• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.all函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.all函数的典型用法代码示例。如果您正苦于以下问题:Python all函数的具体用法?Python all怎么用?Python all使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了all函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_03_03_color_mask

    def test_03_03_color_mask(self):
        image_set_list = cpi.ImageSetList()
        image_set=image_set_list.get_image_set(0)
        np.random.seed(0)
        pixel_data = np.random.uniform(size=(10,15,3)).astype(np.float32)
        image_set.add(IMAGE_NAME, cpi.Image(pixel_data))
        
        masking_image = np.random.uniform(size=(10,15))
        
        image_set.add(MASKING_IMAGE_NAME, cpi.Image(masking_image))
        expected_mask = masking_image > .5

        pipeline = cpp.Pipeline()
        module = M.MaskImage()
        module.source_choice.value = M.IO_IMAGE
        module.object_name.value = OBJECTS_NAME
        module.image_name.value = IMAGE_NAME
        module.masking_image_name.value = MASKING_IMAGE_NAME
        module.masked_image_name.value = MASKED_IMAGE_NAME
        module.invert_mask.value = False
        module.module_num = 1
        
        workspace = cpw.Workspace(pipeline, module, image_set, cpo.ObjectSet(),
                                  cpmeas.Measurements(), image_set_list)
        module.run(workspace)
        masked_image = workspace.image_set.get_image(MASKED_IMAGE_NAME)
        self.assertTrue(isinstance(masked_image, cpi.Image))
        self.assertTrue(np.all(masked_image.pixel_data[expected_mask,:] ==
                               pixel_data[expected_mask,:]))
        self.assertTrue(np.all(masked_image.pixel_data[~expected_mask,:] == 0))
        self.assertTrue(np.all(masked_image.mask == expected_mask))
        self.assertFalse(masked_image.has_masking_objects)
开发者ID:JDWarner,项目名称:CellProfiler,代码行数:32,代码来源:test_maskimage.py


示例2: testLoadSave

    def testLoadSave(self):
        """Plot with an image: test MaskToolsWidget operations"""
        self.plot.addImage(numpy.arange(1024**2).reshape(1024, 1024),
                           legend='test')
        self.qapp.processEvents()

        # Draw a polygon mask
        toolButton = getQToolButtonFromAction(self.maskWidget.polygonAction)
        self.assertIsNot(toolButton, None)
        self.mouseClick(toolButton, qt.Qt.LeftButton)
        self._drawPolygon()

        ref_mask = self.maskWidget.getSelectionMask()
        self.assertFalse(numpy.all(numpy.equal(ref_mask, 0)))

        with temp_dir() as tmp:
            success = self.maskWidget.save(
                os.path.join(tmp, 'mask.npy'), 'npy')
            self.assertTrue(success)

            self.maskWidget.resetSelectionMask()
            self.assertTrue(
                numpy.all(numpy.equal(self.maskWidget.getSelectionMask(), 0)))

            result = self.maskWidget.load(os.path.join(tmp, 'mask.npy'))
            self.assertTrue(result)
            self.assertTrue(numpy.all(numpy.equal(
                self.maskWidget.getSelectionMask(), ref_mask)))
开发者ID:PiRK,项目名称:silx,代码行数:28,代码来源:testMaskToolsWidget.py


示例3: test_dofs

def test_dofs(vector_array):
    v = vector_array
    np.random.seed(len(v) + 24 + v.dim)
    for ind in valid_inds(v):
        c = v.copy()
        dofs = c[ind].dofs(np.array([], dtype=np.int))
        assert isinstance(dofs, np.ndarray)
        assert dofs.shape == (v.len_ind(ind), 0)

        c = v.copy()
        dofs = c[ind].dofs([])
        assert isinstance(dofs, np.ndarray)
        assert dofs.shape == (v.len_ind(ind), 0)

        if v.dim > 0:
            for count in (1, 5, 10):
                c_ind = np.random.randint(0, v.dim, count)
                c = v.copy()
                dofs = c[ind].dofs(c_ind)
                assert dofs.shape == (v.len_ind(ind), count)
                c = v.copy()
                dofs2 = c[ind].dofs(list(c_ind))
                assert np.all(dofs == dofs2)
                c = v.copy()
                c.scal(3.)
                dofs2 = c[ind].dofs(c_ind)
                assert np.allclose(dofs * 3, dofs2)
                c = v.copy()
                dofs2 = c[ind].dofs(np.hstack((c_ind, c_ind)))
                assert np.all(dofs2 == np.hstack((dofs, dofs)))
                if hasattr(v, 'data'):
                    assert np.all(dofs == indexed(v.data, ind)[:, c_ind])
开发者ID:renemilk,项目名称:pyMor,代码行数:32,代码来源:vectorarray.py


示例4: test_1d_array_parameters_1d_array_input

    def test_1d_array_parameters_1d_array_input(self):
        """
        When the input is an array, if model_set_axis=False then it must
        broadcast with the shapes of the parameters (excluding the
        model_set_axis).

        Otherwise all dimensions must be broadcastable.
        """

        t = TModel_1_1([[1, 2, 3], [4, 5, 6]],
                          [[10, 20, 30], [40, 50, 60]], n_models=2)

        with pytest.raises(ValueError):
            y1 = t([100, 200, 300])

        y1 = t([100, 200])
        assert np.shape(y1) == (2, 3)
        assert np.all(y1 == [[111, 122, 133], [244, 255, 266]])

        with pytest.raises(ValueError):
            # Doesn't broadcast with the shape of the parameters, (3,)
            y2 = t([100, 200], model_set_axis=False)

        y2 = t([100, 200, 300], model_set_axis=False)
        assert np.shape(y2) == (2, 3)
        assert np.all(y2 == [[111, 222, 333],
                             [144, 255, 366]])
开发者ID:BTY2684,项目名称:astropy,代码行数:27,代码来源:test_input.py


示例5: test_apply_mne_inverse_raw

def test_apply_mne_inverse_raw():
    """Test MNE with precomputed inverse operator on Raw."""
    start = 3
    stop = 10
    raw = read_raw_fif(fname_raw)
    label_lh = read_label(fname_label % 'Aud-lh')
    _, times = raw[0, start:stop]
    inverse_operator = read_inverse_operator(fname_full)
    inverse_operator = prepare_inverse_operator(inverse_operator, nave=1,
                                                lambda2=lambda2, method="dSPM")
    for pick_ori in [None, "normal", "vector"]:
        stc = apply_inverse_raw(raw, inverse_operator, lambda2, "dSPM",
                                label=label_lh, start=start, stop=stop, nave=1,
                                pick_ori=pick_ori, buffer_size=None,
                                prepared=True)

        stc2 = apply_inverse_raw(raw, inverse_operator, lambda2, "dSPM",
                                 label=label_lh, start=start, stop=stop,
                                 nave=1, pick_ori=pick_ori,
                                 buffer_size=3, prepared=True)

        if pick_ori is None:
            assert_true(np.all(stc.data > 0))
            assert_true(np.all(stc2.data > 0))

        assert_true(stc.subject == 'sample')
        assert_true(stc2.subject == 'sample')
        assert_array_almost_equal(stc.times, times)
        assert_array_almost_equal(stc2.times, times)
        assert_array_almost_equal(stc.data, stc2.data)
开发者ID:claire-braboszcz,项目名称:mne-python,代码行数:30,代码来源:test_inverse.py


示例6: test_01_04_size_color

 def test_01_04_size_color(self):
     secondary, mask = cpo.size_similarly(np.zeros((10, 20), int),
                                          np.zeros((10, 15, 3), np.float32))
     self.assertEqual(tuple(secondary.shape), (10, 20, 3))
     self.assertTrue(np.all(mask[:10, :15]))
     self.assertTrue(np.all(~mask[:10, 15:]))
     self.assertEqual(secondary.dtype, np.dtype(np.float32))
开发者ID:zindy,项目名称:CellProfiler,代码行数:7,代码来源:test_objects.py


示例7: test_mean_std_12bit

    def test_mean_std_12bit(self):
        # Input 12-bit, with an 8-bit color target
        input_scene = np.tile(np.arange(4096)[:, None, None], (1, 1, 3))
        color_target = np.tile(np.arange(256)[:, None, None], (1, 1, 3))

        luts = hm.mean_std_luts(input_scene.astype(np.uint16),
                                color_target.astype(np.uint8))

        np.testing.assert_array_equal(luts[0], luts[1])
        np.testing.assert_array_equal(luts[1], luts[2])

        lut = luts[0]
        assert np.all(lut[:8] == 0)
        assert np.all(lut[-8:] == 4096)
        assert np.diff(lut[8:-8]).min() == 1
        assert np.diff(lut[8:-8]).max() == 2

        # Input 12-bit, with a 12-bit color target
        input_scene = np.tile(np.arange(4096)[:, None, None], (1, 1, 3))
        color_target = np.tile(np.arange(4096)[:, None, None], (1, 1, 3))

        luts = hm.mean_std_luts(input_scene.astype(np.uint16),
                                color_target.astype(np.uint16))

        # Should be a 1 to 1 look-up-table...
        np.testing.assert_array_equal(luts[0], np.arange(4097))
开发者ID:huleg,项目名称:color_balance,代码行数:26,代码来源:histogram_match_tests.py


示例8: test_path_no_doubled_point_in_to_polygon

def test_path_no_doubled_point_in_to_polygon():
    hand = np.array(
        [[1.64516129, 1.16145833],
         [1.64516129, 1.59375],
         [1.35080645, 1.921875],
         [1.375, 2.18229167],
         [1.68548387, 1.9375],
         [1.60887097, 2.55208333],
         [1.68548387, 2.69791667],
         [1.76209677, 2.56770833],
         [1.83064516, 1.97395833],
         [1.89516129, 2.75],
         [1.9516129, 2.84895833],
         [2.01209677, 2.76041667],
         [1.99193548, 1.99479167],
         [2.11290323, 2.63020833],
         [2.2016129, 2.734375],
         [2.25403226, 2.60416667],
         [2.14919355, 1.953125],
         [2.30645161, 2.36979167],
         [2.39112903, 2.36979167],
         [2.41532258, 2.1875],
         [2.1733871, 1.703125],
         [2.07782258, 1.16666667]])

    (r0, c0, r1, c1) = (1.0, 1.5, 2.1, 2.5)

    poly = Path(np.vstack((hand[:, 1], hand[:, 0])).T, closed=True)
    clip_rect = transforms.Bbox([[r0, c0], [r1, c1]])
    poly_clipped = poly.clip_to_bbox(clip_rect).to_polygons()[0]

    assert np.all(poly_clipped[-2] != poly_clipped[-1])
    assert np.all(poly_clipped[-1] == poly_clipped[0])
开发者ID:DanHickstein,项目名称:matplotlib,代码行数:33,代码来源:test_path.py


示例9: __getitem__

    def __getitem__(self, key):
        if type(key) == slice:
            # if all in cache, then use slice, else don't
            start, stop, step = key.start, key.stop, key.step

            in_cache = self.existence_cache[start:stop:step]
            if np.all(in_cache):
                return self.cache[self.data_name][start:stop:step]
            elif np.all(np.logical_not(in_cache)):
                return self.__get_from_data_source(slice(start, stop, step))

            key = slice_to_range(key, len(self))

        if is_int_like(key):
            index = key
            if self.existence_cache[index]:
                return self.cache[self.data_name][index]
            else:
                return self.__get_from_data_source(index)

        if is_array_like(key):
            data = []

            for index, in_cache in zip(key, self.existence_cache[key]):
                if in_cache:
                    datum = self.cache[self.data_name][index]
                else:
                    datum = self.__get_from_data_source(index)

                data.append(datum)
            return np.array(data)

        else:
            raise RuntimeError('key: {} is not compatible with this datasource'.format(str(key)))
开发者ID:coopie,项目名称:speech_ml,代码行数:34,代码来源:data_sources.py


示例10: test_pickle

def test_pickle():
    """Test that a module can be pickled"""
    M = Module()
    M.x = (T.dmatrix())
    M.y = (T.dmatrix())
    a = T.dmatrix()
    M.f = Method([a], a + M.x + M.y)
    M.g = Method([a], a * M.x * M.y)

    mode = get_mode()
    m = M.make(x=numpy.zeros((4,5)), y=numpy.ones((2,3)), mode=mode)

    m_dup = cPickle.loads(cPickle.dumps(m, protocol=-1))

    assert numpy.all(m.x == m_dup.x) and numpy.all(m.y == m_dup.y)

    m_dup.x[0,0] = 3.142
    assert m_dup.f.input_storage[1].data[0,0] == 3.142
    assert m.x[0,0] == 0.0 #ensure that m is not aliased to m_dup

    #check that the unpickled version has the same argument/property aliasing
    assert m_dup.x is m_dup.f.input_storage[1].data
    assert m_dup.y is m_dup.f.input_storage[2].data
    assert m_dup.x is m_dup.g.input_storage[1].data
    assert m_dup.y is m_dup.g.input_storage[2].data
开发者ID:SinaHonari,项目名称:Theano,代码行数:25,代码来源:test_module.py


示例11: test_tally_results

def test_tally_results(capi_run):
    t = openmc.capi.tallies[1]
    assert t.num_realizations == 5
    assert np.all(t.mean >= 0)
    nonzero = (t.mean > 0.0)
    assert np.all(t.std_dev[nonzero] >= 0)
    assert np.all(t.ci_width()[nonzero] >= 1.95*t.std_dev[nonzero])
开发者ID:mit-crpg,项目名称:openmc,代码行数:7,代码来源:test_capi.py


示例12: test_rand

 def test_rand(self):
     # Simple distributional checks for sparse.rand.
     for random_state in None, 4321, np.random.RandomState():
         x = sprand(10, 20, density=0.5, dtype=np.float64,
                    random_state=random_state)
         assert_(np.all(np.less_equal(0, x.data)))
         assert_(np.all(np.less_equal(x.data, 1)))
开发者ID:7924102,项目名称:scipy,代码行数:7,代码来源:test_construct.py


示例13: pop_planes

    def pop_planes(geometry, kwargs):
        # Convert miller index specifications to normal vectors
        miller_defs = kwargs.pop("planes_miller", None)
        if miller_defs is not None:
            if np.any(np.all(abs(miller_defs[:,0:3]) < EPSILON, axis=1)):
                error("Emtpy miller index tuple")
            miller_defs[:,0:3] = miller_to_normal(
                np.dot(geometry.latvecs, geometry.bravais_cell),
                miller_defs[:,0:3])
        else:
            miller_defs = np.zeros((0, 4), dtype=float)
            
        # Convert plane normal vector specifications into cartesian coords.
        normal_defs = kwargs.pop("planes_normal", None)
        if normal_defs is not None:
            normal_defs[:,0:3] = geometry.coord_transform(
                normal_defs[:,0:3],
                kwargs.pop("planes_normal_coordsys", "lattice"))
            if np.any(np.all(abs(normal_defs[:,0:3]) < EPSILON, axis=1)):
                error("Emtpy normal vector definition")
        else:
            normal_defs = np.zeros((0, 4), dtype=float)

        # Append two defintions
        planes_normal = np.vstack(( miller_defs, normal_defs ))
        return planes_normal
开发者ID:aradi,项目名称:nanocut,代码行数:26,代码来源:polyhedron.py


示例14: test_data_scaling

 def test_data_scaling(self):
     hdr = self.header_class()
     hdr.set_data_shape((1,2,3))
     hdr.set_data_dtype(np.int16)
     S3 = BytesIO()
     data = np.arange(6, dtype=np.float64).reshape((1,2,3))
     # This uses scaling
     hdr.data_to_fileobj(data, S3)
     data_back = hdr.data_from_fileobj(S3)
     # almost equal
     assert_array_almost_equal(data, data_back, 4)
     # But not quite
     assert_false(np.all(data == data_back))
     # This is exactly the same call, just testing it works twice
     data_back2 = hdr.data_from_fileobj(S3)
     assert_array_equal(data_back, data_back2, 4)
     # Rescaling is the default
     hdr.data_to_fileobj(data, S3, rescale=True)
     data_back = hdr.data_from_fileobj(S3)
     assert_array_almost_equal(data, data_back, 4)
     assert_false(np.all(data == data_back))
     # This doesn't use scaling, and so gets perfect precision
     hdr.data_to_fileobj(data, S3, rescale=False)
     data_back = hdr.data_from_fileobj(S3)
     assert_true(np.all(data == data_back))
开发者ID:adykstra,项目名称:nibabel,代码行数:25,代码来源:test_spm99analyze.py


示例15: test_06_05_ijv_three_overlapping

 def test_06_05_ijv_three_overlapping(self):
     #
     # This is a regression test of a bug where a segmentation consists
     # of only one point, labeled three times yielding two planes instead
     # of three.
     #
     ijv = np.array([[4, 5, 1],
                     [4, 5, 2],
                     [4, 5, 3]])
     x = cpo.Objects()
     x.set_ijv(ijv, (8, 9))
     labels = []
     indices = np.zeros(3, bool)
     for l, i in x.get_labels():
         labels.append(l)
         self.assertEqual(len(i), 1)
         self.assertTrue(i[0] in (1, 2, 3))
         indices[i[0] - 1] = True
     self.assertTrue(np.all(indices))
     self.assertEqual(len(labels), 3)
     lstacked = np.dstack(labels)
     i, j, k = np.mgrid[0:lstacked.shape[0],
               0:lstacked.shape[1],
               0:lstacked.shape[2]]
     self.assertTrue(np.all(lstacked[(i != 4) | (j != 5)] == 0))
     self.assertEqual((1, 2, 3), tuple(sorted(lstacked[4, 5, :])))
开发者ID:zindy,项目名称:CellProfiler,代码行数:26,代码来源:test_objects.py


示例16: test_non_quantity_with_unit

    def test_non_quantity_with_unit(self):
        """Test that unit attributes in objects get recognized."""
        class MyQuantityLookalike(np.ndarray):
            pass

        a = np.arange(3.)
        mylookalike = a.copy().view(MyQuantityLookalike)
        mylookalike.unit = 'm'
        q1 = u.Quantity(mylookalike)
        assert isinstance(q1, u.Quantity)
        assert q1.unit is u.m
        assert np.all(q1.value == a)

        q2 = u.Quantity(mylookalike, u.mm)
        assert q2.unit is u.mm
        assert np.all(q2.value == 1000.*a)

        q3 = u.Quantity(mylookalike, copy=False)
        assert np.all(q3.value == mylookalike)
        q3[2] = 0
        assert q3[2] == 0.
        assert mylookalike[2] == 0.

        mylookalike = a.copy().view(MyQuantityLookalike)
        mylookalike.unit = u.m
        q4 = u.Quantity(mylookalike, u.mm, copy=False)
        q4[2] = 0
        assert q4[2] == 0.
        assert mylookalike[2] == 2.

        mylookalike.unit = 'nonsense'
        with pytest.raises(TypeError):
            u.Quantity(mylookalike)
开发者ID:AustereCuriosity,项目名称:astropy,代码行数:33,代码来源:test_quantity.py


示例17: test_07_01_make_ijv_outlines

    def test_07_01_make_ijv_outlines(self):
        np.random.seed(70)
        x = cpo.Objects()
        ii, jj = np.mgrid[0:10, 0:20]
        masks = [(ii - ic) ** 2 + (jj - jc) ** 2 < r ** 2
                 for ic, jc, r in ((4, 5, 5), (4, 12, 5), (6, 8, 5))]
        i = np.hstack([ii[mask] for mask in masks])
        j = np.hstack([jj[mask] for mask in masks])
        v = np.hstack([[k + 1] * np.sum(mask) for k, mask in enumerate(masks)])

        x.set_ijv(np.column_stack((i, j, v)), ii.shape)
        x.parent_image = cpi.Image(np.zeros((10, 20)))
        colors = np.random.uniform(size=(3, 3)).astype(np.float32)
        image = x.make_ijv_outlines(colors)
        i1 = [i for i, color in enumerate(colors) if np.all(color == image[0, 5, :])]
        self.assertEqual(len(i1), 1)
        i2 = [i for i, color in enumerate(colors) if np.all(color == image[0, 12, :])]
        self.assertEqual(len(i2), 1)
        i3 = [i for i, color in enumerate(colors) if np.all(color == image[-1, 8, :])]
        self.assertEqual(len(i3), 1)
        self.assertNotEqual(i1[0], i2[0])
        self.assertNotEqual(i2[0], i3[0])
        colors = colors[np.array([i1[0], i2[0], i3[0]])]
        outlines = np.zeros((10, 20, 3), np.float32)
        alpha = np.zeros((10, 20))
        for i, (color, mask) in enumerate(zip(colors, masks)):
            my_outline = outline(mask)
            outlines[my_outline] += color
            alpha[my_outline] += 1
        alpha[alpha == 0] = 1
        outlines /= alpha[:, :, np.newaxis]
        np.testing.assert_almost_equal(outlines, image)
开发者ID:zindy,项目名称:CellProfiler,代码行数:32,代码来源:test_objects.py


示例18: test_reset

def test_reset(Simulator, learning_rule, plt, seed, rng):
    """Make sure resetting learning rules resets all state."""
    m, activity_p, trans_p = learning_net(
        learning_rule, nengo.Network(seed=seed), rng)

    sim = Simulator(m)
    sim.run(0.1)
    sim.run(0.2)

    first_t = sim.trange()
    first_t_trans = sim.trange(dt=0.01)
    first_activity_p = np.array(sim.data[activity_p], copy=True)
    first_trans_p = np.array(sim.data[trans_p], copy=True)

    sim.reset()
    sim.run(0.3)

    plt.subplot(2, 1, 1)
    plt.ylabel("Neural activity")
    plt.plot(first_t, first_activity_p, c='b')
    plt.plot(sim.trange(), sim.data[activity_p], c='g')
    plt.subplot(2, 1, 2)
    plt.ylabel("Connection weight")
    plt.plot(first_t_trans, first_trans_p[..., 0], c='b')
    plt.plot(sim.trange(dt=0.01), sim.data[trans_p][..., 0], c='g')

    assert np.all(sim.trange() == first_t)
    assert np.all(sim.trange(dt=0.01) == first_t_trans)
    assert np.all(sim.data[activity_p] == first_activity_p)
    assert np.all(sim.data[trans_p] == first_trans_p)
开发者ID:epaxon,项目名称:nengo,代码行数:30,代码来源:test_learning_rules.py


示例19: get_resampling_matrix

def get_resampling_matrix(global_grid,local_grid):
    """Build the rectangular matrix that linearly resamples from the global grid to a local grid.

    The local grid range must be contained within the global grid range.

    Args:
        global_grid(numpy.ndarray): Sorted array of n global grid wavelengths.
        local_grid(numpy.ndarray): Sorted array of m local grid wavelengths.

    Returns:
        numpy.ndarray: Array of (m,n) matrix elements that perform the linear resampling.
    """
    assert np.all(np.diff(global_grid) > 0),'Global grid is not strictly increasing.'
    assert np.all(np.diff(local_grid) > 0),'Local grid is not strictly increasing.'
    # Locate each local wavelength in the global grid.
    global_index = np.searchsorted(global_grid,local_grid)
    assert local_grid[0] >= global_grid[0],'Local grid extends below global grid.'
    assert local_grid[-1] <= global_grid[-1],'Local grid extends above global grid.'
    # Lookup the global-grid bracketing interval (xlo,xhi) for each local grid point.
    # Note that this gives xlo = global_grid[-1] if local_grid[0] == global_grid[0]
    # but this is fine since the coefficient of xlo will be zero.
    global_xhi = global_grid[global_index]
    global_xlo = global_grid[global_index-1]
    # Create the rectangular interpolation matrix to return.
    alpha = (local_grid - global_xlo)/(global_xhi - global_xlo)
    local_index = np.arange(len(local_grid),dtype=int)
    matrix = np.zeros((len(local_grid),len(global_grid)))
    matrix[local_index,global_index] = alpha
    matrix[local_index,global_index-1] = 1 - alpha
    return matrix
开发者ID:desihub,项目名称:desispec,代码行数:30,代码来源:coaddition.py


示例20: test_scalar_parameters_1d_array_input

    def test_scalar_parameters_1d_array_input(self):
        """
        The dimension of the input should match the number of models unless
        model_set_axis=False is given, in which case the input is copied across
        all models.
        """

        t = TModel_1_1([1, 2], [10, 20], n_models=2)

        with pytest.raises(ValueError):
            y = t(np.arange(5) * 100)

        y1 = t([100, 200])
        assert np.shape(y1) == (2,)
        assert np.all(y1 == [111, 222])

        y2 = t([100, 200], model_set_axis=False)
        # In this case the value [100, 200, 300] should be evaluated on each
        # model rather than evaluating the first model with 100 and the second
        # model  with 200
        assert np.shape(y2) == (2, 2)
        assert np.all(y2 == [[111, 211], [122, 222]])

        y3 = t([100, 200, 300], model_set_axis=False)
        assert np.shape(y3) == (2, 3)
        assert np.all(y3 == [[111, 211, 311], [122, 222, 322]])
开发者ID:BTY2684,项目名称:astropy,代码行数:26,代码来源:test_input.py



注:本文中的numpy.all函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.allclose函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.alen函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap