本文整理汇总了Python中net.Net类的典型用法代码示例。如果您正苦于以下问题:Python Net类的具体用法?Python Net怎么用?Python Net使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Net类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: run_small_net
def run_small_net():
global training_data2, n2, t2, testing_data
layers = []
layers.append({'type': 'input', 'out_sx': 24, 'out_sy': 24, 'out_depth': 1})
#layers.append({'type': 'fc', 'num_neurons': 50, 'activation': 'relu'})
layers.append({'type': 'softmax', 'num_classes': 10})
print 'Layers made...'
n2 = Net(layers)
print 'Smaller Net made...'
print n2
t2 = Trainer(n2, {'method': 'sgd', 'momentum': 0.0})
print 'Trainer made for smaller net...'
print 'In training of smaller net...'
print 'k', 'time\t\t ', 'loss\t ', 'training accuracy'
print '----------------------------------------------------'
try:
for x, y in training_data2:
stats = t2.train(x, y)
print stats['k'], stats['time'], stats['loss'], stats['accuracy']
except: #hit control-c or other
pass
print 'Testing smaller net: 5000 trials'
right = 0
count = 5000
for x, y in sample(testing_data, count):
n2.forward(x)
right += n2.getPrediction() == y
accuracy = float(right) / count * 100
print accuracy
开发者ID:Aaronduino,项目名称:ConvNetPy,代码行数:34,代码来源:dark_knowledge.py
示例2: OpenNET
def OpenNET(url):
try:
net = Net(cookie_file=cookiejar)
#net = Net(cookiejar)
try:
second_response = net.http_GET(url)
except:
second_response = net.http_GET(url.encode("utf-8"))
return second_response.content
except:
d = xbmcgui.Dialog()
d.ok(url,"Can't Connect to site",'Try again in a moment')
开发者ID:dknlght,项目名称:dkodi,代码行数:12,代码来源:ADDON.py
示例3: FeatureExtractor
class FeatureExtractor:
''' Class for extracting trained features
Feature will be stored in a txt file as a matrix. The size of the feature matrix is [num_img, feature_dimension]
Run it as::
>>> extractor = FeatureExtractor(solver_file, snapshot, gpu_idx)
>>> extractor.build_net()
>>> extractor.run(layer_name, feature_path)
:ivar str solver_file: path of the solver file in Caffe's proto format
:ivar int snapshot: the snapshot for testing
:ivar str layer_name: name of the ayer that produce feature
:ivar int gpu_idx: which gpu to perform the test
'''
def __init__(self, solver_file, snapshot, gpu_idx = 0):
self.solver_file = solver_file
self.snapshot = snapshot
self.gpu = owl.create_gpu_device(gpu_idx)
owl.set_device(self.gpu)
def build_net(self):
self.owl_net = Net()
self.builder = CaffeNetBuilder(self.solver_file)
self.snapshot_dir = self.builder.snapshot_dir
self.builder.build_net(self.owl_net)
self.owl_net.compute_size('TEST')
self.builder.init_net_from_file(self.owl_net, self.snapshot_dir, self.snapshot)
def run(s, layer_name, feature_path):
''' Run feature extractor
:param str layer_name: the layer to extract feature from
:param str feature_path: feature output path
'''
feature_unit = s.owl_net.units[s.owl_net.name_to_uid[layer_name][0]]
feature_file = open(feature_path, 'w')
batch_dir = 0
for testiteridx in range(s.owl_net.solver.test_iter[0]):
s.owl_net.forward('TEST')
feature = feature_unit.out.to_numpy()
feature_shape = np.shape(feature)
img_num = feature_shape[0]
feature_length = np.prod(feature_shape[1:len(feature_shape)])
feature = np.reshape(feature, [img_num, feature_length])
for imgidx in range(img_num):
for feaidx in range(feature_length):
info ='%f ' % (feature[imgidx, feaidx])
feature_file.write(info)
feature_file.write('\n')
print "Finish One Batch %d" % (batch_dir)
batch_dir += 1
feature_file.close()
开发者ID:lovi9573,项目名称:minerva,代码行数:52,代码来源:trainer.py
示例4: MultiviewTester
class MultiviewTester:
''' Class for performing multi-view testing
Run it as::
>>> tester = MultiviewTester(solver_file, softmax_layer, snapshot, gpu_idx)
>>> tester.build_net()
>>> tester.run()
:ivar str solver_file: path of the solver file in Caffe's proto format
:ivar int snapshot: the snapshot for testing
:ivar str softmax_layer_name: name of the softmax layer that produce prediction
:ivar int gpu_idx: which gpu to perform the test
'''
def __init__(self, solver_file, softmax_layer_name, snapshot, gpu_idx = 0):
self.solver_file = solver_file
self.softmax_layer_name = softmax_layer_name
self.snapshot = snapshot
self.gpu = owl.create_gpu_device(gpu_idx)
owl.set_device(self.gpu)
def build_net(self):
self.owl_net = Net()
self.builder = CaffeNetBuilder(self.solver_file)
self.snapshot_dir = self.builder.snapshot_dir
self.builder.build_net(self.owl_net)
self.owl_net.compute_size('MULTI_VIEW')
self.builder.init_net_from_file(self.owl_net, self.snapshot_dir, self.snapshot)
def run(s):
#multi-view test
acc_num = 0
test_num = 0
loss_unit = s.owl_net.units[s.owl_net.name_to_uid[s.softmax_layer_name][0]]
for testiteridx in range(s.owl_net.solver.test_iter[0]):
for i in range(10):
s.owl_net.forward('MULTI_VIEW')
if i == 0:
softmax_val = loss_unit.ff_y
batch_size = softmax_val.shape[1]
softmax_label = loss_unit.y
else:
softmax_val = softmax_val + loss_unit.ff_y
test_num += batch_size
predict = softmax_val.argmax(0)
truth = softmax_label.argmax(0)
correct = (predict - truth).count_zero()
acc_num += correct
print "Accuracy the %d mb: %f, batch_size: %d" % (testiteridx, correct, batch_size)
sys.stdout.flush()
print "Testing Accuracy: %f" % (float(acc_num)/test_num)
开发者ID:Exlsunshine,项目名称:minerva,代码行数:51,代码来源:trainer.py
示例5: test_basic
def test_basic():
net = Net([2, 2, 1], 1, weights=1)
err = net.train([0, 0], [1])
for a, b in zip(basic_weights1, net.weights):
print a
print b
print a == b
n.testing.assert_array_almost_equal(a, b)
err = net.train([0, 1], [0])
for a, b in zip(basic_weights2, net.weights):
print a
print b
print a == b
n.testing.assert_array_almost_equal(a, b)
开发者ID:jaredly,项目名称:backprop,代码行数:14,代码来源:test_net.py
示例6: __init__
def __init__(self, verbose=1, maxq=200):
Net.__init__(self)
Tools.__init__(self)
"""
Multithreaded network tools
"""
self.verbose = verbose
self.maxq = maxq
self.timeout = 0.2 #
self.buffers = 256 #for check_port
开发者ID:peterjrogers,项目名称:Net,代码行数:14,代码来源:mnet2.py
示例7: Solver
class Solver():
def __init__(self, args):
# prepare a datasets
self.train_data = Dataset(train=True,
data_root=args.data_root,
size=args.image_size)
self.test_data = Dataset(train=False,
data_root=args.data_root,
size=args.image_size)
self.train_loader = DataLoader(self.train_data,
batch_size=args.batch_size,
num_workers=1,
shuffle=True, drop_last=True)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.net = Net().to(self.device)
self.loss_fn = torch.nn.L1Loss()
self.optim = torch.optim.Adam(self.net.parameters(), args.lr)
self.args = args
if not os.path.exists(args.ckpt_dir):
os.makedirs(args.ckpt_dir)
def fit(self):
args = self.args
for epoch in range(args.max_epochs):
self.net.train()
for step, inputs in enumerate(self.train_loader):
gt_gray = inputs[0].to(self.device)
gt_ab = inputs[1].to(self.device)
pred_ab = self.net(gt_gray)
loss = self.loss_fn(pred_ab, gt_ab)
self.optim.zero_grad()
loss.backward()
self.optim.step()
if (epoch+1) % args.print_every == 0:
print("Epoch [{}/{}] loss: {:.6f}".format(epoch+1, args.max_epochs, loss.item()))
self.save(args.ckpt_dir, args.ckpt_name, epoch+1)
def save(self, ckpt_dir, ckpt_name, global_step):
save_path = os.path.join(
ckpt_dir, "{}_{}.pth".format(ckpt_name, global_step))
torch.save(self.net.state_dict(), save_path)
开发者ID:muncok,项目名称:pytorch-exercise,代码行数:49,代码来源:solver.py
示例8: train
def train(args):
# prepare the MNIST dataset
train_dataset = datasets.MNIST(root="./data/",
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = datasets.MNIST(root="./data/",
train=False,
transform=transforms.ToTensor())
# create the data loader
train_loader = DataLoader(dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True, drop_last=True)
test_loader = DataLoader(dataset=test_dataset,
batch_size=args.batch_size,
shuffle=False)
# turn on the CUDA if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = Net().to(device)
loss_op = nn.CrossEntropyLoss()
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
for epoch in range(args.max_epochs):
net.train()
for step, inputs in enumerate(train_loader):
images = inputs[0].to(device)
labels = inputs[1].to(device)
# forward-propagation
outputs = net(images)
loss = loss_op(outputs, labels)
# back-propagation
optim.zero_grad()
loss.backward()
optim.step()
acc = evaluate(net, test_loader, device)
print("Epoch [{}/{}] loss: {:.5f} test acc: {:.3f}"
.format(epoch+1, args.max_epochs, loss.item(), acc))
torch.save(net.state_dict(), "mnist-final.pth")
开发者ID:muncok,项目名称:pytorch-exercise,代码行数:48,代码来源:train.py
示例9: __init__
def __init__(self, args):
self.epsilonStart = args.epsilonStart
self.epsilonEnd = args.epsilonEnd
self.epsilonDecayLength = args.epsilonDecayLength
self.testEpsilon = args.testEpsilon
self.replaySize = args.replaySize
self.minReplaySize = args.minReplaySize
self.framesPerState = args.framesPerState
self.learnFrequency = args.learnFrequency
self.targetNetworkUpdateFrequency = args.targetNetworkUpdateFrequency
self.batchSize = args.batchSize
self.actionNb = args.actionNb
self.lastAction = 0
self.lastFrame = None
self.rng = np.random.RandomState(42)
self.data = Data(self.replaySize, self.framesPerState, (100,100))
self.tickCount = 0
self.learnCount = 0
self.rewardAcc = 0.0
self.episodeNb = 0
self.qValueAcc = 0.0
self.qValueNb = 0
self.maxReward = 0
self.episodeReward = 0
self.test = False
self.lastQs = collections.deque(maxlen=60)
self.net = Net(args)
self.qValues = []
self.rewards = []
self.tickCount = 0
开发者ID:Levoila,项目名称:CrappyAI,代码行数:35,代码来源:learning_agent.py
示例10: __init__
def __init__(self, meta, layers=[], rate=.05, target=None, momentum=None, trans=None, wrange=100):
Learner.__init__(self, meta, target)
inputs = len(self.meta.names()) - 1
_, possible = self.meta[self.target]
self.outputs = possible
self.net = Net([inputs] + layers + [len(possible)], rate=rate, momentum=momentum, wrange=wrange, trans=trans)
开发者ID:jaredly,项目名称:backprop,代码行数:7,代码来源:backprop.py
示例11: build_net
def build_net(self):
self.owl_net = Net()
self.builder = CaffeNetBuilder(self.solver_file)
self.snapshot_dir = self.builder.snapshot_dir
self.builder.build_net(self.owl_net)
self.owl_net.compute_size('TEST')
self.builder.init_net_from_file(self.owl_net, self.snapshot_dir, self.snapshot)
开发者ID:David61,项目名称:minerva,代码行数:7,代码来源:tools.py
示例12: __init__
def __init__(self, args):
# prepare a datasets
self.train_data = Dataset(args.scale, train=True,
data_root=args.data_root,
size=args.image_size)
self.test_data = Dataset(args.scale, train=False,
data_root=args.data_root,
size=args.image_size)
self.train_loader = DataLoader(self.train_data,
batch_size=args.batch_size,
num_workers=1,
shuffle=True, drop_last=True)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.net = Net(args.scale).to(self.device)
self.loss_fn = torch.nn.L1Loss()
self.optim = torch.optim.Adam(self.net.parameters(), args.lr)
self.args = args
if not os.path.exists(args.ckpt_dir):
os.makedirs(args.ckpt_dir)
if not os.path.exists(args.result_dir):
os.makedirs(args.result_dir)
开发者ID:muncok,项目名称:pytorch-exercise,代码行数:25,代码来源:solver.py
示例13: Solver
class Solver(object):
"""Docstring for Solver. """
def __init__(self, param):
"""TODO: to be defined1. """
self.param = param
self.init_train_net(param)
def init_train_net(self, param):
net_param = pb.NetParameter()
with open(param.net, "rb") as f:
text_format.Merge(f.read(), net_param)
net_state = pb.NetState()
net_state.phase = pb.TRAIN
# net_state.MergeFrom(net_param.state)
# net_state.MergeFrom(param.train_state)
net_param.state.CopyFrom(net_state)
self.train_net = Net(net_param)
def step(self, iters):
avg_loss = self.param.average_loss
losses = []
smoothed_loss = 0
for i in range(iters):
loss = self.train_net.forward_backward()
if len(losses) < avg_loss:
losses.append(loss)
size = len(losses)
smoothed_loss = (smoothed_loss * (size - 1) + loss) / size
else:
idx = (i - 0) % avg_loss
smoothed_loss += (loss - losses[idx]) / avg_loss
log.info("Iteration %d, loss %f", i, smoothed_loss)
self.compute_update_value(i)
# self.train_net.update()
def compute_update_value(self, i):
current_step = i / 100000.0
base_lr = 0.01
gamma = 0.1
rate = base_lr * pow(gamma, current_step)
weight_decay = 0.0005
momentum = 0.9
self.train_net.update_params(rate, weight_decay, momentum)
开发者ID:colinschmidt,项目名称:aspire-demo-2016-winter,代码行数:46,代码来源:solver.py
示例14: setup_net
def setup_net(self):
if not self.setup:
self.setup = True
self.net = Net(*SimpleParser(open(self.sisc_file)).parse(), **self.options)
for c,i in enumerate(self.net.inputs):
self.net.inputs[i] = self.inputs[c] == 1
for c,i in enumerate(self.net.outputs):
self.net.outputs[i] = self.outputs[c] == 1
self.components = TwoWayDict(dict(enumerate(self.net.gates.keys())))
开发者ID:zhoujh5510,项目名称:myProject,代码行数:9,代码来源:oracle.py
示例15: BackProp
class BackProp(Learner):
def __init__(self, meta, layers=[], rate=.05, target=None, momentum=None, trans=None, wrange=100):
Learner.__init__(self, meta, target)
inputs = len(self.meta.names()) - 1
_, possible = self.meta[self.target]
self.outputs = possible
self.net = Net([inputs] + layers + [len(possible)], rate=rate, momentum=momentum, wrange=wrange, trans=trans)
def state(self):
return [x.copy() for x in self.net.weights]
def use_state(self, state):
self.net.weights = state
def classify(self, data):
output = self.net.classify(data)
# print 'result'
# print output
# print 'result', output, self.outputs
return self.outputs[output[-1].argmax()]
def validate(self, data, real):
output = self.net.classify(data)[-1]
label = self.outputs[output.argmax()]
target = n.zeros(len(self.outputs))
target[self.outputs.index(real)] = 1
squerr = (target - output)**2
return label, squerr.mean()
def train(self, data, target):
output = n.zeros(len(self.outputs))
# print self.outputs, target
output[self.outputs.index(target)] = 1
if LOG:
print 'training'
print 'data', data
print 'expected', output
print 'weights'
for level in self.net.weights:
print ' ', level
err = self.net.train(data, output)
return err
开发者ID:jaredly,项目名称:backprop,代码行数:43,代码来源:backprop.py
示例16: run_big_net
def run_big_net():
global training_data, testing_data, n, t, training_data2
training_data = load_data()
testing_data = load_data(False)
training_data2 = []
print 'Data loaded...'
layers = []
layers.append({'type': 'input', 'out_sx': 24, 'out_sy': 24, 'out_depth': 1})
layers.append({'type': 'fc', 'num_neurons': 100, 'activation': 'relu', 'drop_prob': 0.5})
#layers.append({'type': 'fc', 'num_neurons': 800, 'activation': 'relu', 'drop_prob': 0.5})
layers.append({'type': 'softmax', 'num_classes': 10})
print 'Layers made...'
n = Net(layers)
print 'Net made...'
print n
t = Trainer(n, {'method': 'sgd', 'momentum': 0.0})
print 'Trainer made...'
print 'In training...'
print 'k', 'time\t\t ', 'loss\t ', 'training accuracy'
print '----------------------------------------------------'
try:
for x, y in training_data:
stats = t.train(x, y)
print stats['k'], stats['time'], stats['loss'], stats['accuracy']
training_data2.append((x, n.getPrediction()))
except: #hit control-c or other
pass
print 'In testing: 5000 trials'
right = 0
count = 5000
for x, y in sample(testing_data, count):
n.forward(x)
right += n.getPrediction() == y
accuracy = float(right) / count * 100
print accuracy
开发者ID:Aaronduino,项目名称:ConvNetPy,代码行数:42,代码来源:dark_knowledge.py
示例17: init_train_net
def init_train_net(self, param):
net_param = pb.NetParameter()
with open(param.net, "rb") as f:
text_format.Merge(f.read(), net_param)
net_state = pb.NetState()
net_state.phase = pb.TRAIN
# net_state.MergeFrom(net_param.state)
# net_state.MergeFrom(param.train_state)
net_param.state.CopyFrom(net_state)
self.train_net = Net(net_param)
开发者ID:colinschmidt,项目名称:aspire-demo-2016-winter,代码行数:11,代码来源:solver.py
示例18: IscasOracleOld
class IscasOracleOld(IscasOracle):
def __init__(self, sisc_file, inputs, mutated_gates, **options):
super(IscasOracleOld, self).__init__(None, [], [], **options)
self.sisc_file = sisc_file
self.mutated_gates = mutated_gates
self.net = Net(*SimpleParser(open(sisc_file)).parse(), **options)
for c,i in enumerate(self.net.inputs):
self.net.inputs[i] = inputs[c] == 1
orig_gates = self.net.mutate_net(mutated_gates)
self.net.calculate_outputs()
self.net.mutate_net(orig_gates)
self.comp_calls = 0
self.check_calls = 0
self.comp_time = 0
self.check_time = 0
self.scs = set()
self.components = TwoWayDict(dict(enumerate(self.net.gates.keys())))
def setup_net(self):
pass
开发者ID:zhoujh5510,项目名称:myProject,代码行数:21,代码来源:oracle.py
示例19: __init__
def __init__(self, grid, mdp, moves=40):
self.grid = grid
self.mdp = mdp
self.svm = LinearSVM(grid, mdp)
self.net = Net(grid,mdp)
self.moves = moves
#self.reward = np.zeros(40)
self.super_pi = mdp.pi
self.reward = np.zeros(self.moves)
self.animate = False
self.record = True
self.recent_rollout_states = None
开发者ID:jon--lee,项目名称:daggermdp,代码行数:12,代码来源:dagger.py
示例20: build_net
def build_net(self):
''' Build network structure using Caffe's proto definition. It will also initialize
the network either from given snapshot or from scratch (using proper initializer).
During initialization, it will first try to load weight from snapshot. If failed, it
will then initialize the weight accordingly.
'''
self.owl_net = Net()
self.builder = CaffeNetBuilder(self.solver_file)
self.snapshot_dir = self.builder.snapshot_dir
self.builder.build_net(self.owl_net, self.num_gpu)
self.owl_net.compute_size()
self.builder.init_net_from_file(self.owl_net, self.snapshot_dir, self.snapshot)
开发者ID:lovi9573,项目名称:minerva,代码行数:12,代码来源:trainer.py
注:本文中的net.Net类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论