• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python functions.mean函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nnabla.functions.mean函数的典型用法代码示例。如果您正苦于以下问题:Python mean函数的具体用法?Python mean怎么用?Python mean使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了mean函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: sigma_regularization

def sigma_regularization(ctx, log_var, one):
    with nn.context_scope(ctx):
        h = F.exp(log_var)
        h = F.pow_scalar(h, 0.5)
        h = F.mean(h, axis=1)
        r = F.mean(F.squared_error(h, one))
    return r
开发者ID:kzky,项目名称:works,代码行数:7,代码来源:cnn_model_042.py


示例2: vat

def vat(x, r, eps, predict, distance):
    """
    Function for calculate LDS Loss, e.g. KL(p(y|x)||KL(p(y|x+n)

    Args:
        x(`~nnabla.Variable`): N-D array 
        r(`~nnabla.Variable`): N-D array of randn/grad
        eps(`~nnabla.Variable`): Scaling factor, xi for power iteration, epsilon for loss 
        predict: pointer of feed-forward-net building function
        distance: pointer of distance function e.g. KL(p(y|x)||KL(p(y|x+n)

    Returns:
        ~nnabla.Variable: LDS loss (KL(p(y|x)||KL(p(y|x+n))
    """
    # Calculate log(p(y|x))
    y = predict(x)

    # For stoping the backprop from this path.
    y1 = y.unlinked()

    # Calculate log(p(y|x+n))
    y2 = predict(x + eps * r)

    # Calculate kl(p(y|x)||p(y|x+n))
    loss = distance(y1, y2)
    loss = F.mean(loss)

    # Returns loss and y
    # y is returned for avoiding duplicated calculation
    return loss, y
开发者ID:zwsong,项目名称:nnabla,代码行数:30,代码来源:vat.py


示例3: test_graph_logreg

def test_graph_logreg(seed):
    rng = np.random.RandomState(seed)
    x = nn.Variable([2, 3, 4], need_grad=True)
    w = nn.Variable([12, 5], need_grad=True)
    b = nn.Variable([5], need_grad=True)
    t = nn.Variable([2, 1])
    x.d = rng.randn(*x.shape)
    w.d = rng.randn(*w.shape)
    b.d = rng.randn(*b.shape)
    t.d = rng.randint(0, 5, size=t.shape)

    nn.set_default_context(nn.Context())

    # Forwardprop by definintion
    with nn.auto_forward():
        z = F.affine(x, w, b, 1)
        l = F.softmax_cross_entropy(z, t, 1)
        L = F.mean(l)

    # Backprop
    # Diff should be initialized since they are always accumulated
    x.g = 0
    w.g = 0
    b.g = 0
    L.backward(clear_buffer=True)
    x.g = rng.randn(*x.shape)

    inputs = [x, w, b]

    from nbla_test_utils import \
        compute_analytical_and_numerical_grad_graph as grads
    agrad, ngrad = grads(L, inputs, 1e-3)
    assert np.allclose(ngrad, agrad, atol=1e-2)
开发者ID:zwsong,项目名称:nnabla,代码行数:33,代码来源:test_graph.py


示例4: ce_loss_with_uncertainty

def ce_loss_with_uncertainty(ctx, pred, y_l, log_var):
    r = F.randn(0., 1., log_var.shape)
    r = F.pow_scalar(F.exp(log_var), 0.5) * r
    h = pred + r
    with nn.context_scope(ctx):
        loss_ce = F.mean(F.softmax_cross_entropy(h, y_l))
    return loss_ce
开发者ID:kzky,项目名称:works,代码行数:7,代码来源:cnn_model_060.py


示例5: kl_divergence

def kl_divergence(ctx, pred, label, log_var):
    with nn.context_scope(ctx):
        s = F.pow_scalar(F.exp(log_var), 0.5)
        elms = softmax_with_temperature(ctx, label, s) \
               * F.log(F.softmax(pred, axis=1))
        loss = -F.mean(F.sum(elms, axis=1))
    return loss
开发者ID:kzky,项目名称:works,代码行数:7,代码来源:cnn_model_063.py


示例6: sigmas_regularization

def sigmas_regularization(ctx, log_var0, log_var1):
    with nn.context_scope(ctx):
        h0 = F.exp(log_var0)
        h0 = F.pow_scalar(h0, 0.5)
        h1 = F.exp(log_var1)
        h1 = F.pow_scalar(h1, 0.5)
        r = F.mean(F.squared_error(h0, h1))
    return r
开发者ID:kzky,项目名称:works,代码行数:8,代码来源:cnn_model_060.py


示例7: sr_loss_with_uncertainty

def sr_loss_with_uncertainty(ctx, pred0, pred1, log_var0, log_var1):
    #TODO: squared error/absolute error
    s0 = F.exp(log_var0)
    s1 = F.exp(log_var1)
    squared_error = F.squared_error(pred0, pred1)
    with nn.context_scope(ctx):
        loss_sr = F.mean(squared_error * (1 / s0 + 1 / s1) + (s0 / s1 + s1 / s0)) * 0.5
    return loss_sr
开发者ID:kzky,项目名称:works,代码行数:8,代码来源:cnn_model_060.py


示例8: test_graph_model

def test_graph_model(model, seed):
    np.random.seed(313)
    rng = np.random.RandomState(seed)
    x = nn.Variable([2, 3, 4, 4], need_grad=True)
    t = nn.Variable([2, 1])
    x.d = rng.randn(*x.shape)
    t.d = rng.randint(0, 5, size=t.shape)

    nn.set_default_context(nn.Context())

    # Forwardprop by definintion
    nn.clear_parameters()
    if model == "mlp":
        with nn.parameter_scope('fc1'):
            z = PF.affine(x, 3)
        z2 = F.relu(z, inplace=True)
        with nn.parameter_scope('fc2'):
            z3 = PF.affine(z2, 5)
    elif model == "recurrent":
        with nn.parameter_scope('fc1'):
            z = PF.affine(x, 3)
            z2 = F.relu(z, inplace=True)
        h = z2
        for _ in range(2):
            with nn.parameter_scope('fc2'):
                h = PF.affine(h, 3)
                h = F.relu(h, inplace=True)
        with nn.parameter_scope('fc3'):
            z3 = PF.affine(h, 5)
    elif model == "convolution":
        with nn.parameter_scope('conv1'):
            z = PF.convolution(x, 3, (2, 2))
            z2 = F.relu(z, inplace=True)
        with nn.parameter_scope('fc2'):
            z3 = PF.affine(z2, 5)
    else:
        raise ValueError()
    l = F.softmax_cross_entropy(z3, t, 1)
    L = F.mean(l)

    # Forwardprop
    L.forward(clear_no_need_grad=True)

    # Backprop
    # Diff should be initialized since they are always accumulated
    x.grad.zero()
    L.backward(clear_buffer=True)
    x.g = rng.randn(*x.shape)
    parameters = nn.get_parameters()
    for param in parameters.values():
        param.grad.zero()
    inputs = [x] + list(parameters.values())

    from nbla_test_utils import \
        compute_analytical_and_numerical_grad_graph as grads
    agrad, ngrad = grads(L, inputs, 1e-3)
    assert np.allclose(ngrad, agrad, atol=1.05e-2)
开发者ID:zwsong,项目名称:nnabla,代码行数:57,代码来源:test_graph.py


示例9: sr_loss_with_uncertainty

def sr_loss_with_uncertainty(ctx, pred0, pred1, log_var0, log_var1):
    var0 = F.exp(log_var0)
    var1 = F.exp(log_var1)
    s0 = F.pow_scalar(var0, 0.5)
    s1 = F.pow_scalar(var0, 0.5)
    squared_error = F.squared_error(pred0, pred1)
    with nn.context_scope(ctx):
        loss = F.log(s1/s0) + (var0/var1 + squared_error/var1) * 0.5
        loss_sr = F.mean(loss)
    return loss_sr
开发者ID:kzky,项目名称:works,代码行数:10,代码来源:cnn_model_079.py


示例10: sr_loss_with_uncertainty

def sr_loss_with_uncertainty(ctx, pred0, pred1, log_v0, log_v1, 
                             log_s0, log_s1):
    v0 = F.exp(log_v0)
    v1 = F.exp(log_v1)
    squared_error = F.squared_error(pred0, pred1)
    s0 = F.exp(log_s0)
    s1 = F.exp(log_s1)
    with nn.context_scope(ctx):
        error = squared_error * (1 / v0 + 1 / v1) + (v0 / v1 + v1 / v0) + (s0 / s1 + s1 / s0)
        loss_sr = F.mean(error) * 0.5
    return loss_sr
开发者ID:kzky,项目名称:works,代码行数:11,代码来源:cnn_model_050.py


示例11: test_forward_backward

def test_forward_backward():
    batch_size, m, h, w = 4, 3, 32, 32
    extension_module = "cpu"
    device_id = 0
    ctx = extension_context(extension_module, device_id=device_id)

    x_l_data = np.random.randn(batch_size, m, h, w)
    y_l_data = (np.random.rand(batch_size, 1) * 10).astype(np.int32)
    x_l = nn.Variable(x_l_data.shape)
    y_l = nn.Variable(y_l_data.shape)
    x_l.d = x_l_data
    y_l.d = y_l_data
    pred = cnn_model_003(ctx, x_l)
    with nn.context_scope(ctx):
        loss = F.mean(F.softmax_cross_entropy(pred, y_l))

    loss.forward()
    loss.backward()
开发者ID:kzky,项目名称:works,代码行数:18,代码来源:test_cnn_model_003.py


示例12: sr_loss_with_uncertainty_and_coef

def sr_loss_with_uncertainty_and_coef(ctx, pred0, pred1, log_var0, log_var1):
    c0 = srwu_learned_coef(ctx, log_var0)
    c1 = srwu_learned_coef(ctx, log_var1)
    sc0 = sigmas_learned_coef(ctx, log_var0, log_var1)
    sc1 = sigmas_learned_coef(ctx, log_var1, log_var0)
    c0.need_grad = False
    c1.need_grad = False
    sc0.need_grad = False
    sc1.need_grad = False

    #TODO: squared error/absolute error
    s0 = F.exp(log_var0)
    s1 = F.exp(log_var1)
    squared_error = F.squared_error(pred0, pred1)
    with nn.context_scope(ctx):
        loss_sr = F.mean(
            squared_error * (c0 / s0 + c1 / s1) + (sc0 * s0 / s1 + sc1 * s1 / s0)) * 0.5
    return loss_sr
开发者ID:kzky,项目名称:works,代码行数:18,代码来源:cnn_model_055.py


示例13: get_model

def get_model(args, num_classes, test=False, tiny=False):
    """
    Create computation graph and variables.

    Args:

        tiny: Tiny ImageNet mode if True.
    """
    data_size = 320
    nn_in_size = 224
    if tiny:
        data_size = 64
        nn_in_size = 56
    image = nn.Variable([args.batch_size, 3, data_size, data_size])
    label = nn.Variable([args.batch_size, 1])
    pimage = image_preprocess(image, nn_in_size)
    pred, hidden = model_resnet.resnet_imagenet(
        pimage, num_classes, args.num_layers, args.shortcut_type, test=test, tiny=tiny)
    loss = F.mean(F.softmax_cross_entropy(pred, label))
    Model = namedtuple('Model', ['image', 'label', 'pred', 'loss', 'hidden'])
    return Model(image, label, pred, loss, hidden)
开发者ID:zwsong,项目名称:nnabla,代码行数:21,代码来源:classification.py


示例14: test_graph_clear_buffer

def test_graph_clear_buffer(seed):
    np.random.seed(313)
    rng = np.random.RandomState(seed)
    x = nn.Variable([2, 3, 4, 4])
    t = nn.Variable([2, 1])
    x.d = rng.randn(*x.shape)
    t.d = rng.randint(0, 5, size=t.shape)

    # Network definition
    nn.set_default_context(nn.Context())
    nn.clear_parameters()
    x1 = x + 1
    x2 = x1 - 1
    with nn.parameter_scope('conv1'):
        z = PF.convolution(x2, 3, (2, 2))
        z2 = F.relu(z, inplace=True)
    with nn.parameter_scope('fc2'):
        z3 = PF.affine(z2, 5)
    l = F.softmax_cross_entropy(z3, t, 1)
    L = F.mean(l)

    # Forwardprop
    import tempfile
    import os
    tmpd = tempfile.mkdtemp()
    nn.save_parameters(os.path.join(tmpd, 'parameter.h5'))
    first = False
    for cnng in [False, True]:
        for cb in [False, True]:
            _ = nn.load_parameters(os.path.join(tmpd, 'parameter.h5'))
            for v in nn.get_parameters().values():
                v.grad.zero()
            L.forward(clear_no_need_grad=cnng)
            L.backward(clear_buffer=cb)
            if not first:
                first = True
                g = list(nn.get_parameters().values())[0].g.copy()
            else:
                g2 = list(nn.get_parameters().values())[0].g.copy()
                assert np.all(g == g2)
开发者ID:zwsong,项目名称:nnabla,代码行数:40,代码来源:test_graph.py


示例15: ce_loss

def ce_loss(ctx, pred, y_l):
    with nn.context_scope(ctx):
        loss_ce = F.mean(F.softmax_cross_entropy(pred, y_l))
    return loss_ce
开发者ID:kzky,项目名称:works,代码行数:4,代码来源:cnn_model_060.py


示例16: kl_divergence

def kl_divergence(ctx, pred, label):
    with nn.context_scope(ctx):
        elms = F.softmax(label, axis=1) * F.log(F.softmax(pred, axis=1))
        loss = -F.mean(F.sum(elms, axis=1))
    return loss
开发者ID:kzky,项目名称:works,代码行数:5,代码来源:cnn_model_060.py


示例17: main

def main():
    """
    Main script.

    Steps:
    * Get and set context.
    * Load Dataset
    * Initialize DataIterator.
    * Create Networks
    *   Net for Labeled Data
    *   Net for Unlabeled Data
    *   Net for Test Data
    * Create Solver.
    * Training Loop.
    *   Test
    *   Training
    *     by Labeled Data
    *       Calculate Cross Entropy Loss 
    *     by Unlabeled Data
    *       Estimate Adversarial Direction
    *       Calculate LDS Loss
    """

    args = get_args()

    # Get context.
    from nnabla.contrib.context import extension_context
    extension_module = args.context
    if args.context is None:
        extension_module = 'cpu'
    logger.info("Running in %s" % extension_module)
    ctx = extension_context(extension_module, device_id=args.device_id)
    nn.set_default_context(ctx)

    shape_x = (1, 28, 28)
    n_h = args.n_units
    n_y = args.n_class

    # Load MNist Dataset
    from mnist_data import MnistDataSource
    with MnistDataSource(train=True) as d:
        x_t = d.images
        t_t = d.labels
    with MnistDataSource(train=False) as d:
        x_v = d.images
        t_v = d.labels
    x_t = np.array(x_t / 256.0).astype(np.float32)
    x_t, t_t = x_t[:args.n_train], t_t[:args.n_train]
    x_v, t_v = x_v[:args.n_valid], t_v[:args.n_valid]

    # Create Semi-supervised Datasets
    x_l, t_l, x_u, _ = split_dataset(x_t, t_t, args.n_labeled, args.n_class)
    x_u = np.r_[x_l, x_u]
    x_v = np.array(x_v / 256.0).astype(np.float32)

    # Create DataIterators for datasets of labeled, unlabeled and validation
    di_l = DataIterator(args.batchsize_l, [x_l, t_l])
    di_u = DataIterator(args.batchsize_u, [x_u])
    di_v = DataIterator(args.batchsize_v, [x_v, t_v])

    # Create networks
    # feed-forward-net building function
    def forward(x, test=False):
        return mlp_net(x, n_h, n_y, test)

    # Net for learning labeled data
    xl = nn.Variable((args.batchsize_l,) + shape_x, need_grad=False)
    hl = forward(xl, test=False)
    tl = nn.Variable((args.batchsize_l, 1), need_grad=False)
    loss_l = F.mean(F.softmax_cross_entropy(hl, tl))

    # Net for learning unlabeled data
    xu = nn.Variable((args.batchsize_u,) + shape_x, need_grad=False)
    r = nn.Variable((args.batchsize_u,) + shape_x, need_grad=True)
    eps = nn.Variable((args.batchsize_u,) + shape_x, need_grad=False)
    loss_u, yu = vat(xu, r, eps, forward, distance)

    # Net for evaluating valiation data
    xv = nn.Variable((args.batchsize_v,) + shape_x, need_grad=False)
    hv = forward(xv, test=True)
    tv = nn.Variable((args.batchsize_v, 1), need_grad=False)

    # Create solver
    solver = S.Adam(args.learning_rate)
    solver.set_parameters(nn.get_parameters())

    # Monitor trainig and validation stats.
    import nnabla.monitor as M
    monitor = M.Monitor(args.model_save_path)
    monitor_verr = M.MonitorSeries("Test error", monitor, interval=240)
    monitor_time = M.MonitorTimeElapsed("Elapsed time", monitor, interval=240)

    # Training Loop.
    t0 = time.time()

    for i in range(args.max_iter):

        # Validation Test
        if i % args.val_interval == 0:
            n_error = calc_validation_error(
#.........这里部分代码省略.........
开发者ID:zwsong,项目名称:nnabla,代码行数:101,代码来源:vat.py


示例18: cifar10_resnet23_loss

def cifar10_resnet23_loss(pred, label):
    loss = F.mean(F.softmax_cross_entropy(pred, label))
    return loss
开发者ID:kzky,项目名称:works,代码行数:3,代码来源:cnn_model_058.py


示例19: recon_loss

def recon_loss(ctx, pred, x_l):
    with nn.context_scope(ctx):
        loss_recon = F.mean(F.squared_error(pred, x_l))
    return loss_recon
开发者ID:kzky,项目名称:works,代码行数:4,代码来源:cnn_ae_model_000.py


示例20: ce_loss_soft

def ce_loss_soft(ctx, pred, target):
    with nn.context_scope(ctx):
        #todo: devide or not
        loss = - F.mean(F.sum(F.softmax(target) * F.log(F.softmax(pred)), axis=1))
    return loss
开发者ID:kzky,项目名称:works,代码行数:5,代码来源:cnn_model_005_001.py



注:本文中的nnabla.functions.mean函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python functions.pow_scalar函数代码示例发布时间:2022-05-27
下一篇:
Python functions.max_pooling函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap