本文整理汇总了Python中sklearn.utils.testing.assert_raises_regexp函数的典型用法代码示例。如果您正苦于以下问题:Python assert_raises_regexp函数的具体用法?Python assert_raises_regexp怎么用?Python assert_raises_regexp使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assert_raises_regexp函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: check_scoring_validator_for_single_metric_usecases
def check_scoring_validator_for_single_metric_usecases(scoring_validator):
# Test all branches of single metric usecases
estimator = EstimatorWithoutFit()
pattern = (r"estimator should be an estimator implementing 'fit' method,"
r" .* was passed")
assert_raises_regexp(TypeError, pattern, scoring_validator, estimator)
estimator = EstimatorWithFitAndScore()
estimator.fit([[1]], [1])
scorer = scoring_validator(estimator)
assert_true(scorer is _passthrough_scorer)
assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0)
estimator = EstimatorWithFitAndPredict()
estimator.fit([[1]], [1])
pattern = (r"If no scoring is specified, the estimator passed should have"
r" a 'score' method\. The estimator .* does not\.")
assert_raises_regexp(TypeError, pattern, scoring_validator, estimator)
scorer = scoring_validator(estimator, "accuracy")
assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0)
estimator = EstimatorWithFit()
scorer = scoring_validator(estimator, "accuracy")
assert_true(isinstance(scorer, _PredictScorer))
# Test the allow_none parameter for check_scoring alone
if scoring_validator is check_scoring:
estimator = EstimatorWithFit()
scorer = scoring_validator(estimator, allow_none=True)
assert_true(scorer is None)
开发者ID:chavan-vjti,项目名称:scikit-learn,代码行数:31,代码来源:test_score_objects.py
示例2: test_base_estimator
def test_base_estimator():
# Test different base estimators.
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
# XXX doesn't work with y_class because RF doesn't support classes_
# Shouldn't AdaBoost run a LabelBinarizer?
clf = AdaBoostClassifier(RandomForestClassifier())
clf.fit(X, y_regr)
clf = AdaBoostClassifier(SVC(), algorithm="SAMME")
clf.fit(X, y_class)
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
clf = AdaBoostRegressor(RandomForestRegressor(), random_state=0)
clf.fit(X, y_regr)
clf = AdaBoostRegressor(SVR(), random_state=0)
clf.fit(X, y_regr)
# Check that an empty discrete ensemble fails in fit, not predict.
X_fail = [[1, 1], [1, 1], [1, 1], [1, 1]]
y_fail = ["foo", "bar", 1, 2]
clf = AdaBoostClassifier(SVC(), algorithm="SAMME")
assert_raises_regexp(ValueError, "worse than random",
clf.fit, X_fail, y_fail)
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:28,代码来源:test_weight_boosting.py
示例3: test_ransac_resid_thresh_no_inliers
def test_ransac_resid_thresh_no_inliers():
# When residual_threshold=0.0 there are no inliers and a
# ValueError with a message should be raised
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=0.0, random_state=0)
assert_raises_regexp(ValueError, "No inliers.*residual_threshold.*0\.0", ransac_estimator.fit, X, y)
开发者ID:mittelman,项目名称:scikit-learn,代码行数:7,代码来源:test_ransac.py
示例4: test_check_scoring
def test_check_scoring():
# Test all branches of check_scoring
estimator = EstimatorWithoutFit()
pattern = (r"estimator should a be an estimator implementing 'fit' method,"
r" .* was passed")
assert_raises_regexp(TypeError, pattern, check_scoring, estimator)
estimator = EstimatorWithFitAndScore()
estimator.fit([[1]], [1])
scorer = check_scoring(estimator)
assert_true(scorer is _passthrough_scorer)
assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0)
estimator = EstimatorWithFitAndPredict()
estimator.fit([[1]], [1])
pattern = (r"If no scoring is specified, the estimator passed should have"
r" a 'score' method\. The estimator .* does not\.")
