• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python base.warning函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mvpa2.base.warning函数的典型用法代码示例。如果您正苦于以下问题:Python warning函数的具体用法?Python warning怎么用?Python warning使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了warning函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _verified_reverse1

def _verified_reverse1(mapper, onesample):
    """Replacement of Mapper.reverse1 with safety net

    This function can be called instead of a direct call to a mapper's
    ``reverse1()``. It wraps a single sample into a dummy axis and calls
    ``reverse()``. Afterwards it verifies that the first axis of the
    returned array has one item only, otherwise it will issue a warning.
    This function is useful in any context where it is critical to ensure
    that reverse mapping a single sample, yields exactly one sample -- which
    isn't guaranteed due to the flexible nature of mappers.

    Parameters
    ----------
    mapper : Mapper instance
    onesample : array-like
      Single sample (in terms of the supplied mapper).

    Returns
    -------
    array
      Shape matches a single sample in terms of the mappers input space.
    """
    dummy_axis_sample = np.asanyarray(onesample)[None]
    rsample = mapper.reverse(dummy_axis_sample)
    if not len(rsample) == 1:
        warning("Reverse mapping single sample yielded multiple -- can lead to unintended behavior!")
    return rsample[0]
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:27,代码来源:base.py


示例2: _get_increments

    def _get_increments(self, ndim):
        """Creates a list of increments for a given dimensionality

        RF: lame yoh just cut-pasted and tuned up because everything
            depends on ndim...
        """
        # Set element_sizes
        element_sizes = self._element_sizes
        if element_sizes is None:
            element_sizes = np.ones(ndim)
        else:
            if (ndim != len(element_sizes)):
                raise ValueError, \
                      "Dimensionality mismatch: element_sizes %s provided " \
                      "to constructor had %i dimensions, whenever queried " \
                      "coordinate had %i" \
                      % (element_sizes, len(element_sizes), ndim)
        center = np.zeros(ndim)

        element_sizes = np.asanyarray(element_sizes)
        # What range for each dimension
        erange = np.ceil(self._radius / element_sizes).astype(int)

        tentative_increments = np.array(list(np.ndindex(tuple(erange*2 + 1)))) \
                               - erange
        # Filter out the ones beyond the "sphere"
        res = array([x for x in tentative_increments
                      if self._inner_radius
                      < self._distance_func(x * element_sizes, center)
                      <= self._radius])

        if not len(res):
            warning("%s defines no neighbors" % self)
        return res
开发者ID:andreirusu,项目名称:PyMVPA,代码行数:34,代码来源:neighborhood.py


示例3: _check_cosmo_dataset

def _check_cosmo_dataset(cosmo):
    '''
    Helper function to ensure a cosmo input for cosmo_dataset is valid.
    Currently does two things:
    (1) raise an error if there are no samples
    (2) raise a warning if samples have very large or very small values. A use
        case is certain MEEG datasets with very small sample values
        (in the order of 1e-25) which affects some classifiers
    '''

    samples = cosmo.get('samples', None)

    if samples is None:
        raise KeyError("Missing field .samples in %s" % cosmo)

    # check for extreme values
    warn_for_extreme_values_decimals = 10

    # ignore NaNs and infinity
    nonzero_msk = np.logical_and(np.isfinite(samples), samples != 0)

    if np.any(nonzero_msk):
        max_nonzero = np.max(np.abs(samples[nonzero_msk]))

        # see how many decimals in the largest absolute value
        decimals_nonzero = np.log10(max_nonzero)

        if abs(decimals_nonzero) > warn_for_extreme_values_decimals:
            msg = (
                'Samples have extreme values, maximum absolute value is %s; '
                'This may affect some analyses. Considering scaling the samples, '
                'e.g. by a factor of 10**%d ' % (
                    max_nonzero, -decimals_nonzero))
            warning(msg)
开发者ID:PyMVPA,项目名称:PyMVPA,代码行数:34,代码来源:cosmo.py


示例4: append

    def append(self, other):
        """This method should not be used and will be removed in the future"""
        warning(
            "AttrDataset.append() is deprecated and will be removed. "
            "Instead of ds.append(x) use: ds = vstack((ds, x), a=0)"
        )

        if not self.nfeatures == other.nfeatures:
            raise DatasetError("Cannot merge datasets, because the number of " "features does not match.")

        if not sorted(self.sa.keys()) == sorted(other.sa.keys()):
            raise DatasetError(
                "Cannot merge dataset. This datasets samples "
                "attributes %s cannot be mapped into the other "
                "set %s" % (self.sa.keys(), other.sa.keys())
            )

        # concat the samples as well
        self.samples = np.concatenate((self.samples, other.samples), axis=0)

        # tell the collection the new desired length of all attributes
        self.sa.set_length_check(len(self.samples))
        # concat all samples attributes
        for k, v in other.sa.iteritems():
            self.sa[k].value = np.concatenate((self.sa[k].value, v.value), axis=0)
开发者ID:neurosbh,项目名称:PyMVPA,代码行数:25,代码来源:dataset.py


示例5: _forward_data

 def _forward_data(self, data):
     params = self.params
     try:
         mapped = filtfilt(self.__iir_num,
                           self.__iir_denom,
                           data,
                           axis=params.axis,
                           padtype=params.padtype,
                           padlen=params.padlen)
     except TypeError:
         # we have an ancient scipy, do manually
         # but is will only support 2d arrays
         if params.axis == 0:
             data = data.T
         if params.axis > 1:
             raise ValueError("this version of scipy does not "
                              "support nd-arrays for filtfilt()")
         if not (params['padlen'].is_default and params['padtype'].is_default):
             warning("this version of scipy.signal.filtfilt() does not "
                     "support `padlen` and `padtype` arguments -- ignoring "
                     "them")
         mapped = [filtfilt(self.__iir_num,
                            self.__iir_denom,
                            x)
                 for x in data]
         mapped = np.array(mapped)
         if params.axis == 0:
             mapped = mapped.T
     return mapped
开发者ID:armaneshaghi,项目名称:PyMVPA,代码行数:29,代码来源:filters.py


示例6: __init__

    def __init__(self, **kwargs):
        """Initialize an SMLR classifier.
        """

        """
        TODO:
         # Add in likelihood calculation
         # Add kernels, not just direct methods.
         """
        # init base class first
        Classifier.__init__(self, **kwargs)

        if _cStepwiseRegression is None and self.params.implementation == 'C':
            warning('SMLR: C implementation is not available.'
                    ' Using pure Python one')
            self.params.implementation = 'Python'

        # pylint friendly initializations
        self._ulabels = None
        """Unigue labels from the training set."""
        self.__weights_all = None
        """Contains all weights including bias values"""
        self.__weights = None
        """Just the weights, without the biases"""
        self.__biases = None
        """The biases, will remain none if has_bias is False"""
开发者ID:arnaudsj,项目名称:PyMVPA,代码行数:26,代码来源:smlr.py


示例7: to_npz

    def to_npz(self, filename, compress=True):
        """Save dataset to a .npz file storing all fa/sa/a which are ndarrays

        Parameters
        ----------
        filename : str
        compress : bool, optional
          If True, savez_compressed is used
        """
        savez = np.savez_compressed if compress else np.savez
        if not filename.endswith('.npz'):
            filename += '.npz'
        entries = {'samples': self.samples}
        skipped = []
        for c in ('a', 'fa', 'sa'):
            col = getattr(self, c)
            for k in col:
                v = col[k].value
                e = '%s.%s' % (c, k)
                if isinstance(v, np.ndarray):
                    entries[e] = v
                else:
                    skipped.append(e)
        if skipped:
            warning("Skipping %s since not ndarrays" % (', '.join(skipped)))
        return savez(filename, **entries)
开发者ID:PyMVPA,项目名称:PyMVPA,代码行数:26,代码来源:dataset.py


示例8: run

def run(args):
    if not args.store is None and args.output is None:
        raise ValueError("--output is require for result storage")
    if not args.data is None:
        dss = [arg2ds(d) for d in args.data]
        if len(dss):
            # convenience short-cut
            ds = dss[0]
    try:
        import nose.tools as nt
    except ImportError:
        pass
    for expr in args.eval:
        if expr == '-':
            exec sys.stdin
        elif os.path.isfile(expr):
            execfile(expr, globals(), locals())
        else:
            exec expr
    if not args.store is None:
        out = {}
        for var in args.store:
            try:
                out[var] = locals()[var]
            except KeyError:
                warning("'%s' not found in local name space -- skipped." % var)
        if len(out):
            ds2hdf5(out, args.output, compression=args.hdf5_compression)
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:28,代码来源:cmd_exec.py


示例9: stability_assurance

 def stability_assurance(cdf):
     if __debug__ and 'CHECK_STABILITY' in debug.active:
         cdf_min, cdf_max = np.min(cdf), np.max(cdf)
         if cdf_min < 0 or cdf_max > 1.0:
             s = ('', ' for %s' % name)[int(name is not None)]
             warning('Stability check of cdf %s failed%s. Min=%s, max=%s' % \
                     (cdf_func, s, cdf_min, cdf_max))
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:7,代码来源:stats.py


示例10: _SLcholesky_autoreg

def _SLcholesky_autoreg(C, nsteps=None, **kwargs):
    """Simple wrapper around cholesky to incrementally regularize the
    matrix until successful computation.

    For `nsteps` we boost diagonal 10-fold each time from the
    'epsilon' of the respective dtype. If None -- would proceed until
    reaching 1.
    """
    if nsteps is None:
        nsteps = -int(np.floor(np.log10(np.finfo(float).eps)))
    result = None
    for step in xrange(nsteps):
        epsilon_value = (10**step) * np.finfo(C.dtype).eps
        epsilon = epsilon_value * np.eye(C.shape[0])
        try:
            result = SLcholesky(C + epsilon, lower=True)
        except SLAError, e:
            warning("Cholesky decomposition lead to failure: %s.  "
                    "As requested, performing auto-regularization but "
                    "for better control you might prefer to regularize "
                    "yourself by providing lm parameter to GPR" % e)
            if step < nsteps-1:
                if __debug__:
                    debug("GPR", "Failed to obtain cholesky on "
                          "auto-regularization step %d value %g. Got %s."
                          " Boosting lambda more to reg. C."
                          % (step, epsilon_value, e))
                continue
            else:
                raise
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:30,代码来源:gpr.py


示例11: _check

    def _check(self):
        '''ensures that different fields are sort of consistent'''
        fields = ['_v', '_f', '_nv', '_nf']
        if not all(hasattr(self, field) for field in fields):
            raise Exception("Incomplete surface!")

        if self._v.shape != (self._nv, 3):
            raise Exception("Wrong shape for vertices")

        if self._f.shape != (self._nf, 3):
            raise Exception("Wrong shape for faces")

        # see if all faces have a corresponding node.
        # actually this would not invalidate the surface, so
        # we only give a warning
        unqf = np.unique(self._f)
        if unqf.size != self._nv:
            from mvpa2.base import warning
            warning("Count mismatch for face range (%d!=%d), "
                            "faces without node: %r" % (unqf.size, self._nv,
                                    len(set(range(self._nv)) - set(unqf))))


        if np.any(unqf != np.arange(self._nv)):
            from mvpa2.base import warning
            warning("Missing values in faces")
开发者ID:kirty,项目名称:PyMVPA,代码行数:26,代码来源:surf.py


示例12: handle_arg

    def handle_arg(arg):
        """Helper which would read in SpatialImage if necessary
        """
        if arg is None:
            return arg
        if isinstance(arg, basestring):
            arg = nb.load(arg)
            argshape = arg.get_shape()
            # Assure that we have 3D (at least)
            if len(argshape)<3:
                arg = nb.Nifti1Image(
                        arg.get_data().reshape(argshape + (1,)*(3-len(argshape))),
                        arg.get_affine(),
                        arg.get_header())
        else:
            argshape = arg.shape

        if len(argshape) == 4:
            if argshape[-1] > 1:
                warning("For now plot_lightbox can handle only 3d, 4d data was provided."
                        " Plotting only the first volume")
            if isinstance(arg, SpatialImage):
                arg = nb.Nifti1Image(arg.get_data()[..., 0], arg.get_affine(), arg.get_header())
            else:
                arg = arg[..., 0]
        elif len(argshape) != 3:
            raise ValueError, "For now just handling 3D volumes"
        return arg
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:28,代码来源:lightbox.py


示例13: label_voxel

    def label_voxel(self, c, levels = None):

        if self.__referenceLevel is None:
            warning("You did not provide what level to use "
                    "for reference. Assigning 0th level -- '%s'"
                    % (self._levels[0],))
            self.set_reference_level(0)
            # return self.__referenceAtlas.label_voxel(c, levels)

        c = self._check_range(c)

        # obtain coordinates of the closest voxel
        cref = self._data[ self.__referenceLevel.indexes, c[0], c[1], c[2] ]
        dist = norm( (cref - c) * self.voxdim )
        if __debug__:
            debug('ATL__', "Closest referenced point for %r is "
                  "%r at distance %3.2f" % (c, cref, dist))
        if (self.distance - dist) >= 1e-3: # neglect everything smaller
            result = self.__referenceAtlas.label_voxel(cref, levels)
            result['voxel_referenced'] = c
            result['distance'] = dist
        else:
            result = self.__referenceAtlas.label_voxel(c, levels)
            if __debug__:
                debug('ATL__', "Closest referenced point is "
                      "further than desired distance %.2f" % self.distance)
            result['voxel_referenced'] = None
            result['distance'] = 0
        return result
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:29,代码来源:base.py


示例14: __init__

    def __init__(self, generator, queryengine, errorfx=mean_mismatch_error,
                 indexsum=None,
                 reuse_neighbors=False,
                 splitter=None,
                 **kwargs):
        """Initialize the base class for "naive" searchlight classifiers

        Parameters
        ----------
        generator : `Generator`
          Some `Generator` to prepare partitions for cross-validation.
          It must not change "targets", thus e.g. no AttributePermutator's
        errorfx : func, optional
          Functor that computes a scalar error value from the vectors of
          desired and predicted values (e.g. subclass of `ErrorFunction`).
        indexsum : ('sparse', 'fancy'), optional
          What use to compute sums over arbitrary columns.  'fancy'
          corresponds to regular fancy indexing over columns, whenever
          in 'sparse', product of sparse matrices is used (usually
          faster, so is default if `scipy` is available).
        reuse_neighbors : bool, optional
          Compute neighbors information only once, thus allowing for
          efficient reuse on subsequent calls where dataset's feature
          attributes remain the same (e.g. during permutation testing)
        splitter : Splitter, optional
          Which will be used to split partitioned datasets.  If None specified
          then standard one operating on partitions will be used
        """

        # init base class first
        BaseSearchlight.__init__(self, queryengine, **kwargs)

        self._errorfx = errorfx
        self._generator = generator
        self._splitter = splitter

        # TODO: move into _call since resetting over default None
        #       obscures __repr__
        if indexsum is None:
            if externals.exists('scipy'):
                indexsum = 'sparse'
            else:
                indexsum = 'fancy'
        else:
            if indexsum == 'sparse' and not externals.exists('scipy'):
                warning("Scipy.sparse isn't available so taking 'fancy' as "
                        "'indexsum' method.")
                indexsum = 'fancy'
        self._indexsum = indexsum

        if not self.nproc in (None, 1):
            raise NotImplementedError, "For now only nproc=1 (or None for " \
                  "autodetection) is supported by GNBSearchlight"

        self.__pb = None            # statistics per each block/label
        self.__reuse_neighbors = reuse_neighbors

        # Storage to be used for neighborhood information
        self.__roi_fids = None
开发者ID:hanke,项目名称:PyMVPA,代码行数:59,代码来源:adhocsearchlightbase.py


示例15: train

    def train(self, ds):
        """
        The default implementation calls ``_pretrain()``, ``_train()``, and
        finally ``_posttrain()``.

        Parameters
        ----------
        ds: Dataset
          Training dataset.

        Returns
        -------
        None
        """
        got_ds = is_datasetlike(ds)

        # TODO remove first condition if all Learners get only datasets
        if got_ds and (ds.nfeatures == 0 or len(ds) == 0):
            raise DegenerateInputError(
                "Cannot train learner on degenerate data %s" % ds)
        if __debug__:
            debug(
                "LRN",
                "Training learner %(lrn)s on dataset %(dataset)s",
                msgargs={'lrn': self, 'dataset': ds})

        self._pretrain(ds)

        # remember the time when started training
        t0 = time.time()

        if got_ds:
            # things might have happened during pretraining
            if ds.nfeatures > 0:
                self._train(ds)
            else:
                warning("Trying to train on dataset with no features present")
                if __debug__:
                    debug("LRN",
                          "No features present for training, no actual training "
                          "is called")
        else:
            # in this case we claim to have no idea and simply try to train
            self._train(ds)

        # store timing
        self.ca.training_time = time.time() - t0

        # and post-proc
        self._posttrain(ds)

        # finally flag as trained
        self._set_trained()

        if __debug__:
            debug(
                "LRN",
                "Finished training learner %(lrn)s on dataset %(dataset)s",
                msgargs={'lrn': self, 'dataset': ds})
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:59,代码来源:learner.py


示例16: _pvalue

def _pvalue(x, cdf_func, tail, return_tails=False, name=None):
    """Helper function to return p-value(x) given cdf and tail

    Parameters
    ----------
    cdf_func : callable
      Function to be used to derive cdf values for x
    tail : str ('left', 'right', 'any', 'both')
      Which tail of the distribution to report. For 'any' and 'both'
      it chooses the tail it belongs to based on the comparison to
      p=0.5. In the case of 'any' significance is taken like in a
      one-tailed test.
    return_tails : bool
      If True, a tuple return (pvalues, tails), where tails contain
      1s if value was from the right tail, and 0 if the value was
      from the left tail.
    """
    is_scalar = np.isscalar(x)
    if is_scalar:
        x = [x]

    cdf = cdf_func(x)

    if __debug__ and "CHECK_STABILITY" in debug.active:
        cdf_min, cdf_max = np.min(cdf), np.max(cdf)
        if cdf_min < 0 or cdf_max > 1.0:
            s = ("", " for %s" % name)[int(name is not None)]
            warning("Stability check of cdf %s failed%s. Min=%s, max=%s" % (cdf_func, s, cdf_min, cdf_max))

    # no escape but to assure that CDF is in the right range. Some
    # distributions from scipy tend to jump away from [0,1]
    cdf = np.clip(cdf, 0, 1.0)

    if tail == "left":
        if return_tails:
            right_tail = np.zeros(cdf.shape, dtype=bool)
    elif tail == "right":
        cdf = 1 - cdf
        if return_tails:
            right_tail = np.ones(cdf.shape, dtype=bool)
    elif tail in ("any", "both"):
        right_tail = cdf >= 0.5
        cdf[right_tail] = 1.0 - cdf[right_tail]
        if tail == "both":
            # we need report the area under both tails
            # XXX this is only meaningful for symetric distributions
            cdf *= 2

    # Assure that NaNs didn't get significant value
    cdf[np.isnan(x)] = 1.0
    if is_scalar:
        res = cdf[0]
    else:
        res = cdf

    if return_tails:
        return (res, right_tail)
    else:
        return res
开发者ID:psederberg,项目名称:PyMVPA,代码行数:59,代码来源:stats.py


示例17: _level3

    def _level3(self, datasets):
        params = self.params            # for quicker access ;)
        # create a mapper per dataset
        mappers = [deepcopy(params.alignment) for ds in datasets]

        # key different from level-2; the common space is uniform
        #temp_commonspace = commonspace
        # Fixing nproc=0
        if params.nproc == 0:
            from mvpa2.base import warning
            warning("nproc of 0 doesn't make sense. Setting nproc to 1.")
            params.nproc = 1
        # Checking for joblib, if not, set nproc to 1
        if params.nproc != 1:
            from mvpa2.base import externals, warning
            if not externals.exists('joblib'):
                warning("Setting nproc different from 1 requires joblib package, which "
                        "does not seem to exist. Setting nproc to 1.")
                params.nproc = 1

        # start from original input datasets again
        if params.nproc == 1:
            residuals = []
            for i, (m, ds_new) in enumerate(zip(mappers, datasets)):
                if __debug__:
                    debug('HPAL_', "Level 3: ds #%i" % i)
                m, residual = get_trained_mapper(ds_new, self.commonspace, m,
                                                 self.ca['residual_errors'].enabled)
                if self.ca['residual_errors'].enabled:
                    residuals.append(residual)
        else:
            if __debug__:
                debug('HPAL_', "Level 3: Using joblib with nproc = %d " % params.nproc)
            verbose_level_parallel = 20 \
                if (__debug__ and 'HPAL' in debug.active) else 0
            from joblib import Parallel, delayed
            import sys
            # joblib's 'multiprocessing' backend has known issues of failure on OSX
            # Tested with MacOS 10.12.13, python 2.7.13, joblib v0.10.3
            if params.joblib_backend is None:
                params.joblib_backend = 'threading' if sys.platform == 'darwin' \
                                        else 'multiprocessing'
            res = Parallel(
                    n_jobs=params.nproc, pre_dispatch=params.nproc,
                    backend=params.joblib_backend,
                    verbose=verbose_level_parallel
                    )(
                        delayed(get_trained_mapper)
                        (ds, self.commonspace, mapper, self.ca['residual_errors'].enabled)
                        for ds, mapper in zip(datasets, mappers)
                    )
            mappers = [m for m, r in res]
            if self.ca['residual_errors'].enabled:
                residuals = [r for m, r in res]

        if self.ca['residual_errors'].enabled:
            self.ca.residual_errors = Dataset(samples=np.array(residuals)[None, :])

        return mappers
开发者ID:PyMVPA,项目名称:PyMVPA,代码行数:59,代码来源:hyperalignment.py


示例18: seed

def seed(random_seed):
    if __debug__:
        debug('SG', "Seeding shogun's RNG with %s" % random_seed)
    try:
        # reuse the same seed for shogun
        shogun.Library.Math_init_random(random_seed)
    except Exception, e:
        warning('Shogun cannot be seeded due to %s' % (e,))
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:8,代码来源:svm.py


示例19: corr_error_prob

 def corr_error_prob(predicted, target):
     """Computes p-value of correlation between the target and the predicted
     values.
     """
     from mvpa2.base import warning
     warning("p-value for correlation is implemented only when scipy is "
             "available. Bogus value -1.0 is returned otherwise")
     return -1.0
开发者ID:PyMVPA,项目名称:PyMVPA,代码行数:8,代码来源:errorfx.py


示例20: _extract_boxcar_events

def _extract_boxcar_events(ds, events=None, time_attr=None, match="prev", eprefix="event", event_mapper=None):
    """see eventrelated_dataset() for docs"""
    # relabel argument
    conv_strategy = {"prev": "floor", "next": "ceil", "closest": "round"}[match]

    if not time_attr is None:
        tvec = ds.sa[time_attr].value
        # we are asked to convert onset time into sample ids
        descr_events = []
        for ev in events:
            # do not mess with the input data
            ev = copy.deepcopy(ev)
            # best matching sample
            idx = value2idx(ev["onset"], tvec, conv_strategy)
            # store offset of sample time and real onset
            ev["orig_offset"] = ev["onset"] - tvec[idx]
            # rescue the real onset into a new attribute
            ev["orig_onset"] = ev["onset"]
            ev["orig_duration"] = ev["duration"]
            # figure out how many samples we need
            ev["duration"] = len(tvec[idx:][tvec[idx:] < ev["onset"] + ev["duration"]])
            # new onset is sample index
            ev["onset"] = idx
            descr_events.append(ev)
    else:
        descr_events = events
    # convert the event specs into the format expected by BoxcarMapper
    # take the first event as an example of contained keys
    evvars = _events2dict(descr_events)
    # checks
    for p in ["onset", "duration"]:
        if not p in evvars:
            raise ValueError("'%s' is a required property for all events." % p)
    boxlength = max(evvars["duration"])
    if __debug__:
        if not max(evvars["duration"]) == min(evvars["duration"]):
            warning("Boxcar mapper will use maximum boxlength (%i) of all " "provided Events." % boxlength)

    # finally create, train und use the boxcar mapper
    bcm = BoxcarMapper(evvars["onset"], boxlength, space=eprefix)
    bcm.train(ds)
    ds = ds.get_mapped(bcm)
    if event_mapper is None:
        # at last reflatten the dataset
        # could we add some meaningful attribute during this mapping, i.e. would
        # assigning 'inspace' do something good?
        ds = ds.get_mapped(FlattenMapper(shape=ds.samples.shape[1:]))
    else:
        ds = ds.get_mapped(event_mapper)
    # add samples attributes for the events, simply dump everything as a samples
    # attribute
    # special case onset and duration in case of conversion into descrete time
    if not time_attr is None:
        for attr in ("onset", "duration"):
            evvars[attr] = [e[attr] for e in events]
    ds = _evvars2ds(ds, evvars, eprefix)

    return ds
开发者ID:neurosbh,项目名称:PyMVPA,代码行数:58,代码来源:eventrelated.py



注:本文中的mvpa2.base.warning函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python dataset.vstack函数代码示例发布时间:2022-05-27
下一篇:
Python base.verbose函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap