在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
开源软件名称:Evovest/EvoTrees.jl开源软件地址:https://github.com/Evovest/EvoTrees.jl开源编程语言:Julia 100.0%开源软件介绍:EvoTreesA Julia implementation of boosted trees with CPU and GPU support. Efficient histogram based algorithms with support for multiple loss functions (notably multi-target objectives such as max likelihood methods). Input features are expected to be Supported tasksCPU
Set parameter GPU
Set parameter InstallationLatest:
From General Registry:
PerformanceData consists of randomly generated float32. Training is performed on 200 iterations. Code to reproduce is here. EvoTrees: v0.8.4 XGBoost: v1.1.1 CPU: 16 threads on AMD Threadripper 3970X GPU: NVIDIA RTX 2080 Training:
Inference:
Parameters
MLJ IntegrationSee official project page for more info. using StatsBase: sample
using EvoTrees
using EvoTrees: sigmoid, logit
using MLJBase
features = rand(10_000) .* 5 .- 2
X = reshape(features, (size(features)[1], 1))
Y = sin.(features) .* 0.5 .+ 0.5
Y = logit(Y) + randn(size(Y))
Y = sigmoid(Y)
y = Y
X = MLJBase.table(X)
# @load EvoTreeRegressor
# linear regression
tree_model = EvoTreeRegressor(loss=:linear, max_depth=5, η=0.05, nrounds=10)
# set machine
mach = machine(tree_model, X, y)
# partition data
train, test = partition(eachindex(y), 0.7, shuffle=true); # 70:30 split
# fit data
fit!(mach, rows=train, verbosity=1)
# continue training
mach.model.nrounds += 10
fit!(mach, rows=train, verbosity=1)
# predict on train data
pred_train = predict(mach, selectrows(X, train))
mean(abs.(pred_train - selectrows(Y, train)))
# predict on test data
pred_test = predict(mach, selectrows(X, test))
mean(abs.(pred_test - selectrows(Y, test))) Getting started using internal APIMinimal example to fit a noisy sinus wave. 全部评论
专题导读
上一篇:JuliaGizmos/JSExpr.jl: Translate Julia to JavaScript发布时间:2022-07-09下一篇:JuliaML/MLDatasets.jl: Utility package for accessing common Machine Learning dat ...发布时间:2022-07-09热门推荐
热门话题
阅读排行榜
|
请发表评论