assert_raises_regexp(TypeError, pattern, check_scoring, estimator)
scorer = check_scoring(estimator, "accuracy")
assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0)
estimator = EstimatorWithFit()
scorer = check_scoring(estimator, "accuracy")
assert_true(isinstance(scorer, _PredictScorer))
estimator = EstimatorWithFit()
scorer = check_scoring(estimator, allow_none=True)
assert_true(scorer is None)
开发者ID:AlexanderFabisch,项目名称:scikit-learn,代码行数:29,代码来源:test_score_objects.py
示例5: test_underflow_or_overlow
def test_underflow_or_overlow():
with np.errstate(all="raise"):
# Generate some weird data with hugely unscaled features
rng = np.random.RandomState(0)
n_samples = 100
n_features = 10
X = rng.normal(size=(n_samples, n_features))
X[:, :2] *= 1e300
assert_true(np.isfinite(X).all())
# Use MinMaxScaler to scale the data without introducing a numerical
# instability (computing the standard deviation naively is not possible
# on this data)
X_scaled = MinMaxScaler().fit_transform(X)
assert_true(np.isfinite(X_scaled).all())
# Define a ground truth on the scaled data
ground_truth = rng.normal(size=n_features)
y = (np.dot(X_scaled, ground_truth) > 0.0).astype(np.int32)
assert_array_equal(np.unique(y), [0, 1])
model = SGDClassifier(alpha=0.1, loss="squared_hinge", n_iter=500)
# smoke test: model is stable on scaled data
model.fit(X_scaled, y)
assert_true(np.isfinite(model.coef_).all())
# model is numerically unstable on unscaled data
msg_regxp = (
r"Floating-point under-/overflow occurred at epoch #.*"
" Scaling input data with StandardScaler or MinMaxScaler"
" might help."
)
assert_raises_regexp(ValueError, msg_regxp, model.fit, X, y)
开发者ID:richlewis42,项目名称:scikit-learn,代码行数:35,代码来源:test_sgd.py
示例6: test_linearsvc_parameters
def test_linearsvc_parameters():
# Test possible parameter combinations in LinearSVC
# Generate list of possible parameter combinations
losses = ['hinge', 'squared_hinge', 'logistic_regression', 'foo']
penalties, duals = ['l1', 'l2', 'bar'], [True, False]
X, y = make_classification(n_samples=5, n_features=5)
for loss, penalty, dual in itertools.product(losses, penalties, duals):
clf = svm.LinearSVC(penalty=penalty, loss=loss, dual=dual)
if ((loss, penalty) == ('hinge', 'l1') or
(loss, penalty, dual) == ('hinge', 'l2', False) or
(penalty, dual) == ('l1', True) or
loss == 'foo' or penalty == 'bar'):
assert_raises_regexp(ValueError,
"Unsupported set of arguments.*penalty='%s.*"
"loss='%s.*dual=%s"
% (penalty, loss, dual),
clf.fit, X, y)
else:
clf.fit(X, y)
# Incorrect loss value - test if explicit error message is raised
assert_raises_regexp(ValueError, ".*loss='l3' is not supported.*",
svm.LinearSVC(loss="l3").fit, X, y)
开发者ID:abhisg,项目名称:scikit-learn,代码行数:26,代码来源:test_svm.py
示例7: test_non_positive_precomputed_distances
def test_non_positive_precomputed_distances():
# Precomputed distance matrices must be positive.
bad_dist = np.array([[0., -1.], [1., 0.]])
for method in ['barnes_hut', 'exact']:
tsne = TSNE(metric="precomputed", method=method)
assert_raises_regexp(ValueError, "All distances .*precomputed.*",
tsne.fit_transform, bad_dist)
开发者ID:BasilBeirouti,项目名称:scikit-learn,代码行数:7,代码来源:test_t_sne.py
示例8: test_no_sparse_on_barnes_hut
def test_no_sparse_on_barnes_hut():
# No sparse matrices allowed on Barnes-Hut.
random_state = check_random_state(0)
X = random_state.randn(100, 2)
X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0
X_csr = sp.csr_matrix(X)
tsne = TSNE(n_iter=199, method="barnes_hut")
assert_raises_regexp(TypeError, "A sparse matrix was.*", tsne.fit_transform, X_csr)
开发者ID:sofianehaddad,项目名称:scikit-learn,代码行数:8,代码来源:test_t_sne.py
示例9: test_lda_no_component_error
def test_lda_no_component_error():
# test `transform` and `perplexity` before `fit`
rng = np.random.RandomState(0)
X = rng.randint(4, size=(20, 10))
lda = LatentDirichletAllocation()
regex = r"^no 'components_' attribute"
assert_raises_regexp(NotFittedError, regex, lda.transform, X)
assert_raises_regexp(NotFittedError, regex, lda.perplexity, X)
开发者ID:AlexandreAbraham,项目名称:scikit-learn,代码行数:8,代码来源:test_online_lda.py
示例10: test_k_means_n_init
def test_k_means_n_init():
rnd = np.random.RandomState(0)
X = rnd.normal(size=(40, 2))
# two regression tests on bad n_init argument
# previous bug: n_init <= 0 threw non-informative TypeError (#3858)
assert_raises_regexp(ValueError, "n_init", KMeans(n_init=0).fit, X)
assert_raises_regexp(ValueError, "n_init", KMeans(n_init=-1).fit, X)
开发者ID:CamDavidsonPilon,项目名称:scikit-learn,代码行数:8,代码来源:test_k_means.py
示例11: test_lda_no_component_error
def test_lda_no_component_error():
# test `perplexity` before `fit`
rng = np.random.RandomState(0)
X = rng.randint(4, size=(20, 10))
lda = LatentDirichletAllocation()
regex = ("This LatentDirichletAllocation instance is not fitted yet. "
"Call 'fit' with appropriate arguments before using this method.")
assert_raises_regexp(NotFittedError, regex, lda.perplexity, X)
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:8,代码来源:test_online_lda.py
示例12: test_pca_initialization_not_compatible_with_precomputed_kernel
def test_pca_initialization_not_compatible_with_precomputed_kernel():
# Precomputed distance matrices must be square matrices.
tsne = TSNE(metric="precomputed", init="pca")
assert_raises_regexp(
ValueError,
'The parameter init="pca" cannot be ' 'used with metric="precomputed".',
tsne.fit_transform,
np.array([[0.0], [1.0]]),
)
开发者ID:sofianehaddad,项目名称:scikit-learn,代码行数:9,代码来源:test_t_sne.py
示例13: test_distance_not_available
def test_distance_not_available():
# 'metric' must be valid.
tsne = TSNE(metric="not available", method='exact')
assert_raises_regexp(ValueError, "Unknown metric not available.*",
tsne.fit_transform, np.array([[0.0], [1.0]]))
tsne = TSNE(metric="not available", method='barnes_hut')
assert_raises_regexp(ValueError, "Metric 'not available' not valid.*",
tsne.fit_transform, np.array([[0.0], [1.0]]))
开发者ID:BasilBeirouti,项目名称:scikit-learn,代码行数:9,代码来源:test_t_sne.py
示例14: test_non_positive_computed_distances
def test_non_positive_computed_distances():
# Computed distance matrices must be positive.
def metric(x, y):
return -1
tsne = TSNE(metric=metric, method='exact')
X = np.array([[0.0, 0.0], [1.0, 1.0]])
assert_raises_regexp(ValueError, "All distances .*metric given.*",
tsne.fit_transform, X)
开发者ID:BasilBeirouti,项目名称:scikit-learn,代码行数:9,代码来源:test_t_sne.py
示例15: test_lda_transform_mismatch
def test_lda_transform_mismatch():
# test `n_features` mismatch in partial_fit and transform
rng = np.random.RandomState(0)
X = rng.randint(4, size=(20, 10))
X_2 = rng.randint(4, size=(10, 8))
n_topics = rng.randint(3, 6)
lda = LatentDirichletAllocation(n_topics=n_topics, random_state=rng)
lda.partial_fit(X)
assert_raises_regexp(ValueError, r"^The provided data has", lda.partial_fit, X_2)
开发者ID:andaag,项目名称:scikit-learn,代码行数:10,代码来源:test_online_lda.py
示例16: test_lda_partial_fit_dim_mismatch
def test_lda_partial_fit_dim_mismatch():
# test `n_features` mismatch in `partial_fit`
rng = np.random.RandomState(0)
n_topics = rng.randint(3, 6)
n_col = rng.randint(6, 10)
X_1 = np.random.randint(4, size=(10, n_col))
X_2 = np.random.randint(4, size=(10, n_col + 1))
lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=5.,
total_samples=20, random_state=rng)
lda.partial_fit(X_1)
assert_raises_regexp(ValueError, r"^The provided data has", lda.partial_fit, X_2)
开发者ID:andaag,项目名称:scikit-learn,代码行数:11,代码来源:test_online_lda.py
示例17: test_ovr_partial_fit_exceptions
def test_ovr_partial_fit_exceptions():
ovr = OneVsRestClassifier(MultinomialNB())
X = np.abs(np.random.randn(14, 2))
y = [1, 1, 1, 1, 2, 3, 3, 0, 0, 2, 3, 1, 2, 3]
ovr.partial_fit(X[:7], y[:7], np.unique(y))
# A new class value which was not in the first call of partial_fit
# It should raise ValueError
y1 = [5] + y[7:-1]
assert_raises_regexp(ValueError, r"Mini-batch contains \[.+\] while "
r"classes must be subset of \[.+\]",
ovr.partial_fit, X=X[7:], y=y1)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:11,代码来源:test_multiclass.py
示例18: test_invalid_params
def test_invalid_params():
# test `_check_params` method
X = np.ones((5, 10))
invalid_models = (
('n_topics', LatentDirichletAllocation(n_topics=0)),
('learning_method', LatentDirichletAllocation(learning_method='unknown')),
('total_samples', LatentDirichletAllocation(total_samples=0)),
('learning_offset', LatentDirichletAllocation(learning_offset=-1)),
)
for param, model in invalid_models:
regex = r"^Invalid %r parameter" % param
assert_raises_regexp(ValueError, regex, model.fit, X)
开发者ID:andaag,项目名称:scikit-learn,代码行数:13,代码来源:test_online_lda.py
示例19: test_ransac_resid_thresh_no_inliers
def test_ransac_resid_thresh_no_inliers():
# When residual_threshold=0.0 there are no inliers and a
# ValueError with a message should be raised
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator, min_samples=2,
residual_threshold=0.0, random_state=0,
max_trials=5)
msg = ("RANSAC could not find a valid consensus set")
assert_raises_regexp(ValueError, msg, ransac_estimator.fit, X, y)
assert_equal(ransac_estimator.n_skips_no_inliers_, 5)
assert_equal(ransac_estimator.n_skips_invalid_data_, 0)
assert_equal(ransac_estimator.n_skips_invalid_model_, 0)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:13,代码来源:test_ransac.py
示例20: test_partial_fit_weight_class_auto
def test_partial_fit_weight_class_auto(self):
# partial_fit with class_weight='auto' not supported
assert_raises_regexp(ValueError,
"class_weight 'auto' is not supported for "
"partial_fit. In order to use 'auto' weights, "
"use compute_class_weight\('auto', classes, y\). "
"In place of y you can us a large enough sample "
"of the full training set target to properly "
"estimate the class frequency distributions. "
"Pass the resulting weights as the class_weight "
"parameter.",
self.factory(class_weight='auto').partial_fit,
X, Y, classes=np.unique(Y))
开发者ID:1TTT9,项目名称:scikit-learn,代码行数:13,代码来源:test_sgd.py
注:本文中的sklearn.utils.testing.assert_raises_regexp函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论