• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python dataset.vstack函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mvpa2.base.dataset.vstack函数的典型用法代码示例。如果您正苦于以下问题:Python vstack函数的具体用法?Python vstack怎么用?Python vstack使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了vstack函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_mergeds

def test_mergeds():
    data0 = Dataset.from_wizard(np.ones((5, 5)), targets=1)
    data0.fa['one'] = np.ones(5)
    data1 = Dataset.from_wizard(np.ones((5, 5)), targets=1, chunks=1)
    data1.fa['one'] = np.zeros(5)
    data2 = Dataset.from_wizard(np.ones((3, 5)), targets=2, chunks=1)
    data3 = Dataset.from_wizard(np.ones((4, 5)), targets=2)
    data4 = Dataset.from_wizard(np.ones((2, 5)), targets=3, chunks=2)
    data4.fa['test'] = np.arange(5)

    merged = vstack((data1.copy(), data2))

    ok_(merged.nfeatures == 5)
    l12 = [1] * 5 + [2] * 3
    l1 = [1] * 8
    ok_((merged.targets == l12).all())
    ok_((merged.chunks == l1).all())

    data_append = vstack((data1.copy(), data2))

    ok_(data_append.nfeatures == 5)
    ok_((data_append.targets == l12).all())
    ok_((data_append.chunks == l1).all())

    #
    # vstacking
    #
    if __debug__:
        # we need the same samples attributes in both datasets
        assert_raises(ValueError, vstack, (data2, data3))

        # tested only in __debug__
        assert_raises(ValueError, vstack, (data0, data1, data2, data3))
    datasets = (data1, data2, data4)
    merged = vstack(datasets)
    assert_equal(merged.shape,
                 (np.sum([len(ds) for ds in datasets]), data1.nfeatures))
    assert_true('test' in merged.fa)
    assert_array_equal(merged.sa.targets, [1] * 5 + [2] * 3 + [3] * 2)

    #
    # hstacking
    #
    assert_raises(ValueError, hstack, datasets)
    datasets = (data0, data1)
    merged = hstack(datasets)
    assert_equal(merged.shape,
                 (len(data1), np.sum([ds.nfeatures for ds in datasets])))
    assert_true('chunks' in merged.sa)
    assert_array_equal(merged.fa.one, [1] * 5 + [0] * 5)
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:50,代码来源:test_datasetng.py


示例2: _forward_dataset

    def _forward_dataset(self, ds):
        sliced_ds = [ds[sample_ids, feature_ids]
                            for sample_ids, feature_ids in
                                    zip(*(self._slice_sample_ids,
                                    self._slice_feature_ids))]

        return vstack(sliced_ds, True)
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:7,代码来源:base.py


示例3: _call

    def _call(self, dataset):
        """Computes featurewise f-scores using compound comparisons."""

        targets_sa = dataset.sa[self.get_space()]
        orig_labels = targets_sa.value
        labels = orig_labels.copy()

        # Lets create a very shallow copy of a dataset with just
        # samples and targets_attr
        dataset_mod = Dataset(dataset.samples,
                              sa={self.get_space() : labels})
        results = []
        for ul in targets_sa.unique:
            labels[orig_labels == ul] = 1
            labels[orig_labels != ul] = 2
            f_ds = OneWayAnova._call(self, dataset_mod)
            if 'fprob' in f_ds.fa:
                # rename the fprob attribute to something label specific
                # to survive final aggregation stage
                f_ds.fa['fprob_' + str(ul)] = f_ds.fa.fprob
                del f_ds.fa['fprob']
            results.append(f_ds)

        results = vstack(results)
        results.sa[self.get_space()] = targets_sa.unique
        return results
开发者ID:PepGardiola,项目名称:PyMVPA,代码行数:26,代码来源:anova.py


示例4: test_usecase_concordancesl

    def test_usecase_concordancesl(self):
        import numpy as np
        from mvpa2.base.dataset import vstack
        from mvpa2.mappers.fx import mean_sample

        # Take our sample 3d dataset
        ds1 = datasets['3dsmall'].copy(deep=True)
        ds1.fa['voxel_indices'] = ds1.fa.myspace
        ds1.sa['subject'] = [1]  # not really necessary -- but let's for clarity
        ds1 = mean_sample()(ds1) # so we get just a single representative sample

        def corr12(ds):
            corr = np.corrcoef(ds.samples)
            assert(corr.shape == (2, 2)) # for paranoid ones
            return corr[0, 1]

        for nsc, thr, thr_mean in (
            (0, 1.0, 1.0),
            (0.1, 0.3, 0.8)):   # just a bit of noise
            ds2 = ds1.copy(deep=True)    # make a copy for the 2nd subject
            ds2.sa['subject'] = [2]
            ds2.samples += nsc * np.random.normal(size=ds1.shape)

            # make sure that both have the same voxel indices
            assert(np.all(ds1.fa.voxel_indices == ds2.fa.voxel_indices))
            ds_both = vstack((ds1, ds2))# join 2 images into a single dataset
                                        # with .sa.subject distinguishing both

            sl = sphere_searchlight(corr12, radius=2)
            slmap = sl(ds_both)
            ok_(np.all(slmap.samples >= thr))
            ok_(np.mean(slmap.samples) >= thr)
开发者ID:kirty,项目名称:PyMVPA,代码行数:32,代码来源:test_searchlight.py


示例5: _call

    def _call(self, dataset):
        sensitivities = []
        for ind, analyzer in enumerate(self.__analyzers):
            if __debug__:
                debug("SA", "Computing sensitivity for SA#%d:%s" %
                      (ind, analyzer))
            sensitivity = analyzer(dataset)
            sensitivities.append(sensitivity)

        if __debug__:
            debug("SA",
                  "Returning %d sensitivities from %s" %
                  (len(sensitivities), self.__class__.__name__))

        sa_attr = self._sa_attr
        if isinstance(sensitivities[0], AttrDataset):
            smerged = []
            for i, s in enumerate(sensitivities):
                s.sa[sa_attr] = np.repeat(i, len(s))
                smerged.append(s)
            sensitivities = vstack(smerged)
        else:
            sensitivities = \
                Dataset(sensitivities,
                        sa={sa_attr: np.arange(len(sensitivities))})

        self.ca.sensitivities = sensitivities

        return sensitivities
开发者ID:thomastweets,项目名称:PyMVPA,代码行数:29,代码来源:base.py


示例6: loadsubdata

def loadsubdata(p, s, m=None, c=None):
    from mvpa2.base import dataset
    fds = {}
    for sub in s.keys():
        print 'loading ' + sub
        rds = [loadrundata(p, sub, r, m, c) for r in s[sub]]
        fds[sub] = dataset.vstack(rds, a=0)
    return fds
开发者ID:njchiang,项目名称:LanguageMVPA,代码行数:8,代码来源:lmvpautils.py


示例7: _forward_data

    def _forward_data(self, data):
        sliced_data = [np.vstack(data[sample_id, feature_ids]
                         for sample_id in sample_ids)
                                for sample_ids, feature_ids in
                                    zip(*(self._slice_sample_ids,
                                    self._slice_feature_ids))]

        return vstack(sliced_data)
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:8,代码来源:base.py


示例8: test_ex_from_masked

def test_ex_from_masked():
    ds = Dataset.from_wizard(samples=np.atleast_2d(np.arange(5)).view(myarray),
                             targets=1, chunks=1)
    # simple sequence has to be a single pattern
    assert_equal(ds.nsamples, 1)
    # array subclass survives
    ok_(isinstance(ds.samples, myarray))

    # check correct pattern layout (1x5)
    assert_array_equal(ds.samples, [[0, 1, 2, 3, 4]])

    # check for single label and origin
    assert_array_equal(ds.targets, [1])
    assert_array_equal(ds.chunks, [1])

    # now try adding pattern with wrong shape
    assert_raises(ValueError, vstack,
                  (ds, Dataset.from_wizard(np.ones((2, 3)), targets=1, chunks=1)))

    # now add two real patterns
    ds = vstack((ds, Dataset.from_wizard(np.random.standard_normal((2, 5)),
                                         targets=2, chunks=2)))
    assert_equal(ds.nsamples, 3)
    assert_array_equal(ds.targets, [1, 2, 2])
    assert_array_equal(ds.chunks, [1, 2, 2])

    # test unique class labels
    ds = vstack((ds, Dataset.from_wizard(np.random.standard_normal((2, 5)),
                                         targets=3, chunks=5)))
    assert_array_equal(ds.sa['targets'].unique, [1, 2, 3])

    # test wrong attributes length
    assert_raises(ValueError, Dataset.from_wizard,
                  np.random.standard_normal((4, 2, 3, 4)), targets=[1, 2, 3],
                  chunks=2)
    assert_raises(ValueError, Dataset.from_wizard,
                  np.random.standard_normal((4, 2, 3, 4)), targets=[1, 2, 3, 4],
                  chunks=[2, 2, 2])

    # no test one that is using from_masked
    ds = datasets['3dlarge']
    for a in ds.sa:
        assert_equal(len(ds.sa[a].value), len(ds))
    for a in ds.fa:
        assert_equal(len(ds.fa[a].value), ds.nfeatures)
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:45,代码来源:test_datasetng.py


示例9: arg2ds

def arg2ds(sources):
    """Convert a sequence of dataset sources into a dataset.

    This function would be used to used to convert a single --input
    multidata specification into a dataset. For multiple --input
    arguments execute this function in a loop.
    """
    from mvpa2.base.dataset import vstack
    return vstack(hdf2ds(sources))
开发者ID:neurosbh,项目名称:PyMVPA,代码行数:9,代码来源:helpers.py


示例10: test_ifs

    def test_ifs(self, svm):

        # measure for feature selection criterion and performance assesment
        # use the SAME clf!
        errorfx = mean_mismatch_error
        fmeasure = CrossValidation(svm, NFoldPartitioner(), postproc=mean_sample())
        pmeasure = ProxyMeasure(svm, postproc=BinaryFxNode(errorfx, 'targets'))

        ifs = IFS(fmeasure,
                  pmeasure,
                  Splitter('purpose', attr_values=['train', 'test']),
                  fselector=
                    # go for lower tail selection as data_measure will return
                    # errors -> low is good
                    FixedNElementTailSelector(1, tail='lower', mode='select'),
                  )
        wdata = self.get_data()
        wdata.sa['purpose'] = np.repeat('train', len(wdata))
        tdata = self.get_data()
        tdata.sa['purpose'] = np.repeat('test', len(tdata))
        ds = vstack((wdata, tdata))
        orig_nfeatures = ds.nfeatures

        ifs.train(ds)
        resds = ifs(ds)

        # fail if orig datasets are changed
        self.assertTrue(ds.nfeatures == orig_nfeatures)

        # check that the features set with the least error is selected
        self.assertTrue(len(ifs.ca.errors))
        e = np.array(ifs.ca.errors)
        self.assertTrue(resds.nfeatures == e.argmin() + 1)


        # repeat with dataset where selection order is known
        wsignal = datasets['dumb2'].copy()
        wsignal.sa['purpose'] = np.repeat('train', len(wsignal))
        tsignal = datasets['dumb2'].copy()
        tsignal.sa['purpose'] = np.repeat('test', len(tsignal))
        signal = vstack((wsignal, tsignal))
        ifs.train(signal)
        resds = ifs(signal)
        self.assertTrue((resds.samples[:,0] == signal.samples[:,0]).all())
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:44,代码来源:test_ifs.py


示例11: perm_hist

def perm_hist(subj):
	conf = AnalysisConfiguration()
	data_dir = os.environ.get('DATA_DIR') or '/home/user/data'
	sub_dir = _opj(data_dir,conf.study_name,'sub{:0>3d}'.format(subj))
	directory = _opj(data_dir,'LP/sub{:0>3d}/results/'.format(subj))
	print conf.dir_name()
	for pair in conf.conditions_to_compare:
			#print _opj(directory,conf.dir_name(),'{}*{}{}*.p'.format(conf.mask_name,pair[0],pair[1]))
			files = sorted(glob(_opj(directory,conf.dir_name(),'{}*{}{}*.p'.format(conf.mask_name,pair[0],pair[1]))))
			plt.figure()
			plt.subplot(211)
			plt.title('sub{:0>3d}-{}{}'.format(subj,pair[0],pair[1]))
			print pair, " ", len(files)
			all_maps = []
			for f in files[:-1]:
				f_h = file(f,'r')
				m = pickle.load(f_h)
				all_maps.append(m)
				if 'perm' in f:
					color = 'black'
					line_width = 1
				else:
					color = 'crimson'
					line_width = 2
				plt.hist(np.transpose(m),bins=20,histtype='step',color=[color], lw = line_width)
			perms = vstack(all_maps)
			real_f = files[-1]
			f_h = file(real_f,'r')
			real_map = pickle.load(f_h)
			color = 'crimson'
			line_width = 2
			plt.hist(np.transpose(real_map),bins=20,histtype='step',color=[color], lw = line_width)
			percentiles = np.zeros((1,len(real_map.samples[0])))
			for i,vox in enumerate(real_map.samples[0]):
			    percentiles[0,i]=percentileofscore(perms[:,i].samples.flat,vox)
			plt.subplot(212)
			print len(percentiles[0])
			plt.hist(percentiles[0],bins=20,histtype='step')
			real_map.samples=percentiles
			nii = real_f.replace("_sl_map.p", "-acc.nii.gz")
			nii_file = nib.load(nii)
			perc_results = map2nifti(real_map, imghdr=nii_file.header)
			perc_nii_filename =real_f.replace("_sl_map.p", "-percentiles_sub{:0>3d}.nii.gz".format(subj))
			perc_results.to_filename(perc_nii_filename)
			thr_prc_filename = perc_nii_filename.replace(".nii.gz","_p0.01.nii.gz")
			thr = fsl.maths.Threshold(in_file=perc_nii_filename, thresh=100,
						  out_file=thr_prc_filename)
			thr.run()
			mni_thr_filename = thr_prc_filename.replace(".nii.gz","_mni.nii.gz")
			apply_warp(sub_dir,thr_prc_filename, mni_thr_filename)

			
	plt.show()
	#plt.savefig('/tmp/sub{:0>3d}_{}{}'.format(subj,pair[0],pair[1]))
	raw_input()
开发者ID:ronimaimon,项目名称:mvpa_analysis,代码行数:55,代码来源:perm_hist.py


示例12: test_mergeds2

def test_mergeds2():
    """Test composition of new datasets by addition of existing ones
    """
    data = dataset_wizard([range(5)], targets=1, chunks=1)

    assert_array_equal(data.UT, [1])

    # simple sequence has to be a single pattern
    assert_equal(data.nsamples, 1)
    # check correct pattern layout (1x5)
    assert_array_equal(data.samples, [[0, 1, 2, 3, 4]])

    # check for single labels and origin
    assert_array_equal(data.targets, [1])
    assert_array_equal(data.chunks, [1])

    # now try adding pattern with wrong shape
    assert_raises(ValueError,
                  vstack,
                  (data, dataset_wizard(np.ones((2, 3)), targets=1, chunks=1)))

    # now add two real patterns
    dss = datasets['uni2large'].samples
    data = vstack((data, dataset_wizard(dss[:2, :5], targets=2, chunks=2)))
    assert_equal(data.nfeatures, 5)
    assert_array_equal(data.targets, [1, 2, 2])
    assert_array_equal(data.chunks, [1, 2, 2])

    # test automatic origins
    data = vstack((data, (dataset_wizard(dss[3:5, :5], targets=3, chunks=[0, 1]))))
    assert_array_equal(data.chunks, [1, 2, 2, 0, 1])

    # test unique class labels
    assert_array_equal(data.UT, [1, 2, 3])

    # test wrong label length
    assert_raises(ValueError, dataset_wizard, dss[:4, :5], targets=[ 1, 2, 3 ],
                                         chunks=2)

    # test wrong origin length
    assert_raises(ValueError, dataset_wizard, dss[:4, :5],
                  targets=[ 1, 2, 3, 4 ], chunks=[ 2, 2, 2 ])
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:42,代码来源:test_datasetng.py


示例13: load_subjectwise_ds

def load_subjectwise_ds(path, 
                       subjects, 
                       conf_file, 
                       task, 
                       extra_sa=None,  
                       **kwargs):
    """
    extra_sa: dict or None, sample attributes added to the final dataset, they should be
    the same length as the subjects.
    
    subject: either a list of subjects or a csv file
    
    """
    
    conf = read_configuration(os.path.join(path, conf_file), task)
           
    conf.update(kwargs)
    logger.debug(conf)
    
    data_path = conf['data_path']
    
    
    if isinstance(subjects, str):        
        subjects, extra_sa = load_subject_file(subjects)
        
    
    logger.info('Merging subjects from '+data_path)
    
    for i, subj in enumerate(subjects):
        
        ds = load_dataset(data_path, subj, task, **conf)
        
        ds = detrend_dataset(ds, task, **conf)
        ds = normalize_dataset(ds, **conf)
        
        # add extra samples
        if extra_sa != None:
            for k, v in extra_sa.iteritems():
                if len(v) == len(subjects):
                    ds.sa[k] = [v[i] for _ in range(ds.samples.shape[0])]
        
        
        # First subject
        if i == 0:
            ds_merged = ds.copy()
        else:
            ds_merged = vstack((ds_merged, ds))
            ds_merged.a.update(ds.a)
            
        
        del ds

    return ds_merged, ['group'], conf
开发者ID:robbisg,项目名称:mvpa_itab_wu,代码行数:53,代码来源:base.py


示例14: load_subject_ds

def load_subject_ds(conf_file, 
                    task, 
                    extra_sa=None,
                    prepro=StandardPreprocessingPipeline(), 
                    **kwargs):
    
    """
    This is identical to load_subjectwise_ds but we can
    specify a preprocessing pipeline to manage data
    
    """
    
    # TODO: conf file should include the full path
    conf = read_configuration(conf_file, task)
           
    conf.update(kwargs)
    logger.debug(conf)
    
    data_path = conf['data_path']
    
    # Subject file should be included in configuration
    subject_file = conf['subjects']
    subjects, extra_sa = load_subject_file(subject_file)
        
    logger.info('Merging %s subjects from %s' % (str(len(subjects)), data_path))
    
    for i, subj in enumerate(subjects):
        
        ds = load_dataset(data_path, subj, task, **conf)
        
        if ds == None:
            continue
        
        ds = prepro.transform(ds)
        
        # add extra samples
        if extra_sa != None:
            for k, v in extra_sa.iteritems():
                if len(v) == len(subjects):
                    ds.sa[k] = [v[i] for _ in range(ds.samples.shape[0])]
        
        
        # First subject
        if i == 0:
            ds_merged = ds.copy()
        else:
            ds_merged = vstack((ds_merged, ds))
            ds_merged.a.update(ds.a)
            
        
        del ds

    return ds_merged
开发者ID:robbisg,项目名称:mvpa_itab_wu,代码行数:53,代码来源:base.py


示例15: test_stack_add_dataset_attributes

def test_stack_add_dataset_attributes():
    data0 = Dataset.from_wizard(np.ones((5, 5)), targets=1)
    data0.a['one'] = np.ones(2)
    data0.a['two'] = 2
    data0.a['three'] = 'three'
    data0.a['common'] = range(10)
    data0.a['array'] = np.arange(10)
    data1 = Dataset.from_wizard(np.ones((5, 5)), targets=1)
    data1.a['one'] = np.ones(3)
    data1.a['two'] = 3
    data1.a['four'] = 'four'
    data1.a['common'] = range(10)
    data1.a['array'] = np.arange(10)


    vstacker = lambda x: vstack((data0, data1), a=x)
    hstacker = lambda x: hstack((data0, data1), a=x)

    add_params = (1, None, 'unique', 'uniques', 'all', 'drop_nonunique')

    for stacker in (vstacker, hstacker):
        for add_param in add_params:
            if add_param == 'unique':
                assert_raises(DatasetError, stacker, add_param)
                continue

            r = stacker(add_param)

            if add_param == 1:
                assert_array_equal(data1.a.one, r.a.one)
                assert_equal(r.a.two, 3)
                assert_equal(r.a.four, 'four')
                assert_true('three' not in r.a.keys())
                assert_true('array' in r.a.keys())
            elif add_param == 'uniques':
                assert_equal(set(r.a.keys()),
                             set(['one', 'two', 'three',
                                  'four', 'common', 'array']))
                assert_equal(r.a.two, (2, 3))
                assert_equal(r.a.four, ('four',))
            elif add_param == 'all':
                assert_equal(set(r.a.keys()),
                             set(['one', 'two', 'three',
                                  'four', 'common', 'array']))
                assert_equal(r.a.two, (2, 3))
                assert_equal(r.a.three, ('three', None))
            elif add_param == 'drop_nonunique':
                assert_equal(set(r.a.keys()),
                             set(['common', 'three', 'four', 'array']))
                assert_equal(r.a.three, 'three')
                assert_equal(r.a.four, 'four')
                assert_equal(r.a.common, range(10))
                assert_array_equal(r.a.array, np.arange(10))
开发者ID:andreirusu,项目名称:PyMVPA,代码行数:53,代码来源:test_datasetng.py


示例16: test_labelpermutation_randomsampling

def test_labelpermutation_randomsampling():
    ds = vstack([Dataset.from_wizard(np.ones((5, 10)), targets=range(5), chunks=i)
                    for i in xrange(1, 6)])
    # assign some feature attributes
    ds.fa['roi'] = np.repeat(np.arange(5), 2)
    ds.fa['lucky'] = np.arange(10) % 2
    # use subclass for testing if it would survive
    ds.samples = ds.samples.view(myarray)

    ok_(ds.get_nsamples_per_attr('targets') == {0:5, 1:5, 2:5, 3:5, 4:5})
    sample = ds.random_samples(2)
    ok_(sample.get_nsamples_per_attr('targets').values() == [ 2, 2, 2, 2, 2 ])
    ok_((ds.sa['chunks'].unique == range(1, 6)).all())
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:13,代码来源:test_datasetng.py


示例17: get_dsties1

def get_dsties1():
    ds = datasets["uni2small"].copy()
    dtarget = ds.targets[0]  # duplicate target
    tied_samples = ds.targets == dtarget
    ds2 = ds[tied_samples].copy(deep=True)
    # add similar noise to both ties
    noise_level = 0.2
    ds2.samples += np.random.normal(size=ds2.shape) * noise_level
    ds[tied_samples].samples += np.random.normal(size=ds2.shape) * noise_level
    ds2.targets[:] = "TI"  # 'E' would have been swallowed since it is S2 here
    ds = vstack((ds, ds2))
    ds.a.ties = [dtarget, "TI"]
    ds.a.ties_idx = [ds.targets == t for t in ds.a.ties]
    return ds
开发者ID:arnaudsj,项目名称:PyMVPA,代码行数:14,代码来源:test_multiclf.py


示例18: create_betas_per_trial_with_pymvpa_roni

def create_betas_per_trial_with_pymvpa_roni(study_path, subj, conf, mask_name, flavor, TR):
    dhandle = OpenFMRIDataset(study_path)
    model = 1
    task = 1
    # Do this for other tasks as well. not only the first
    mask_fname = _opj(study_path, "sub{:0>3d}".format(subj), "masks", conf.mvpa_tasks[0], "{}.nii.gz".format(mask_name))
    print mask_fname
    run_datasets = []
    for run_id in dhandle.get_task_bold_run_ids(task)[subj]:
        if type(run_id) == str:
            continue

            # all_events = dhandle.get_bold_run_model(model, subj, run_id)
        all_events = get_bold_run_model(dhandle, 2, subj, run_id)
        run_events = []
        i = 0
        for event in all_events:
            if event["task"] == task:
                event["condition"] = "{}-{}".format(event["condition"], event["id"])
                run_events.append(event)
                i += 1

                # load BOLD data for this run (with masking); add 0-based chunk ID
        run_ds = dhandle.get_bold_run_dataset(subj, task, run_id, flavor=flavor, chunks=run_id - 1, mask=mask_fname)
        # convert event info into a sample attribute and assign as 'targets'
        run_ds.sa.time_coords = run_ds.sa.time_indices * TR
        run_ds.sa["targets"] = events2sample_attr(run_events, run_ds.sa.time_coords, noinfolabel="rest")
        # additional time series preprocessing can go here
        poly_detrend(run_ds, polyord=1, chunks_attr="chunks")
        zscore(run_ds, chunks_attr="chunks", param_est=("targets", ["rest"]), dtype="float32")
        glm_dataset = fit_event_hrf_model(run_ds, run_events, time_attr="time_coords", condition_attr="condition")
        glm_dataset.sa["targets"] = [x[: x.find("-")] for x in glm_dataset.sa.condition]
        glm_dataset.sa["id"] = [x[x.find("-") + 1 :] for x in glm_dataset.sa.condition]
        glm_dataset.sa.condition = glm_dataset.sa["targets"]
        glm_dataset.sa["chunks"] = [run_id - 1] * len(glm_dataset.samples)

        # If a trial was dropped (the subject pressed on a button) than the counter trial from the
        # other condition should also be dropped
        for pair in conf.conditions_to_compare:
            cond_bool = np.array([c in pair for c in glm_dataset.sa["condition"]])
            sub_dataset = glm_dataset[cond_bool]
            c = Counter(sub_dataset.sa.id)
            for value in c:
                if c[value] < 2:
                    id_bool = np.array([value in cond_id for cond_id in glm_dataset.sa["id"]])
                    glm_dataset = glm_dataset[np.bitwise_not(np.logical_and(id_bool, cond_bool))]

        run_datasets.append(glm_dataset)

    return vstack(run_datasets, 0)
开发者ID:ronimaimon,项目名称:mvpa_analysis,代码行数:50,代码来源:ds_creation.py


示例19: _balance_attr

 def _balance_attr(self, ds):
     
     balanced_ds = []
     logger.debug(np.unique(ds.sa[self._attr].value))
     for attribute in np.unique(ds.sa[self._attr].value):
         ds_ = slice_dataset(ds, selection_dict={self._attr:[attribute]})
         
         ds_b = self._balance(ds_)  
         
         balanced_ds.append(ds_b)
                     
     balanced_ds = vstack(balanced_ds)
     balanced_ds.a.update(ds.a)
     
     return balanced_ds  
开发者ID:robbisg,项目名称:mvpa_itab_wu,代码行数:15,代码来源:base.py


示例20: transform

 def transform(self, ds):
     
     ds_ = SampleSlicer(self._selection).transform(ds)
     
     iterable = [np.unique(ds_.sa[a].value) for a in self._attr]
     
     ds_stack = []
     for attr in product(*iterable):
         
         mask = np.ones_like(ds_.targets, dtype=np.bool)
         
         for i, a in enumerate(attr):
             mask = np.logical_and(mask, ds_.sa[self._attr[i]].value == a)
         
         ds_stacked = hstack([d for d in ds_[mask]])
         ds_stacked = self.update_attribute(ds_stacked)
         ds_stack.append(ds_stacked)
     
     return vstack(ds_stack)
开发者ID:robbisg,项目名称:mvpa_itab_wu,代码行数:19,代码来源:functions.py



注:本文中的mvpa2.base.dataset.vstack函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python dochelpers._repr_attrs函数代码示例发布时间:2022-05-27
下一篇:
Python base.warning函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap