• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

PaulSoderlind/FinancialEconometrics: Financial Econometrics (MSc, Julia code)

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称:

PaulSoderlind/FinancialEconometrics

开源软件地址:

https://github.com/PaulSoderlind/FinancialEconometrics

开源编程语言:

Jupyter Notebook 97.6%

开源软件介绍:

Introduction

This repository contains Julia code for a Financial Econometrics (MSc) course at UNISG.

Instructions

  1. Most files are jupyter notebooks. Click one of them to see it online. If GitHub fails to render the notebook or messes up the LaTeX in the Markdown cells, then use nbviewer. Instructions: try to open the notebook at GitHub, copy the link and paste it in the address field of nbviewer.

  2. To download this repository, use the Download (as zip) in the Github menu. Otherwise, clone it.

On the Files

  1. ChapterNumber_Topic.ipynb are notebooks organised around different topics. The chapter numbers correspond to the lecture notes (pdf), where more details are given (and the notation is explained).

  2. The pdf file contains the lecture notes.

  3. The folder Data contains some data sets used in the notebooks, while the folder jlFiles contains .jl files with some functions (also used in the notebooks).

  4. The plots are in png format (so GitHub can show them). If you want sharper plots, change default(fmt = :png) to default(fmt = :svg) in one of the top cells.

  5. The current version is tested on Julia 1.6 and 1.7.

Relation to Other Julia Econometrics Codes

The notebooks are closely tied to my lecture notes. The focus is on learning, so most methods are built from scratch. For instance, to estimate a GARCH model, the notebook builds the likelihood function, calls on a routine for optimisation (for the point estimates) and then differentiation (for the standard errors).

See Michael Creel's code for a similar approach (also focused on teaching)

The following packages provide more convenient (and often more powerful) routines:

GLM.jl for regressions

CovarianceMatrices.jl for robust (heteroskedasticity and/or autocorrelation) covariance estimates

HypothesisTests.jl for testing residuals and distributions

ARCHModels.jl for estimating ARCH and GARCH models

KernelDensity.jl for kernel density estimation

QuantileRegressions.jl for quantile regressions




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap