本文整理汇总了Python中nnabla.functions.pow_scalar函数的典型用法代码示例。如果您正苦于以下问题:Python pow_scalar函数的具体用法?Python pow_scalar怎么用?Python pow_scalar使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了pow_scalar函数的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: sigmas_regularization
def sigmas_regularization(ctx, log_var0, log_var1):
with nn.context_scope(ctx):
h0 = F.exp(log_var0)
h0 = F.pow_scalar(h0, 0.5)
h1 = F.exp(log_var1)
h1 = F.pow_scalar(h1, 0.5)
r = F.mean(F.squared_error(h0, h1))
return r
开发者ID:kzky,项目名称:works,代码行数:8,代码来源:cnn_model_060.py
示例2: sr_loss_with_uncertainty
def sr_loss_with_uncertainty(ctx, pred0, pred1, log_var0, log_var1):
var0 = F.exp(log_var0)
var1 = F.exp(log_var1)
s0 = F.pow_scalar(var0, 0.5)
s1 = F.pow_scalar(var0, 0.5)
squared_error = F.squared_error(pred0, pred1)
with nn.context_scope(ctx):
loss = F.log(s1/s0) + (var0/var1 + squared_error/var1) * 0.5
loss_sr = F.mean(loss)
return loss_sr
开发者ID:kzky,项目名称:works,代码行数:10,代码来源:cnn_model_079.py
示例3: ce_loss_with_uncertainty
def ce_loss_with_uncertainty(ctx, pred, y_l, log_var):
r = F.randn(0., 1., log_var.shape)
r = F.pow_scalar(F.exp(log_var), 0.5) * r
h = pred + r
with nn.context_scope(ctx):
loss_ce = F.mean(F.softmax_cross_entropy(h, y_l))
return loss_ce
开发者ID:kzky,项目名称:works,代码行数:7,代码来源:cnn_model_060.py
示例4: sigma_regularization
def sigma_regularization(ctx, log_var, one):
with nn.context_scope(ctx):
h = F.exp(log_var)
h = F.pow_scalar(h, 0.5)
b = log_var.shape[0]
r = F.sum(F.squared_error(h, one)) / b
return r
开发者ID:kzky,项目名称:works,代码行数:7,代码来源:cnn_model_040.py
示例5: kl_divergence
def kl_divergence(ctx, pred, label, log_var):
with nn.context_scope(ctx):
s = F.pow_scalar(F.exp(log_var), 0.5)
elms = softmax_with_temperature(ctx, label, s) \
* F.log(F.softmax(pred, axis=1))
loss = -F.mean(F.sum(elms, axis=1))
return loss
开发者ID:kzky,项目名称:works,代码行数:7,代码来源:cnn_model_063.py
示例6: sigma_regularization
def sigma_regularization(ctx, log_var, one):
with nn.context_scope(ctx):
h = F.exp(log_var)
h = F.pow_scalar(h, 0.5)
h = F.mean(h, axis=1)
r = F.mean(F.squared_error(h, one))
return r
开发者ID:kzky,项目名称:works,代码行数:7,代码来源:cnn_model_042.py
示例7: __pow__
def __pow__(self, other):
"""
Element-wise power function.
Implements the power operator expression ``A ** B``, together with :func:`~nnabla.variable.__rpow__` .
When a scalar is specified for ``other``, this function performs an
element-wise operation for all elements in ``self``.
Args:
other (float or ~nnabla.Variable): Internally calling
:func:`~nnabla.functions.pow2` or
:func:`~nnabla.functions.pow_scalar` according to the
type.
Returns: :class:`nnabla.Variable`
"""
import nnabla.functions as F
if isinstance(other, Variable):
return F.pow2(self, other)
return F.pow_scalar(self, other)
开发者ID:zwsong,项目名称:nnabla,代码行数:20,代码来源:variable.py
示例8: sigma_regularization
def sigma_regularization(ctx, log_var, one):
with nn.context_scope(ctx):
h = F.exp(log_var)
h = F.pow_scalar(h, 0.5)
r = F.mean(F.abs(h - one))
return r
开发者ID:kzky,项目名称:works,代码行数:6,代码来源:cnn_model_037.py
注:本文中的nnabla.functions.pow_scalar函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论