• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python io.import_landmark_file函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中menpo.io.import_landmark_file函数的典型用法代码示例。如果您正苦于以下问题:Python import_landmark_file函数的具体用法?Python import_landmark_file怎么用?Python import_landmark_file使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了import_landmark_file函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: process_frame

def process_frame(frame_name, clip, img_type, svm_p, loop=False):
    """
    Applies the AAM fitter (global var) in a frame. Additionally, it might apply an
    SVM to verify it's a face if required.
    :param frame_name: str: Name of the frame along with extension, e.g. '000001.png'.
    :param clip:       str: Name of the clip.
    :param img_type:   str: Suffix (extension) of the frames, e.g. '.png'.
    :param svm_p:      dict: Required params for SVM classification.
    :param loop:       bool: (optional) Declares whether this is a 2nd fit for AAM (loop).
    :return:
    """
    global fitter
    name = frame_name[:frame_name.rfind('.')]
    p0 = clip.path_read_ln[0] + name + '_0.pts'
    # find if this is 2nd fit or 1st.
    if loop:  # if 2nd fit, then if landmark is 'approved', return. Otherwise proceed.
        try:
            ln = import_landmark_file(p0)
            copy2(p0, clip.path_write_ln[0] + name + '_0.pts')
            return      # if the landmark already exists, return (for performance improvement)
        except ValueError:
            pass
        try:
            ln = import_landmark_file(clip.path_read_ln[1] + name + '_0.pts')
        except ValueError:  # either not found or no suitable importer
            return
    else:
        try:
            ln = import_landmark_file(p0)
        except ValueError:  # either not found or no suitable importer
            return
    im = im_read_greyscale(frame_name, clip.path_frames, img_type)
    if not im:
        return
    im.landmarks['PTS2'] = ln
    fr = fitter.fit_from_shape(im, im.landmarks['PTS2'].lms, crop_image=0.3)
    p_wr = clip.path_write_ln[0] + im.path.stem + '_0.pts'
    export_landmark_file(fr.fitted_image.landmarks['final'], p_wr, overwrite=True)

    # apply SVM classifier by extracting patches (is face or not).
    if not svm_p['apply']:
        return
    im.landmarks.clear()  # temp solution
    im.landmarks['ps_pbaam'] = fr.fitted_image.landmarks['final']
    im_cp = im.crop_to_landmarks_proportion(0.2, group='ps_pbaam')
    im_cp = svm_p['feat'](im_cp)
    im2 = warp_image_to_reference_shape(im_cp, svm_p['refFrame'], 'ps_pbaam')
    _p_nd = im2.extract_patches_around_landmarks(group='source', as_single_array=True,
                                                 patch_shape=svm_p['patch_s']).flatten()
    if svm_p['clf'].decision_function(_p_nd) > 0:
        copy2(p_wr, clip.path_write_ln[1] + im.path.stem + '_0.pts')
开发者ID:caomw,项目名称:robust_deformable_face_tracking,代码行数:51,代码来源:ps_pbaam.py


示例2: test_json_landmarks_bunny_direct

def test_json_landmarks_bunny_direct():
    lms = mio.import_landmark_file(mio.data_path_to('bunny.ljson'))
    labels = {'reye', 'mouth', 'nose', 'leye'}
    assert(len(labels - set(lms.labels)) == 0)
    assert_allclose(lms['leye'].points, bunny_leye, atol=1e-7)
    assert_allclose(lms['reye'].points, bunny_reye, atol=1e-7)
    assert_allclose(lms['nose'].points, bunny_nose, atol=1e-7)
    assert_allclose(lms['mouth'].points, bunny_mouth, atol=1e-7)
开发者ID:yymath,项目名称:menpo,代码行数:8,代码来源:io_import_test.py


示例3: test_json_landmarks_bunny_direct

def test_json_landmarks_bunny_direct():
    lms = pio.import_landmark_file(pio.data_path_to('bunny.json'))
    assert(lms.group_label == 'JSON')
    labels = {'r_eye', 'mouth', 'nose', 'l_eye'}
    assert(len(labels - set(lms.labels)) == 0)
    assert_allclose(lms['l_eye'].lms.points, bunny_l_eye, atol=1e-7)
    assert_allclose(lms['r_eye'].lms.points, bunny_r_eye, atol=1e-7)
    assert_allclose(lms['nose'].lms.points, bunny_nose, atol=1e-7)
    assert_allclose(lms['mouth'].lms.points, bunny_mouth, atol=1e-7)
开发者ID:ikassi,项目名称:menpo,代码行数:9,代码来源:io_test.py


示例4: test_register_landmark_importer

def test_register_landmark_importer(is_file):
    from menpo.shape import PointCloud
    lmark = PointCloud.init_2d_grid((1, 1))

    def foo_importer(filepath, **kwargs):
        return lmark

    is_file.return_value = True

    with patch.dict(mio.input.extensions.image_landmark_types, {}, clear=True):
        mio.register_landmark_importer('.foo', foo_importer)
        new_lmark = mio.import_landmark_file('fake.foo')
    assert lmark is new_lmark
开发者ID:grigorisg9gr,项目名称:menpo,代码行数:13,代码来源:io_import_test.py


示例5: load_images

def load_images(list_frames, frames_path, path_land, clip_name, max_images=None,
                training_images=None, crop_reading=0.3, pix_thres=330, feat=None):
    """
    Read images from the clips that are processed. The landmarks can be a different folder with the extension of pts and
    are searched as such.
    :param list_frames:         List of images that will be read and loaded.
    :param frames_path:         Path to the folder of images.
    :param path_land:           Path of the respective landmarks.
    :param clip_name:           The name of the clip being processed.
    :param max_images:          (optional) Max images that will be loaded from this clip.
    :param training_images:     (optional) List of images to append the new ones.
    :param crop_reading:        (optional) Amount of cropping the image around the landmarks.
    :param pix_thres:           (optional) If the cropped image has a dimension bigger than this, it gets cropped to this diagonal dimension.
    :param feat:                (optional) Features to be applied to the images before inserting them to the list.
    :return:                    List of menpo images.
    """
    from random import shuffle
    if not check_path_and_landmarks(frames_path, clip_name, path_land):
        return []
    if feat is None:
        feat = no_op
    if training_images is None:
        training_images = []
    shuffle(list_frames)            # shuffle the list to ensure random ones are chosen
    if max_images is None:
        max_images = len(list_frames)
    elif max_images < 0:
        print('Warning: The images cannot be negative, loading the whole list instead.')
        max_images = len(list_frames)
    cnt = 0  # counter for images appended to the list
    for frame_name in list_frames:
        try:
            im = mio.import_image(frames_path + frame_name, normalise=True)
        except ValueError:                                      # in case the extension is unknown (by menpo)
            print('Ignoring the \'image\' {}.'.format(frame_name))
            continue
        res = glob.glob(path_land + clip_name + sep + im.path.stem + '*.pts')
        if len(res) == 0:                       # if the image does not have any existing landmarks, ignore it
            continue
        elif len(res) > 1:
            #_r = randint(0,len(res)-1); #just for debugging reasons in different variable
            #ln = mio.import_landmark_file(res[_r]) # in case there are plenty of landmarks for the image, load random ones
            print('The image {} has more than one landmarks, for one person, loading only the first ones.'.format(frame_name))
        ln = mio.import_landmark_file(res[0])
        im.landmarks['PTS'] = ln
        im = crop_rescale_img(im, crop_reading=crop_reading, pix_thres=pix_thres)
        training_images.append(feat(im))
        cnt += 1
        if cnt >= max_images:
            break  # the limit of images (appended to the list) is reached
    return training_images
开发者ID:caomw,项目名称:robust_deformable_face_tracking,代码行数:51,代码来源:pipeline_aux.py


示例6: load_image

def load_image(path, reference_shape, is_training=False, group='PTS',
               mirror_image=False):
    """Load an annotated image.

    In the directory of the provided image file, there
    should exist a landmark file (.pts) with the same
    basename as the image file.

    Args:
      path: a path containing an image file.
      reference_shape: a numpy array [num_landmarks, 2]
      is_training: whether in training mode or not.
      group: landmark group containing the grounth truth landmarks.
      mirror_image: flips horizontally the image's pixels and landmarks.
    Returns:
      pixels: a numpy array [width, height, 3].
      estimate: an initial estimate a numpy array [68, 2].
      gt_truth: the ground truth landmarks, a numpy array [68, 2].
    """
    im = mio.import_image(path)
    bb_root = im.path.parent.relative_to(im.path.parent.parent.parent)
    if 'set' not in str(bb_root):
        bb_root = im.path.parent.relative_to(im.path.parent.parent)

    im.landmarks['bb'] = mio.import_landmark_file(str(Path('bbs') / bb_root / (
        im.path.stem + '.pts')))

    im = im.crop_to_landmarks_proportion(0.3, group='bb')
    reference_shape = PointCloud(reference_shape)

    bb = im.landmarks['bb'].lms.bounding_box()

    im.landmarks['__initial'] = align_shape_with_bounding_box(reference_shape,
                                                              bb)
    im = im.rescale_to_pointcloud(reference_shape, group='__initial')

    if mirror_image:
        im = utils.mirror_image(im)

    lms = im.landmarks[group].lms
    initial = im.landmarks['__initial'].lms

    # if the image is greyscale then convert to rgb.
    pixels = grey_to_rgb(im).pixels.transpose(1, 2, 0)

    gt_truth = lms.points.astype(np.float32)
    estimate = initial.points.astype(np.float32)
    return pixels.astype(np.float32).copy(), gt_truth, estimate
开发者ID:trigeorgis,项目名称:mdm,代码行数:48,代码来源:data_provider.py


示例7: _aux

def _aux(im, pts_paths, pts_names, pts_formats, save_path, save_original, off1, off2, figure_size, overwrite, render_options, only_ln=False):
    if only_ln:  # case of visualising only landmarks (black background)
        path_tmp = im.path
        im = Image.init_blank([im.shape[0], im.shape[1]], im.n_channels)
        im.path = path_tmp
    # attach landmarks
    for k, pts_path in enumerate(pts_paths):
        if os.path.isfile(pts_path + im.path.stem + pts_formats[k]):
            pts = mio.import_landmark_file(pts_path + im.path.stem + pts_formats[k])
            im.landmarks[pts_names[k]] = pts

    # copy original if asked
    if save_original:
        im_orig = im.copy()

    # crop
    if pts_names[0] in im.landmarks.group_labels:
        centre = im.landmarks[pts_names[0]].lms.centre()
        min_indices = np.array([round(centre[0])-off1, round(centre[1])-off2])
        max_indices = np.array([round(centre[0])+off1, round(centre[1])+off2])
        # im.crop_inplace(min_indices, max_indices)
        im = im.crop(min_indices, max_indices, constrain_to_boundary=True)
    else:
        path_tmp = im.path
        im = Image.init_blank([off1*2 + 1, off2*2 + 1], im.n_channels)
        im.path = path_tmp

    # render
    rand = randint(1, 10000)
    fig = plt.figure(rand)
    if save_original:
        gs = gridspec.GridSpec(1, 2, width_ratios=[im_orig.height, im.height])

        plt.subplot(gs[0])
        renderer = _render(im_orig, pts_names, fig, render_options['colours'][0],
                           render_options['sizes'][0], render_options['edgesizes'][0], figure_size)

        plt.subplot(gs[1])
        renderer = _render(im, pts_names, fig, render_options['colours'][1],
                           render_options['sizes'][1], render_options['edgesizes'][1], figure_size)
    else:
        renderer = _render(im, pts_names, fig, render_options['colours'][1],
                           render_options['sizes'][1], render_options['edgesizes'][1], figure_size)

    renderer.save_figure(save_path + im.path.stem + '.png', format='png', pad_inches=0.0, overwrite=overwrite)
    plt.close(rand)
开发者ID:caomw,项目名称:robust_deformable_face_tracking,代码行数:46,代码来源:visualisation_aux.py


示例8: test_importing_v2_ljson_null_values

def test_importing_v2_ljson_null_values(is_file, mock_open, mock_dict):
    v2_ljson = { "labels": [
                    { "label": "left_eye", "mask": [0, 1, 2] },
                    { "label": "right_eye", "mask": [3, 4, 5] }
                 ],
                 "landmarks": {
                     "connectivity": [ [0, 1], [1, 2], [2, 0], [3, 4],
                                       [4, 5],  [5, 3] ],
                     "points": [ [None, 200.5], [None, None],
                                 [316.8, 199.15], [339.48, 205.0],
                                 [358.54, 217.82], [375.0, 233.4]]
                 },
                 "version": 2 }

    mock_dict.return_value = v2_ljson
    is_file.return_value = True

    lmark = mio.import_landmark_file('fake_lmark_being_mocked.ljson')
    nan_points = np.isnan(lmark.lms.points)
    assert nan_points[0, 0]  # y-coord None point is nan
    assert not nan_points[0, 1]  # x-coord point is not nan
    assert np.all(nan_points[1, :]) # all of leye label is nan
开发者ID:dvdm,项目名称:menpo,代码行数:22,代码来源:io_import_test.py


示例9: test_importing_v1_ljson_null_values

def test_importing_v1_ljson_null_values(is_file, mock_open, mock_dict):
    v1_ljson = { "groups": [
        { "connectivity": [ [ 0, 1 ], [ 1, 2 ], [ 2, 3 ] ],
          "label": "chin", "landmarks": [
            { "point": [ 987.9, 1294.1 ] }, { "point": [ 96.78, 1246.8 ] },
            { "point": [ None, 0.1 ] }, { "point": [303.22, 167.2 ] } ] },
        { "connectivity": [ [ 0, 1 ] ],
          "label": "leye", "landmarks": [
            { "point": [ None, None ] },
            { "point": [ None, None ] }] }
        ], "version": 1 }
    mock_dict.return_value = v1_ljson
    is_file.return_value = True

    with warnings.catch_warnings(record=True) as w:
        lmark = mio.import_landmark_file('fake_lmark_being_mocked.ljson')
    nan_points = np.isnan(lmark.lms.points)

    # Should raise deprecation warning
    assert len(w) == 1
    assert nan_points[2, 0]  # y-coord None point is nan
    assert not nan_points[2, 1]  # x-coord point is not nan
    assert np.all(nan_points[4:, :]) # all of leye label is nan
开发者ID:dvdm,项目名称:menpo,代码行数:23,代码来源:io_import_test.py


示例10: test_import_landmark_file

def test_import_landmark_file():
    lm_path = mio.data_dir_path() / 'einstein.pts'
    mio.import_landmark_file(lm_path)
开发者ID:dvdm,项目名称:menpo,代码行数:3,代码来源:io_import_test.py


示例11: test_export_filepath_overwrite_exists

import numpy as np
from mock import patch, PropertyMock
from nose.tools import raises
import sys

import menpo.io as mio
from menpo.image import Image

builtins_str = '__builtin__' if sys.version_info[0] == 2 else 'builtins'

test_lg = mio.import_landmark_file(mio.data_path_to('breakingbad.pts'))
nan_lg = test_lg.copy()
nan_lg.lms.points[0, :] = np.nan
test_img = Image(np.random.random([100, 100]))
fake_path = '/tmp/test.fake'


@patch('menpo.io.output.base.landmark_types')
@patch('menpo.io.output.base.Path.exists')
@patch('menpo.io.output.base.Path.open')
def test_export_filepath_overwrite_exists(mock_open, exists, landmark_types):
    exists.return_value = True
    mio.export_landmark_file(test_lg, fake_path, overwrite=True)
    mock_open.assert_called_once_with('wb')
    landmark_types.__getitem__.assert_called_once_with('.fake')
    export_function = landmark_types.__getitem__.return_value
    export_function.assert_called_once()


@patch('menpo.io.output.base.landmark_types')
@patch('menpo.io.output.base.Path.exists')
开发者ID:ersisimou,项目名称:menpo,代码行数:31,代码来源:io_export_test.py


示例12: test_export_filepath_overwrite_exists

from numpy.testing import assert_allclose
import os
from pathlib import PosixPath, WindowsPath, Path
from mock import patch, PropertyMock, MagicMock
from nose.tools import raises


import menpo.io as mio
from menpo.io.utils import _norm_path
from menpo.image import Image
from menpo.io.output.pickle import pickle_paths_as_pure


builtins_str = '__builtin__' if sys.version_info[0] == 2 else 'builtins'

test_lg = mio.import_landmark_file(mio.data_path_to('lenna.ljson'))
nan_lg = test_lg.copy()
nan_lg.points[0, :] = np.nan
test_img = Image(np.random.random([100, 100]))
colour_test_img = Image(np.random.random([3, 100, 100]))
fake_path = '/tmp/test.fake'


@patch('menpo.io.output.base.landmark_types')
@patch('menpo.io.output.base.Path.exists')
@patch('menpo.io.output.base.Path.open')
def test_export_filepath_overwrite_exists(mock_open, exists, landmark_types):
    exists.return_value = True
    landmark_types.__contains__.return_value = True
    mio.export_landmark_file(test_lg, fake_path, overwrite=True)
    mock_open.assert_called_with('wb')
开发者ID:grigorisg9gr,项目名称:menpo,代码行数:31,代码来源:io_export_test.py


示例13: test_import_landmark_file

def test_import_landmark_file():
    lm_path = os.path.join(mio.data_dir_path(), 'einstein.pts')
    mio.import_landmark_file(lm_path)
开发者ID:csagonas,项目名称:menpo,代码行数:3,代码来源:io_import_test.py


示例14: load_images

def load_images(paths, group=None, verbose=True):
    """Loads and rescales input images to the diagonal of the reference shape.

    Args:
      paths: a list of strings containing the data directories.
      reference_shape: a numpy array [num_landmarks, 2]
      group: landmark group containing the grounth truth landmarks.
      verbose: boolean, print debugging info.
    Returns:
      images: a list of numpy arrays containing images.
      shapes: a list of the ground truth landmarks.
      reference_shape: a numpy array [num_landmarks, 2].
      shape_gen: PCAModel, a shape generator.
    """
    images = []
    shapes = []
    bbs = []

    reference_shape = PointCloud(build_reference_shape(paths))

    for path in paths:
        if verbose:
            print('Importing data from {}'.format(path))

        for im in mio.import_images(path, verbose=verbose, as_generator=True):
            group = group or im.landmarks[group]._group_label

            bb_root = im.path.parent.relative_to(im.path.parent.parent.parent)
            if 'set' not in str(bb_root):
                bb_root = im.path.parent.relative_to(im.path.parent.parent)
            im.landmarks['bb'] = mio.import_landmark_file(str(Path(
                'bbs') / bb_root / (im.path.stem + '.pts')))
            im = im.crop_to_landmarks_proportion(0.3, group='bb')
            im = im.rescale_to_pointcloud(reference_shape, group=group)
            im = grey_to_rgb(im)
            images.append(im.pixels.transpose(1, 2, 0))
            shapes.append(im.landmarks[group].lms)
            bbs.append(im.landmarks['bb'].lms)

    train_dir = Path(FLAGS.train_dir)
    mio.export_pickle(reference_shape.points, train_dir / 'reference_shape.pkl', overwrite=True)
    print('created reference_shape.pkl using the {} group'.format(group))

    pca_model = detect.create_generator(shapes, bbs)

    # Pad images to max length
    max_shape = np.max([im.shape for im in images], axis=0)
    max_shape = [len(images)] + list(max_shape)
    padded_images = np.random.rand(*max_shape).astype(np.float32)
    print(padded_images.shape)

    for i, im in enumerate(images):
        height, width = im.shape[:2]
        dy = max(int((max_shape[1] - height - 1) / 2), 0)
        dx = max(int((max_shape[2] - width - 1) / 2), 0)
        lms = shapes[i]
        pts = lms.points
        pts[:, 0] += dy
        pts[:, 1] += dx

        lms = lms.from_vector(pts)
        padded_images[i, dy:(height+dy), dx:(width+dx)] = im

    return padded_images, shapes, reference_shape.points, pca_model
开发者ID:trigeorgis,项目名称:mdm,代码行数:64,代码来源:data_provider.py


示例15: test_export_filepath_overwrite_exists

from numpy.testing import assert_allclose
import os
from pathlib import PosixPath, WindowsPath, Path
from mock import patch, PropertyMock, MagicMock
from pytest import raises


import menpo.io as mio
from menpo.io.utils import _norm_path
from menpo.image import Image
from menpo.io.output.pickle import pickle_paths_as_pure


builtins_str = '__builtin__' if sys.version_info[0] == 2 else 'builtins'

test_lg = mio.import_landmark_file(mio.data_path_to('lenna.ljson'),
                                   group='LJSON')
nan_lg = test_lg.copy()
nan_lg.points[0, :] = np.nan
test_img = Image(np.random.random([100, 100]))
colour_test_img = Image(np.random.random([3, 100, 100]))
fake_path = '/tmp/test.fake'


@patch('menpo.io.output.base.landmark_types')
@patch('menpo.io.output.base.Path.exists')
@patch('menpo.io.output.base.Path.open')
def test_export_filepath_overwrite_exists(mock_open, exists, landmark_types):
    exists.return_value = True
    landmark_types.__contains__.return_value = True
    mio.export_landmark_file(test_lg, fake_path, overwrite=True)
    mock_open.assert_called_with('wb')
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:32,代码来源:test_io_export.py



注:本文中的menpo.io.import_landmark_file函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python model.PCAModel类代码示例发布时间:2022-05-27
下一篇:
Python io.import_images函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap