invalid_params():
    enc = OneHotEncoder(drop='second')
    assert_raises_regex(
        ValueError,
        "Wrong input for parameter `drop`.",
        enc.fit, [["Male"], ["Female"]])

    enc = OneHotEncoder(handle_unknown='ignore', drop='first')
    assert_raises_regex(
        ValueError,
        "`handle_unknown` must be 'error'",
        enc.fit, [["Male"], ["Female"]])

    enc = OneHotEncoder(drop='first')
    assert_raises_regex(
        ValueError,
        "The handling of integer data will change in version",
        enc.fit, [[1], [2]])

    enc = OneHotEncoder(drop='first', categories='auto')
    assert_no_warnings(enc.fit_transform, [[1], [2]])

    enc = OneHotEncoder(drop=np.asarray('b', dtype=object))
    assert_raises_regex(
        ValueError,
        "Wrong input for parameter `drop`.",
        enc.fit, [['abc', 2, 55], ['def', 1, 55], ['def', 3, 59]])

    enc = OneHotEncoder(drop=['ghi', 3, 59])
    assert_raises_regex(
        ValueError,
        "The following categories were supposed",
        enc.fit, [['abc', 2, 55], ['def', 1, 55], ['def', 3, 59]])
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:33,代码来源:test_encoders.py


示例6: check_dtype_object

def check_dtype_object(name, Estimator):
    # check that estimators treat dtype object as numeric if possible
    rng = np.random.RandomState(0)
    X = rng.rand(40, 10).astype(object)
    y = (X[:, 0] * 4).astype(np.int)
    y = multioutput_estimator_convert_y_2d(name, y)
    with warnings.catch_warnings():
        estimator = Estimator()
    set_fast_parameters(estimator)

    estimator.fit(X, y)
    if hasattr(estimator, "predict"):
        estimator.predict(X)

    if hasattr(estimator, "transform"):
        estimator.transform(X)

    try:
        estimator.fit(X, y.astype(object))
    except Exception as e:
        if "Unknown label type" not in str(e):
            raise

    X[0, 0] = {'foo': 'bar'}
    msg = "argument must be a string or a number"
    assert_raises_regex(TypeError, msg, estimator.fit, X, y)
开发者ID:AlexMarshall011,项目名称:scikit-learn,代码行数:26,代码来源:estimator_checks.py


示例7: test_one_hot_encoder_unsorted_categories

def test_one_hot_encoder_unsorted_categories():
    X = np.array([['a', 'b']], dtype=object).T

    # unsorted passed categories raises for now
    enc = OneHotEncoder(categories=[['c', 'b', 'a']])
    msg = re.escape('Unsorted categories are not yet supported')
    assert_raises_regex(ValueError, msg, enc.fit_transform, X)
开发者ID:Th3Bakery,项目名称:scikit-learn,代码行数:7,代码来源:test_encoders.py


示例8: test_check_class_weight_balanced_linear_classifier

def test_check_class_weight_balanced_linear_classifier():
    # check that ill-computed balanced weights raises an exception
    assert_raises_regex(AssertionError,
                        "Classifier estimator_name is not computing"
                        " class_weight=balanced properly.",
                        check_class_weight_balanced_linear_classifier,
                        'estimator_name',
                        BadBalancedWeightsClassifier)
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:8,代码来源:test_estimator_checks.py


示例9: test_k_means_n_init

def test_k_means_n_init():
    rnd = np.random.RandomState(0)
    X = rnd.normal(size=(40, 2))

    # two regression tests on bad n_init argument
    # previous bug: n_init <= 0 threw non-informative TypeError (#3858)
    assert_raises_regex(ValueError, "n_init", KMeans(n_init=0).fit, X)
    assert_raises_regex(ValueError, "n_init", KMeans(n_init=-1).fit, X)
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:8,代码来源:test_k_means.py


示例10: test_bad_pyfunc_metric

def test_bad_pyfunc_metric():
    def wrong_distance(x, y):
        return "1"

    X = np.ones((5, 2))
    assert_raises_regex(TypeError,
                        "Custom distance function must accept two vectors",
                        BallTree, X, metric=wrong_distance)
开发者ID:amueller,项目名称:scikit-learn,代码行数:8,代码来源:test_dist_metrics.py


示例11: test_fit_predict_on_pipeline_without_fit_predict

def test_fit_predict_on_pipeline_without_fit_predict():
    # tests that a pipeline does not have fit_predict method when final
    # step of pipeline does not have fit_predict defined
    scaler = StandardScaler()
    pca = PCA()
    pipe = Pipeline([('scaler', scaler), ('pca', pca)])
    assert_raises_regex(AttributeError,
                        "'PCA' object has no attribute 'fit_predict'",
                        getattr, pipe, 'fit_predict')
开发者ID:Givonaldo,项目名称:scikit-learn,代码行数:9,代码来源:test_pipeline.py


示例12: test_gen_even_slices

def test_gen_even_slices():
    # check that gen_even_slices contains all samples
    some_range = range(10)
    joined_range = list(chain(*[some_range[slice] for slice in gen_even_slices(10, 3)]))
    assert_array_equal(some_range, joined_range)

    # check that passing negative n_chunks raises an error
    slices = gen_even_slices(10, -1)
    assert_raises_regex(ValueError, "gen_even_slices got n_packs=-1, must be" " >=1", next, slices)
开发者ID:haadkhan,项目名称:cerebri,代码行数:9,代码来源:test_utils.py


示例13: test_precompute_invalid_argument

def test_precompute_invalid_argument():
    X, y, _, _ = build_dataset()
    for clf in [ElasticNetCV(precompute="invalid"), LassoCV(precompute="invalid")]:
        assert_raises_regex(ValueError, ".*should be.*True.*False.*auto.*" "array-like.*Got 'invalid'", clf.fit, X, y)

    # Precompute = 'auto' is not supported for ElasticNet
    assert_raises_regex(
        ValueError, ".*should be.*True.*False.*array-like.*" "Got 'auto'", ElasticNet(precompute="auto").fit, X, y
    )
开发者ID:nelson-liu,项目名称:scikit-learn,代码行数:9,代码来源:test_coordinate_descent.py


示例14: test_check_estimators_unfitted

def test_check_estimators_unfitted():
    # check that a ValueError/AttributeError is raised when calling predict
    # on an unfitted estimator
    msg = "AttributeError or ValueError not raised by predict"
    assert_raises_regex(AssertionError, msg, check_estimators_unfitted, "estimator", NoSparseClassifier)

    # check that CorrectNotFittedError inherit from either ValueError
    # or AttributeError
    check_estimators_unfitted("estimator", CorrectNotFittedErrorClassifier)
开发者ID:nelson-liu,项目名称:scikit-learn,代码行数:9,代码来源:test_estimator_checks.py


示例15: test_regression_metrics_at_limits

def test_regression_metrics_at_limits():
    assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2)
    assert_almost_equal(mean_squared_log_error([0.], [0.]), 0.00, 2)
    assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2)
    assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2)
    assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2)
    assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2)
    assert_raises_regex(ValueError, "Mean Squared Logarithmic Error cannot be "
                        "used when targets contain negative values.",
                        mean_squared_log_error, [-1.], [-1.])
开发者ID:IsaacHaze,项目名称:scikit-learn,代码行数:10,代码来源:test_regression.py


示例16: test__check_reg_targets_exception

def test__check_reg_targets_exception():
    invalid_multioutput = 'this_value_is_not_valid'
    expected_message = ("Allowed 'multioutput' string values are.+"
                        "You provided multioutput={!r}".format(
                            invalid_multioutput))
    assert_raises_regex(ValueError, expected_message,
                        _check_reg_targets,
                        [1, 2, 3],
                        [[1], [2], [3]],
                        invalid_multioutput)
开发者ID:hmshan,项目名称:scikit-learn,代码行数:10,代码来源:test_regression.py


示例17: test_check_classification_targets

def test_check_classification_targets():
    for y_type in EXAMPLES.keys():
        if y_type in ["unknown", "continuous", 'continuous-multioutput']:
            for example in EXAMPLES[y_type]:
                msg = 'Unknown label type: '
                assert_raises_regex(ValueError, msg,
                                    check_classification_targets, example)
        else:
            for example in EXAMPLES[y_type]:
                check_classification_targets(example)
开发者ID:hmshan,项目名称:scikit-learn,代码行数:10,代码来源:test_multiclass.py


示例18: test_ovr_partial_fit_exceptions

def test_ovr_partial_fit_exceptions():
    ovr = OneVsRestClassifier(MultinomialNB())
    X = np.abs(np.random.randn(14, 2))
    y = [1, 1, 1, 1, 2, 3, 3, 0, 0, 2, 3, 1, 2, 3]
    ovr.partial_fit(X[:7], y[:7], np.unique(y))
    # A new class value which was not in the first call of partial_fit
    # It should raise ValueError
    y1 = [5] + y[7:-1]
    assert_raises_regex(ValueError, "Mini-batch contains \[.+\] while classes"
                                    " must be subset of \[.+\]",
                        ovr.partial_fit, X=X[7:], y=y1)
开发者ID:btabibian,项目名称:scikit-learn,代码行数:11,代码来源:test_multiclass.py


示例19: test_randomized_lasso_error_memory

def test_randomized_lasso_error_memory():
    scaling = 0.3
    selection_threshold = 0.5
    tempdir = 5
    clf = RandomizedLasso(verbose=False, alpha=[1, 0.8], random_state=42,
                          scaling=scaling,
                          selection_threshold=selection_threshold,
                          memory=tempdir)
    assert_raises_regex(ValueError, "'memory' should either be a string or"
                        " a sklearn.utils.Memory instance",
                        clf.fit, X, y)
开发者ID:lebigot,项目名称:scikit-learn,代码行数:11,代码来源:test_randomized_l1.py


示例20: test_ordinal_encoder_inverse

def test_ordinal_encoder_inverse():
    X = [['abc', 2, 55], ['def', 1, 55]]
    enc = OrdinalEncoder()
    X_tr = enc.fit_transform(X)
    exp = np.array(X, dtype=object)
    assert_array_equal(enc.inverse_transform(X_tr), exp)

    # incorrect shape raises
    X_tr = np.array([[0, 1, 1, 2], [1, 0, 1, 0]])
    msg = re.escape('Shape of the passed X data is not correct')
    assert_raises_regex(ValueError, msg, enc.inverse_transform, X_tr)
开发者ID:mikebotazzo,项目名称:scikit-learn,代码行数:11,代码来源:test_encoders.py



注:本文中的sklearn.utils.testing.assert_raises_regex函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python testing.assert_raises_regexp函数代码示例发布时间:2022-05-27
下一篇:
Python testing.assert_raises函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap