• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python io.import_images函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中menpo.io.import_images函数的典型用法代码示例。如果您正苦于以下问题:Python import_images函数的具体用法?Python import_images怎么用?Python import_images使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了import_images函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: generate_frames_max_bbox

def generate_frames_max_bbox(frames_path, frames_format, pts_paths, pts_formats, pts_names, save_path,
                             proportion, figure_size, overwrite, save_original,
                             render_options, only_ln=False, verbose=True):
    # find crop offset
    print('Computing max bounding box:')
    bounds_x = []
    bounds_y = []
    try:
        if len(os.listdir(pts_paths[0])) == 0:
            raise IndexError()
    except IndexError:
        if len(pts_paths) > 0:
            print('The directory of landmarks (%s) is empty, returning' % pts_paths[0])
        return
    for s in mio.import_landmark_files(pts_paths[0] + '*.pts', verbose=verbose):
        min_b, max_b = s.lms.bounds()
        bounds_x.append(max_b[0] - min_b[0])
        bounds_y.append(max_b[1] - min_b[1])
    off1 = round(max(bounds_x) * (1. + proportion) / 2)
    off2 = round(max(bounds_y) * (1. + proportion) / 2)

    print('\nLoad images, crop and save:')
    try:
        from joblib import Parallel, delayed
        Parallel(n_jobs=-1, verbose=4)(delayed(_aux)(im, pts_paths, pts_names, pts_formats, save_path, save_original,
                                                     off1, off2, figure_size, overwrite, render_options, only_ln=only_ln)
                                       for im in mio.import_images(frames_path + '*' + frames_format, verbose=False));
    except:
        print('Sequential execution')
        for im in mio.import_images(frames_path + '*' + frames_format, verbose=verbose):
            _aux(im, pts_paths, pts_names, pts_formats, save_path, save_original,
                 off1, off2, figure_size, overwrite, render_options, only_ln=only_ln);
开发者ID:caomw,项目名称:robust_deformable_face_tracking,代码行数:32,代码来源:visualisation_aux.py


示例2: trainAAMObject

	def trainAAMObject(self):
		try :
			from menpo.feature import fast_dsift
		except :
			pass

		#detector = load_dlib_frontal_face_detector()

		def load_image(i):
		    i = i.crop_to_landmarks_proportion(0.5)
		    if i.n_channels == 3:
		        i = i.as_greyscale()
		    # This step is actually quite important! If we are using
		    # an AAM and a PiecewiseAffine transform then we need
		    # to ensure that our triangulation is sensible so that
		    # we don't end up with ugly skinny triangles. Luckily,
		    # we provide a decent triangulation in the landmarks
		    # package.
		    labeller(i, 'PTS', ibug_face_68_trimesh)
		    return i

		training_images_path = Path(pathToTrainset) 
		training_images = [load_image(i) for i in mio.import_images(training_images_path, verbose=True)]

		aam = HolisticAAM(
		    training_images,
		    group='ibug_face_68_trimesh',
		    scales=(0.5, 1.0),
		    diagonal=150,
		    max_appearance_components=200,
		    max_shape_components=20,
		    verbose=True
		)

		pickle.dump(aam, open(AAMFile, "wb"))
开发者ID:Deathstroke7,项目名称:lipRead,代码行数:35,代码来源:AAMObject.py


示例3: train_aic_rlms

def train_aic_rlms(trainset, output, n_train_imgs=None):
    training_images = []
    # load landmarked images
    for i in mio.import_images(Path(trainset) / '*', verbose=True, max_images=n_train_imgs):
        # crop image
        i = i.crop_to_landmarks_proportion(0.5)
        labeller(i, 'PTS', face_ibug_68_to_face_ibug_66_trimesh)
        # convert it to greyscale if needed
        if i.n_channels == 3:
            i = i.as_greyscale(mode='average')
        # append it to the list
        training_images.append(i)

    offsets = np.meshgrid(range(-0, 1, 1), range(-0, 1, 1))
    offsets = np.asarray([offsets[0].flatten(), offsets[1].flatten()]).T 

    np.seterr(divide ='ignore')
    np.seterr(invalid ='ignore')    
    
    unified = UnifiedAAMCLM(training_images, 
                            parts_shape=(17, 17),
                            offsets=offsets,
                            group = test_group, 
                            holistic_features=fast_dsift, 
                            diagonal=100, 
                            scales=(1, .5), 
                            max_appearance_components = min(50,int(n_train_imgs/2)),
                            verbose=True) 

    n_appearance=[min(25,int(n_train_imgs/2)), min(50,int(n_train_imgs/2))]
    fitter = UnifiedAAMCLMFitter(unified, algorithm_cls=AICRLMS, n_shape=[3, 12], n_appearance=n_appearance)
    return fitter
开发者ID:VLAM3D,项目名称:alabortcvpr2015,代码行数:32,代码来源:train_aic_rlms.py


示例4: load_frgc

def load_frgc(session_id, recreate_meshes=False,
              output_base_path=Path('/vol/atlas/homes/pts08/'),
              input_base_path=Path('/vol/atlas/databases/frgc'),
              max_images=None):
    previously_pickled_path = output_base_path / 'frgc_{0}_68_cleaned.pkl'.format(session_id)
    abs_files_path = input_base_path / session_id / '*.abs'

    if not recreate_meshes and previously_pickled_path.exists():
        with open(str(previously_pickled_path)) as f:
            images = cPickle.load(f)
    else:
        # Add the custom ABS importer
        from menpo.io.input.extensions import image_types
        image_types['.abs'] = ABSImporter

        images = []
        for i, im in enumerate(mio.import_images(abs_files_path,
                                                 max_images=max_images,
                                                 verbose=True)):
            if im.n_landmark_groups > 0:
                preprocess_image(im)
                images.append(im)

        # Only dump the saved images if we loaded all of them!
        if max_images is None:
            with open(str(previously_pickled_path), 'wb') as f:
                cPickle.dump(images, f, protocol=2)

    return images
开发者ID:patricksnape,项目名称:research_utils,代码行数:29,代码来源:dataset_io.py


示例5: load_frgc

def load_frgc(session_id, recreate_meshes=False,
              output_base_path='/vol/atlas/homes/pts08/',
              input_base_path='/vol/atlas/databases/frgc',
              max_images=None):
    previously_pickled_path = os.path.join(
        output_base_path, 'frgc_{0}_68_cleaned.pkl'.format(session_id))
    abs_files_path = os.path.join(input_base_path, session_id, '*.abs')

    if not recreate_meshes and os.path.exists(previously_pickled_path):
        with open(previously_pickled_path) as f:
            images = cPickle.load(f)
    else:
        all_images = list(mio.import_images(abs_files_path,
                                            max_images=max_images))
        images = [im for im in all_images if im.n_landmark_groups == 1]
        print '{0}% of the images had landmarks'.format(
            len(images) / float(len(all_images)) * 100)

        for i, im in enumerate(images):
            preprocess_image(im)
            print_replace_line(
                'Image {0} of {1} cleaned'.format(i + 1, len(images)))
        # Only dump the saved images if we loaded all of them!
        if max_images is None:
            cPickle.dump(images, open(previously_pickled_path, 'wb'),
                         protocol=2)

    return images
开发者ID:patricksnape,项目名称:sfs,代码行数:28,代码来源:sfs_io.py


示例6: load_n_create_generator

def load_n_create_generator(pattern, detector_name,
        group=None, overwrite=False):
    import menpo.io as mio
    from menpo.landmark import LandmarkGroup
    from menpo.model import PCAModel
    try:
        detector = _DETECTORS[detector_name]()
    except KeyError:
        detector_list = ', '.join(list(_DETECTORS.keys()))
        raise ValueError('Valid detector types are: {}'.format(detector_list))
    print('Running {} detector on {}'.format(detector_name, pattern))
    bboxes = [(img, detect_and_check(img, detector, group=group))
              for img in mio.import_images(pattern, normalise=False,
                                           verbose=True)]

    # find all the detections that did not fail
    detections = filter(lambda x: x[1] is not None, bboxes)

    print('Creating a model out of {} detections.'.format(len(detections)))
    # normalize these to size [1, 1], centred on origin
    normed_detections = [
      normalize(im.landmarks[group].lms.bounding_box()).apply(det)
      for im, det in detections
    ]

    # build a PCA model from good detections
    pca = PCAModel(normed_detections)

    mio.export_pickle(pca, '{}_gen.pkl'.format(detector_name), overwrite=overwrite)
开发者ID:liulei2776,项目名称:mdm,代码行数:29,代码来源:detect.py


示例7: test_import_images_are_ordered_and_unduplicated

def test_import_images_are_ordered_and_unduplicated():
    # we know that import_images returns images in path order
    imgs = list(mio.import_images(mio.data_dir_path()))
    imgs_filenames = [i.path.stem for i in imgs]
    print(imgs_filenames)
    exp_imgs_filenames = ['breakingbad', 'einstein', 'lenna', 'menpo_thumbnail', 'takeo', 'tongue']
    assert exp_imgs_filenames == imgs_filenames
开发者ID:dvdm,项目名称:menpo,代码行数:7,代码来源:io_import_test.py


示例8: generate_dataset

def generate_dataset():
    with managed_dataset('lfpw-test') as p:
        for img in mio.import_images(p / '*.png', max_images=20,
                                     normalise=False, shuffle=True,
                                     landmark_resolver=_resolver):
            img.landmarks['gt'] = ibug_face_68(img.landmarks['gt'])[1]
            yield img.path.stem, img
开发者ID:nontas,项目名称:menpobench,代码行数:7,代码来源:lfpw_test_face_ibug_68_dlib_test.py


示例9: test_import_lazy_list

def test_import_lazy_list():
    from menpo.base import LazyList
    data_path = mio.data_dir_path()
    ll = mio.import_images(data_path)
    assert isinstance(ll, LazyList)
    ll = mio.import_landmark_files(data_path)
    assert isinstance(ll, LazyList)
开发者ID:dvdm,项目名称:menpo,代码行数:7,代码来源:io_import_test.py


示例10: load_test_data

def load_test_data(testset, n_test_imgs=None):
    test_images = []
    for i in mio.import_images(Path(testset), verbose=True, max_images=n_test_imgs):    
        i = i.crop_to_landmarks_proportion(0.5)
        labeller(i, 'PTS', face_ibug_68_to_face_ibug_66_trimesh)
        if i.n_channels == 3:
            i = i.as_greyscale(mode='average')
        test_images.append(i)

    return test_images
开发者ID:VLAM3D,项目名称:alabortcvpr2015,代码行数:10,代码来源:train_aic_rlms.py


示例11: read_images

def read_images(img_glob, normalise):
    # Read the training set into memory.
    images = []
    for img_orig in mio.import_images(img_glob, verbose=True, normalise=normalise):
        if not img_orig.has_landmarks:
            continue
        # Convert to greyscale and crop to landmarks.
        img = img_orig.as_greyscale(mode='average').crop_to_landmarks_proportion_inplace(0.5)
        #img = img.resize((MAX_FACE_WIDTH, img.shape[1]*(MAX_FACE_WIDTH/img.shape[0])))
        images.append(img)
    return np.array(images)
开发者ID:DLlearn,项目名称:facefit,代码行数:11,代码来源:util.py


示例12: test_trained_aam_default_dataset

    def test_trained_aam_default_dataset(self, i_image_count = 800):

        dataset = os.path.join( GetDirectory(__file__) , 'lfpw')

        Model = AAM(dataset, i_debug = True)

        testset = os.path.join(dataset, 'testset', '*')
        forward_backward_errors = [Model.FitAnnotatedImage(Model.LoadImage(img))
                                   for img in menpoio.import_images(testset, max_images=800, verbose = True) ]

        # Ensure mean error < 0.1 - Experimentally derived
        err = 0        
        for error in forward_backward_errors:
            err = err + error.final_error()

        self.assertTrue( err / len(forward_backward_errors) < 0.1 )
开发者ID:Lukemtesta,项目名称:Deformable-Models-for-Face-Fitting,代码行数:16,代码来源:UnitTestAAM.py


示例13: save_bounding_boxes

def save_bounding_boxes(pattern, detector_type, group=None,
                        sythesize_problematic=False, overwrite=False):
    import menpo.io as mio
    from menpo.landmark import LandmarkGroup
    from menpo.model import PCAModel
    try:
        detector = _DETECTORS[detector_type]()
    except KeyError:
        detector_list = ', '.join(list(_DETECTORS.keys()))
        raise ValueError('Valid detector types are: {}'.format(detector_list))
    print('Running {} detector on {}'.format(detector_type, pattern))
    bboxes = {img.path: detect_and_check(img, detector, group=group)
              for img in mio.import_images(pattern, normalise=False,
                                           verbose=True)}

    # find all the detections that failed
    problematic = filter(lambda x: x[1]['d'] is None, bboxes.items())
    print('Failed to detect {} objects'.format(len(problematic)))
    if len(problematic) > 0 and sythesize_problematic:
        print('Learning detector traits and sythesizing fits for {} '
              'images'.format(len(problematic)))
        # get the good detections
        detections = filter(lambda x: x['d'] is not None, bboxes.values())
        # normalize these to size [1, 1], centred on origin
        normed_detections = [normalize(r['gt']).apply(r['d'])
                             for r in detections]
        # build a PCA model from good detections
        pca = PCAModel(normed_detections)

        for p, r in problematic:
            # generate a new bbox offset in the normalized space by using
            # our learnt PCA basis
            d = random_instance(pca)
            # apply an inverse transform to place it on the image
            bboxes[p]['d'] = normalize(r['gt']).pseudoinverse().apply(d)
    to_save = len(bboxes)
    if not sythesize_problematic:
        to_save = to_save - len(problematic)
    print('Saving out {} {} detections'.format(to_save, detector_type))
    # All done, save out results
    for p, r in bboxes.items():
        if r['d'] is not None:
            lg = LandmarkGroup.init_with_all_label(r['d'])
            mio.export_landmark_file(lg, p.parent /
                                     (p.stem + '_{}.ljson'.format(detector_type)),
                                     overwrite=overwrite)
开发者ID:nontas,项目名称:menpobench,代码行数:46,代码来源:bbox.py


示例14: main_for_ps_detector

def main_for_ps_detector(path_clips, in_bb_fol, out_bb_fol, out_model_fol, out_landmarks_fol, overwrite=False):

    # define a dictionary for the paths
    paths = {}
    paths['clips'] = path_clips
    paths['in_bb'] = path_clips + in_bb_fol  # existing bbox of detection
    paths['out_bb'] = path_clips + out_bb_fol       # save bbox of detection
    paths['out_lns'] = path_clips + out_landmarks_fol
    paths['out_model'] = mkdir_p(path_clips + out_model_fol)  # path that trained models will be saved.

    # Log file output.
    log = mkdir_p(path_clips + 'logs' + sep) + datetime.now().strftime("%Y.%m.%d.%H.%M.%S") + '_2_ffld.log'
    sys.stdout = Logger(log)

    print_fancy('Training person specific model with FFLD')
    list_clips = sorted(os.listdir(path_clips + frames))
    img_type = check_img_type(list_clips, path_clips + frames)
    negative_images = [i.as_greyscale(mode='channel', channel=1) for i in mio.import_images('/vol/atlas/homes/pts08/non_person_images',
                                                                                            normalise=False, max_images=300)]
    [process_clip(clip_name, paths, img_type, negative_images, overwrite=overwrite) for clip_name in list_clips];
开发者ID:caomw,项目名称:robust_deformable_face_tracking,代码行数:20,代码来源:ffld2.py


示例15: load_database

def load_database(path_to_images, save_path, db_name, crop_percentage,
                  fast, group, verbose=False):
    # create filename
    if group is not None:
        filename = (db_name + '_' + group.__name__ + '_crop' +
                    str(int(crop_percentage * 100)))
    else:
        filename = db_name + 'PTS' + '_crop' + str(int(crop_percentage * 100))
    if fast:
        filename += '_menpofast.pickle'
    else:
        filename += '_menpo.pickle'
    save_path = os.path.join(save_path, filename)

    # check if file exists
    if file_exists(save_path):
        if verbose:
            print_dynamic('Loading images...')
        images = pickle_load(save_path)
        if verbose:
            print_dynamic('Images Loaded.')
    else:
        # load images
        images = []
        for i in mio.import_images(path_to_images, verbose=verbose):
            if fast:
                i = convert_from_menpo(i)
            i.crop_to_landmarks_proportion_inplace(crop_percentage, group='PTS')
            if group is not None:
                labeller(i, 'PTS', group)
            if i.n_channels == 3:
                i = i.as_greyscale(mode='average')
            images.append(i)

        # save images
        pickle_dump(images, save_path)

    # return images
    return images
开发者ID:hporange,项目名称:antonakoscvpr2015,代码行数:39,代码来源:base.py


示例16: read_public_images

def read_public_images(path_to_db, max_images=100, training_images=None, crop_reading=0.3, pix_thres=330, feat=None):
    """
    Read images from public databases. The landmarks are expected to be in the same folder.
    :param path_to_db:          Path to the folder of images. The landmark files are expected to be in the same folder.
    :param max_images:          Max images that will be loaded from this database. Menpo will try to load as many as requested (if they exist).
    :param training_images:     (optional) List of images to append the new ones.
    :param crop_reading:        (optional) Amount of cropping the image around the landmarks.
    :param pix_thres:           (optional) If the cropped image has a dimension bigger than this, it gets cropped to this diagonal dimension.
    :param feat:                (optional) Features to be applied to the images before inserting them to the list.
    :return:                    List of menpo images.
    """
    import menpo.io as mio
    if not(os.path.isdir(path_to_db)):
        raise RuntimeError('The path to the public DB images does not exist. Try with a valid path.')
    if feat is None:
        feat = no_op
    if training_images is None:
        training_images = []
    for i in mio.import_images(path_to_db + '*', verbose=True, max_images=max_images):
        if not i.has_landmarks:
            continue
        i = crop_rescale_img(i, crop_reading=crop_reading, pix_thres=pix_thres)
        training_images.append(feat(i)) # append it to the list
    return training_images
开发者ID:caomw,项目名称:robust_deformable_face_tracking,代码行数:24,代码来源:pipeline_aux.py


示例17: test_shuffle_kwarg_true_calls_shuffle

def test_shuffle_kwarg_true_calls_shuffle(mock):
    list(mio.import_images(mio.data_dir_path(), shuffle=True))
    assert mock.called
开发者ID:dvdm,项目名称:menpo,代码行数:3,代码来源:io_import_test.py


示例18: test_import_images_wrong_path_raises_value_error

def test_import_images_wrong_path_raises_value_error():
    list(mio.import_images('asldfjalkgjlaknglkajlekjaltknlaekstjlakj'))
开发者ID:dvdm,项目名称:menpo,代码行数:2,代码来源:io_import_test.py


示例19: test_import_images

def test_import_images():
    imgs = list(mio.import_images(mio.data_dir_path()))
    imgs_filenames = set(i.path.stem for i in imgs)
    exp_imgs_filenames = {'einstein', 'takeo', 'breakingbad', 'lenna'}
    assert(len(exp_imgs_filenames - imgs_filenames) == 0)
开发者ID:Amos-zq,项目名称:menpo,代码行数:5,代码来源:io_import_test.py


示例20: test_import_images

def test_import_images():
    imgs = list(mio.import_images(mio.data_dir_path()))
    imgs_filenames = set(i.path.stem for i in imgs)
    exp_imgs_filenames = {'einstein', 'takeo', 'tongue', 'breakingbad', 'lenna',
                          'menpo_thumbnail'}
    assert exp_imgs_filenames == imgs_filenames
开发者ID:dvdm,项目名称:menpo,代码行数:6,代码来源:io_import_test.py



注:本文中的menpo.io.import_images函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python io.import_landmark_file函数代码示例发布时间:2022-05-27
下一篇:
Python io.import_image函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap