• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python testing.assert_raises函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.utils.testing.assert_raises函数的典型用法代码示例。如果您正苦于以下问题:Python assert_raises函数的具体用法?Python assert_raises怎么用?Python assert_raises使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了assert_raises函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_k_means_function

def test_k_means_function():
    # test calling the k_means function directly
    # catch output
    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters,
                                                   sample_weight=None,
                                                   verbose=True)
    finally:
        sys.stdout = old_stdout
    centers = cluster_centers
    assert_equal(centers.shape, (n_clusters, n_features))

    labels = labels
    assert_equal(np.unique(labels).shape[0], n_clusters)

    # check that the labels assignment are perfect (up to a permutation)
    assert_equal(v_measure_score(true_labels, labels), 1.0)
    assert_greater(inertia, 0.0)

    # check warning when centers are passed
    assert_warns(RuntimeWarning, k_means, X, n_clusters=n_clusters,
                 sample_weight=None, init=centers)

    # to many clusters desired
    assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1,
                  sample_weight=None)

    # kmeans for algorithm='elkan' raises TypeError on sparse matrix
    assert_raise_message(TypeError, "algorithm='elkan' not supported for "
                         "sparse input X", k_means, X=X_csr, n_clusters=2,
                         sample_weight=None, algorithm="elkan")
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:33,代码来源:test_k_means.py


示例2: test_k_means_function

def test_k_means_function():
    # test calling the k_means function directly
    # catch output
    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters,
                                                   verbose=True)
    finally:
        sys.stdout = old_stdout
    centers = cluster_centers
    assert_equal(centers.shape, (n_clusters, n_features))

    labels = labels
    assert_equal(np.unique(labels).shape[0], n_clusters)

    # check that the labels assignment are perfect (up to a permutation)
    assert_equal(v_measure_score(true_labels, labels), 1.0)
    assert_greater(inertia, 0.0)

    # check warning when centers are passed
    assert_warns(RuntimeWarning, k_means, X, n_clusters=n_clusters,
                 init=centers)

    # to many clusters desired
    assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1)
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:26,代码来源:test_k_means.py


示例3: test_grid_search_precomputed_kernel_error_kernel_function

def test_grid_search_precomputed_kernel_error_kernel_function():
    """Test that grid search returns an error when using a kernel_function"""
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
    kernel_function = lambda x1, x2: np.dot(x1, x2.T)
    clf = SVC(kernel=kernel_function)
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
    assert_raises(ValueError, cv.fit, X_, y_)
开发者ID:CheMcCandless,项目名称:scikit-learn,代码行数:7,代码来源:test_grid_search.py


示例4: check_regressors_train

def check_regressors_train(name, Regressor):
    X, y = _boston_subset()
    y = StandardScaler().fit_transform(y)   # X is already scaled
    y = multioutput_estimator_convert_y_2d(name, y)
    rnd = np.random.RandomState(0)
    # catch deprecation warnings
    with warnings.catch_warnings(record=True):
        regressor = Regressor()
    set_fast_parameters(regressor)
    if not hasattr(regressor, 'alphas') and hasattr(regressor, 'alpha'):
        # linear regressors need to set alpha, but not generalized CV ones
        regressor.alpha = 0.01
    if name == 'PassiveAggressiveRegressor':
        regressor.C = 0.01

    # raises error on malformed input for fit
    assert_raises(ValueError, regressor.fit, X, y[:-1])
    # fit
    if name in CROSS_DECOMPOSITION:
        y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))])
        y_ = y_.T
    else:
        y_ = y
    set_random_state(regressor)
    regressor.fit(X, y_)
    regressor.fit(X.tolist(), y_.tolist())
    regressor.predict(X)

    # TODO: find out why PLS and CCA fail. RANSAC is random
    # and furthermore assumes the presence of outliers, hence
    # skipped
    if name not in ('PLSCanonical', 'CCA', 'RANSACRegressor'):
        print(regressor)
        assert_greater(regressor.score(X, y_), 0.5)
开发者ID:AlexMarshall011,项目名称:scikit-learn,代码行数:34,代码来源:estimator_checks.py


示例5: test_skewed_chi2_sampler

def test_skewed_chi2_sampler():
    """test that RBFSampler approximates kernel on random data"""

    # compute exact kernel
    c = 0.03
    # appreviations for easier formular
    X_c = (X + c)[:, np.newaxis, :]
    Y_c = (Y + c)[np.newaxis, :, :]

    # we do it in log-space in the hope that it's more stable
    # this array is n_samples_x x n_samples_y big x n_features
    log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) -
                  np.log(X_c + Y_c))
    # reduce to n_samples_x x n_samples_y by summing over features in log-space
    kernel = np.exp(log_kernel.sum(axis=2))

    # approximate kernel mapping
    transform = SkewedChi2Sampler(skewedness=c, n_components=1000,
                                  random_state=42)
    X_trans = transform.fit_transform(X)
    Y_trans = transform.transform(Y)

    kernel_approx = np.dot(X_trans, Y_trans.T)
    assert_array_almost_equal(kernel, kernel_approx, 1)

    # test error is raised on negative input
    Y_neg = Y.copy()
    Y_neg[0, 0] = -1
    assert_raises(ValueError, transform.transform, Y_neg)
开发者ID:CheMcCandless,项目名称:scikit-learn,代码行数:29,代码来源:test_kernel_approximation.py


示例6: test_scikit_vs_scipy

def test_scikit_vs_scipy():
    """Test scikit linkage with full connectivity (i.e. unstructured) vs scipy
    """
    n, p, k = 10, 5, 3
    rng = np.random.RandomState(0)

    # Not using a lil_matrix here, just to check that non sparse
    # matrices are well handled
    connectivity = np.ones((n, n))
    for linkage in _TREE_BUILDERS.keys():
        for i in range(5):
            X = .1 * rng.normal(size=(n, p))
            X -= 4. * np.arange(n)[:, np.newaxis]
            X -= X.mean(axis=1)[:, np.newaxis]

            out = hierarchy.linkage(X, method=linkage)

            children_ = out[:, :2].astype(np.int)
            children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity)

            cut = _hc_cut(k, children, n_leaves)
            cut_ = _hc_cut(k, children_, n_leaves)
            assess_same_labelling(cut, cut_)

    # Test error management in _hc_cut
    assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves)
开发者ID:foresthz,项目名称:scikit-learn,代码行数:26,代码来源:test_hierarchical.py


示例7: test_set_params

def test_set_params():
    # test nested estimator parameter setting
    clf = Pipeline([("svc", SVC())])
    # non-existing parameter in svc
    assert_raises(ValueError, clf.set_params, svc__stupid_param=True)
    # non-existing parameter of pipeline
    assert_raises(ValueError, clf.set_params, svm__stupid_param=True)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:7,代码来源:test_base.py


示例8: test_multilabel_binarizer_non_integer_labels

def test_multilabel_binarizer_non_integer_labels():
    tuple_classes = np.empty(3, dtype=object)
    tuple_classes[:] = [(1,), (2,), (3,)]
    inputs = [
        ([('2', '3'), ('1',), ('1', '2')], ['1', '2', '3']),
        ([('b', 'c'), ('a',), ('a', 'b')], ['a', 'b', 'c']),
        ([((2,), (3,)), ((1,),), ((1,), (2,))], tuple_classes),
    ]
    indicator_mat = np.array([[0, 1, 1],
                              [1, 0, 0],
                              [1, 1, 0]])
    for inp, classes in inputs:
        # fit_transform()
        mlb = MultiLabelBinarizer()
        assert_array_equal(mlb.fit_transform(inp), indicator_mat)
        assert_array_equal(mlb.classes_, classes)
        assert_array_equal(mlb.inverse_transform(indicator_mat), inp)

        # fit().transform()
        mlb = MultiLabelBinarizer()
        assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat)
        assert_array_equal(mlb.classes_, classes)
        assert_array_equal(mlb.inverse_transform(indicator_mat), inp)

    mlb = MultiLabelBinarizer()
    assert_raises(TypeError, mlb.fit_transform, [({}), ({}, {'a': 'b'})])
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:26,代码来源:test_label.py


示例9: test_zero_estimator_clf

def test_zero_estimator_clf():
    # Test if ZeroEstimator works for classification.
    X = iris.data
    y = np.array(iris.target)
    est = GradientBoostingClassifier(n_estimators=20, max_depth=1,
                                     random_state=1, init=ZeroEstimator())
    est.fit(X, y)

    assert_greater(est.score(X, y), 0.96)

    est = GradientBoostingClassifier(n_estimators=20, max_depth=1,
                                     random_state=1, init='zero')
    est.fit(X, y)

    assert_greater(est.score(X, y), 0.96)

    # binary clf
    mask = y != 0
    y[mask] = 1
    y[~mask] = 0
    est = GradientBoostingClassifier(n_estimators=20, max_depth=1,
                                     random_state=1, init='zero')
    est.fit(X, y)
    assert_greater(est.score(X, y), 0.96)

    est = GradientBoostingClassifier(n_estimators=20, max_depth=1,
                                     random_state=1, init='foobar')
    assert_raises(ValueError, est.fit, X, y)
开发者ID:amueller,项目名称:scikit-learn,代码行数:28,代码来源:test_gradient_boosting.py


示例10: test_thresholded_scorers

def test_thresholded_scorers():
    """Test scorers that take thresholds."""
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = LogisticRegression(random_state=0)
    clf.fit(X_train, y_train)
    score1 = SCORERS['roc_auc'](clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.decision_function(X_test))
    score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1])
    assert_almost_equal(score1, score2)
    assert_almost_equal(score1, score3)

    logscore = SCORERS['log_loss'](clf, X_test, y_test)
    logloss = log_loss(y_test, clf.predict_proba(X_test))
    assert_almost_equal(-logscore, logloss)

    # same for an estimator without decision_function
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train)
    score1 = SCORERS['roc_auc'](clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1])
    assert_almost_equal(score1, score2)

    # Test that an exception is raised on more than two classes
    X, y = make_blobs(random_state=0, centers=3)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf.fit(X_train, y_train)
    assert_raises(ValueError, SCORERS['roc_auc'], clf, X_test, y_test)
开发者ID:2011200799,项目名称:scikit-learn,代码行数:28,代码来源:test_score_objects.py


示例11: test_partial_fit

def test_partial_fit():
    # Checks whether inserting array is consistent with fitted data.
    # `partial_fit` method should set all attribute values correctly.
    n_samples = 12
    n_samples_partial_fit = 3
    n_features = 2
    rng = np.random.RandomState(42)
    X = rng.rand(n_samples, n_features)
    X_partial_fit = rng.rand(n_samples_partial_fit, n_features)

    lshf = ignore_warnings(LSHForest, category=DeprecationWarning)()

    # Test unfitted estimator
    ignore_warnings(lshf.partial_fit)(X)
    assert_array_equal(X, lshf._fit_X)

    ignore_warnings(lshf.fit)(X)

    # Insert wrong dimension
    assert_raises(ValueError, lshf.partial_fit,
                  np.random.randn(n_samples_partial_fit, n_features - 1))

    ignore_warnings(lshf.partial_fit)(X_partial_fit)

    # size of _input_array = samples + 1 after insertion
    assert_equal(lshf._fit_X.shape[0],
                 n_samples + n_samples_partial_fit)
    # size of original_indices_[1] = samples + 1
    assert_equal(len(lshf.original_indices_[0]),
                 n_samples + n_samples_partial_fit)
    # size of trees_[1] = samples + 1
    assert_equal(len(lshf.trees_[1]),
                 n_samples + n_samples_partial_fit)
开发者ID:NelleV,项目名称:scikit-learn,代码行数:33,代码来源:test_approximate.py


示例12: test_pca_randomized_solver

def test_pca_randomized_solver():
    # PCA on dense arrays
    X = iris.data

    # Loop excluding the 0, invalid for randomized
    for n_comp in np.arange(1, X.shape[1]):
        pca = PCA(n_components=n_comp, svd_solver='randomized', random_state=0)

        X_r = pca.fit(X).transform(X)
        np.testing.assert_equal(X_r.shape[1], n_comp)

        X_r2 = pca.fit_transform(X)
        assert_array_almost_equal(X_r, X_r2)

        X_r = pca.transform(X)
        assert_array_almost_equal(X_r, X_r2)

        # Test get_covariance and get_precision
        cov = pca.get_covariance()
        precision = pca.get_precision()
        assert_array_almost_equal(np.dot(cov, precision),
                                  np.eye(X.shape[1]), 12)

    pca = PCA(n_components=0, svd_solver='randomized', random_state=0)
    assert_raises(ValueError, pca.fit, X)

    pca = PCA(n_components=0, svd_solver='randomized', random_state=0)
    assert_raises(ValueError, pca.fit, X)
    # Check internal state
    assert_equal(pca.n_components,
                 PCA(n_components=0,
                     svd_solver='randomized', random_state=0).n_components)
    assert_equal(pca.svd_solver,
                 PCA(n_components=0,
                     svd_solver='randomized', random_state=0).svd_solver)
开发者ID:amueller,项目名称:scikit-learn,代码行数:35,代码来源:test_pca.py


示例13: test_kernel_density_sampling

def test_kernel_density_sampling(n_samples=100, n_features=3):
    rng = np.random.RandomState(0)
    X = rng.randn(n_samples, n_features)

    bandwidth = 0.2

    for kernel in ['gaussian', 'tophat']:
        # draw a tophat sample
        kde = KernelDensity(bandwidth, kernel=kernel).fit(X)
        samp = kde.sample(100)
        assert_equal(X.shape, samp.shape)

        # check that samples are in the right range
        nbrs = NearestNeighbors(n_neighbors=1).fit(X)
        dist, ind = nbrs.kneighbors(X, return_distance=True)

        if kernel == 'tophat':
            assert np.all(dist < bandwidth)
        elif kernel == 'gaussian':
            # 5 standard deviations is safe for 100 samples, but there's a
            # very small chance this test could fail.
            assert np.all(dist < 5 * bandwidth)

    # check unsupported kernels
    for kernel in ['epanechnikov', 'exponential', 'linear', 'cosine']:
        kde = KernelDensity(bandwidth, kernel=kernel).fit(X)
        assert_raises(NotImplementedError, kde.sample, 100)

    # non-regression test: used to return a scalar
    X = rng.randn(4, 1)
    kde = KernelDensity(kernel="gaussian").fit(X)
    assert_equal(kde.sample().shape, (1, 1))
开发者ID:BasilBeirouti,项目名称:scikit-learn,代码行数:32,代码来源:test_kde.py


示例14: test_ward_clustering

def test_ward_clustering():
    """
    Check that we obtain the correct number of clusters with Ward clustering.
    """
    rnd = np.random.RandomState(0)
    mask = np.ones([10, 10], dtype=np.bool)
    X = rnd.randn(100, 50)
    connectivity = grid_to_graph(*mask.shape)
    clustering = Ward(n_clusters=10, connectivity=connectivity)
    clustering.fit(X)
    # test caching
    clustering = Ward(n_clusters=10, connectivity=connectivity,
                      memory=mkdtemp())
    clustering.fit(X)
    labels = clustering.labels_
    assert_true(np.size(np.unique(labels)) == 10)
    # Turn caching off now
    clustering = Ward(n_clusters=10, connectivity=connectivity)
    # Check that we obtain the same solution with early-stopping of the
    # tree building
    clustering.compute_full_tree = False
    clustering.fit(X)
    np.testing.assert_array_equal(clustering.labels_, labels)
    clustering.connectivity = None
    clustering.fit(X)
    assert_true(np.size(np.unique(clustering.labels_)) == 10)
    # Check that we raise a TypeError on dense matrices
    clustering = Ward(n_clusters=10,
                      connectivity=connectivity.todense())
    assert_raises(TypeError, clustering.fit, X)
    clustering = Ward(n_clusters=10,
                      connectivity=sparse.lil_matrix(
                          connectivity.todense()[:10, :10]))
    assert_raises(ValueError, clustering.fit, X)
开发者ID:2011200799,项目名称:scikit-learn,代码行数:34,代码来源:test_hierarchical.py


示例15: test_cross_val_score

def test_cross_val_score():
    clf = MockClassifier()
    for a in range(-10, 10):
        clf.a = a
        # Smoke test
        scores = cval.cross_val_score(clf, X, y)
        assert_array_equal(scores, clf.score(X, y))

        # test with multioutput y
        scores = cval.cross_val_score(clf, X_sparse, X)
        assert_array_equal(scores, clf.score(X_sparse, X))

        scores = cval.cross_val_score(clf, X_sparse, y)
        assert_array_equal(scores, clf.score(X_sparse, y))

        # test with multioutput y
        scores = cval.cross_val_score(clf, X_sparse, X)
        assert_array_equal(scores, clf.score(X_sparse, X))

    # test with X as list
    clf = MockListClassifier()
    scores = cval.cross_val_score(clf, X.tolist(), y)

    assert_raises(ValueError, cval.cross_val_score, clf, X, y,
                  scoring="sklearn")
开发者ID:GGXH,项目名称:scikit-learn,代码行数:25,代码来源:test_cross_validation.py


示例16: check_boston

def check_boston(presort, loss, subsample):
    # Check consistency on dataset boston house prices with least squares
    # and least absolute deviation.
    ones = np.ones(len(boston.target))
    last_y_pred = None
    for sample_weight in None, ones, 2 * ones:
        clf = GradientBoostingRegressor(n_estimators=100,
                                        loss=loss,
                                        max_depth=4,
                                        subsample=subsample,
                                        min_samples_split=2,
                                        random_state=1,
                                        presort=presort)

        assert_raises(ValueError, clf.predict, boston.data)
        clf.fit(boston.data, boston.target,
                sample_weight=sample_weight)
        leaves = clf.apply(boston.data)
        assert_equal(leaves.shape, (506, 100))

        y_pred = clf.predict(boston.data)
        mse = mean_squared_error(boston.target, y_pred)
        assert_less(mse, 6.0)

        if last_y_pred is not None:
            assert_array_almost_equal(last_y_pred, y_pred)

        last_y_pred = y_pred
开发者ID:amueller,项目名称:scikit-learn,代码行数:28,代码来源:test_gradient_boosting.py


示例17: test_multioutput_number_of_output_differ

def test_multioutput_number_of_output_differ():
    y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]])
    y_pred = np.array([[0, 0], [1, 0], [0, 0]])

    for name in MULTIOUTPUT_METRICS:
        metric = ALL_METRICS[name]
        assert_raises(ValueError, metric, y_true, y_pred)
开发者ID:AniketSaki,项目名称:scikit-learn,代码行数:7,代码来源:test_common.py


示例18: test_staged_predict_proba

def test_staged_predict_proba():
    # Test whether staged predict proba eventually gives
    # the same prediction.
    X, y = datasets.make_hastie_10_2(n_samples=1200,
                                     random_state=1)
    X_train, y_train = X[:200], y[:200]
    X_test, y_test = X[200:], y[200:]
    clf = GradientBoostingClassifier(n_estimators=20)
    # test raise NotFittedError if not fitted
    assert_raises(NotFittedError, lambda X: np.fromiter(
        clf.staged_predict_proba(X), dtype=np.float64), X_test)

    clf.fit(X_train, y_train)

    # test if prediction for last stage equals ``predict``
    for y_pred in clf.staged_predict(X_test):
        assert_equal(y_test.shape, y_pred.shape)

    assert_array_equal(clf.predict(X_test), y_pred)

    # test if prediction for last stage equals ``predict_proba``
    for staged_proba in clf.staged_predict_proba(X_test):
        assert_equal(y_test.shape[0], staged_proba.shape[0])
        assert_equal(2, staged_proba.shape[1])

    assert_array_almost_equal(clf.predict_proba(X_test), staged_proba)
开发者ID:amueller,项目名称:scikit-learn,代码行数:26,代码来源:test_gradient_boosting.py


示例19: check_min_samples_leaf

def check_min_samples_leaf(name):
    X, y = hastie_X, hastie_y

    # Test if leaves contain more than leaf_count training examples
    ForestEstimator = FOREST_ESTIMATORS[name]

    # test boundary value
    assert_raises(ValueError,
                  ForestEstimator(min_samples_leaf=-1).fit, X, y)
    assert_raises(ValueError,
                  ForestEstimator(min_samples_leaf=0).fit, X, y)

    est = ForestEstimator(min_samples_leaf=5, n_estimators=1, random_state=0)
    est.fit(X, y)
    out = est.estimators_[0].tree_.apply(X)
    node_counts = np.bincount(out)
    # drop inner nodes
    leaf_count = node_counts[node_counts != 0]
    assert_greater(np.min(leaf_count), 4,
                   "Failed with {0}".format(name))

    est = ForestEstimator(min_samples_leaf=0.25, n_estimators=1,
                          random_state=0)
    est.fit(X, y)
    out = est.estimators_[0].tree_.apply(X)
    node_counts = np.bincount(out)
    # drop inner nodes
    leaf_count = node_counts[node_counts != 0]
    assert_greater(np.min(leaf_count), len(X) * 0.25 - 1,
                   "Failed with {0}".format(name))
开发者ID:henrywoo,项目名称:scikit-learn,代码行数:30,代码来源:test_forest.py


示例20: test_warm_start_smaller_n_estimators

def test_warm_start_smaller_n_estimators(Cls):
    # Test if warm start with smaller n_estimators raises error
    X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
    est = Cls(n_estimators=100, max_depth=1, warm_start=True)
    est.fit(X, y)
    est.set_params(n_estimators=99)
    assert_raises(ValueError, est.fit, X, y)
开发者ID:amueller,项目名称:scikit-learn,代码行数:7,代码来源:test_gradient_boosting.py



注:本文中的sklearn.utils.testing.assert_raises函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python testing.assert_raises_regex函数代码示例发布时间:2022-05-27
下一篇:
Python testing.assert_raise_message函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap