本文整理汇总了Python中numpy.allclose函数的典型用法代码示例。如果您正苦于以下问题:Python allclose函数的具体用法?Python allclose怎么用?Python allclose使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了allclose函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_cache_key
def test_cache_key(self):
def fn(x):
return x ** 2
f = Gradient(fn)
self.assertTrue(np.allclose(f(3), 0.0))
self.assertTrue(np.allclose(f(3.0), 6.0))
开发者ID:adityachivu,项目名称:projects,代码行数:7,代码来源:test_symbolic.py
示例2: order_segments
def order_segments(segments):
'''Piece the segments together in order, return a list of vertices
'''
segments = [np.array(seg).tolist() for seg in segments]
if not segments:
return
verts = [segments[0][0], segments[0][1]]
original = range(1, len(segments))
while original:
match = False
for ind, segment in enumerate(segments):
if not ind in original:
continue
pt1, pt2 = segment
if np.allclose(pt1, verts[-1]):
verts.append(pt2)
original.remove(ind)
match = True
elif np.allclose(pt2, verts[-1]):
verts.append(pt1)
original.remove(ind)
match = True
if not match:
verts.append(verts[0])
return np.array(verts)
return np.array(verts)
开发者ID:blink1073,项目名称:image_inspector,代码行数:26,代码来源:polygon_math.py
示例3: _validate_covars
def _validate_covars(covars, cvtype, nmix, n_dim):
from scipy import linalg
if cvtype == 'spherical':
if len(covars) != nmix:
raise ValueError("'spherical' covars must have length nmix")
elif np.any(covars <= 0):
raise ValueError("'spherical' covars must be non-negative")
elif cvtype == 'tied':
if covars.shape != (n_dim, n_dim):
raise ValueError("'tied' covars must have shape (n_dim, n_dim)")
elif (not np.allclose(covars, covars.T)
or np.any(linalg.eigvalsh(covars) <= 0)):
raise ValueError("'tied' covars must be symmetric, "
"positive-definite")
elif cvtype == 'diag':
if covars.shape != (nmix, n_dim):
raise ValueError("'diag' covars must have shape (nmix, n_dim)")
elif np.any(covars <= 0):
raise ValueError("'diag' covars must be non-negative")
elif cvtype == 'full':
if covars.shape != (nmix, n_dim, n_dim):
raise ValueError("'full' covars must have shape "
"(nmix, n_dim, n_dim)")
for n, cv in enumerate(covars):
if (not np.allclose(cv, cv.T)
or np.any(linalg.eigvalsh(cv) <= 0)):
raise ValueError("component %d of 'full' covars must be "
"symmetric, positive-definite" % n)
开发者ID:DraXus,项目名称:scikit-learn,代码行数:28,代码来源:gmm.py
示例4: test_massivenu_density
def test_massivenu_density():
# Testing neutrino density calculation
# Simple test cosmology, where we compare rho_nu and rho_gamma
# against the exact formula (eq 24/25 of Komatsu et al. 2011)
# computed using Mathematica. The approximation we use for f(y)
# is only good to ~ 0.5% (with some redshift dependence), so that's
# what we test to.
ztest = np.array([0.0, 1.0, 2.0, 10.0, 1000.0])
nuprefac = 7.0 / 8.0 * (4.0 / 11.0) ** (4.0 / 3.0)
# First try 3 massive neutrinos, all 100 eV -- note this is a universe
# seriously dominated by neutrinos!
tcos = core.FlatLambdaCDM(75.0, 0.25, Tcmb0=3.0, Neff=3,
m_nu=u.Quantity(100.0, u.eV))
assert tcos.has_massive_nu
assert tcos.Neff == 3
nurel_exp = nuprefac * tcos.Neff * np.array([171969, 85984.5, 57323,
15633.5, 171.801])
assert np.allclose(tcos.nu_relative_density(ztest), nurel_exp, rtol=5e-3)
assert np.allclose(tcos.efunc([0.0, 1.0]), [1.0, 7.46144727668], rtol=5e-3)
# Next, slightly less massive
tcos = core.FlatLambdaCDM(75.0, 0.25, Tcmb0=3.0, Neff=3,
m_nu=u.Quantity(0.25, u.eV))
nurel_exp = nuprefac * tcos.Neff * np.array([429.924, 214.964, 143.312,
39.1005, 1.11086])
assert np.allclose(tcos.nu_relative_density(ztest), nurel_exp,
rtol=5e-3)
# For this one also test Onu directly
onu_exp = np.array([0.01890217, 0.05244681, 0.0638236,
0.06999286, 0.1344951])
assert np.allclose(tcos.Onu(ztest), onu_exp, rtol=5e-3)
# And fairly light
tcos = core.FlatLambdaCDM(80.0, 0.30, Tcmb0=3.0, Neff=3,
m_nu=u.Quantity(0.01, u.eV))
nurel_exp = nuprefac * tcos.Neff * np.array([17.2347, 8.67345, 5.84348,
1.90671, 1.00021])
assert np.allclose(tcos.nu_relative_density(ztest), nurel_exp,
rtol=5e-3)
onu_exp = np.array([0.00066599, 0.00172677, 0.0020732,
0.00268404, 0.0978313])
assert np.allclose(tcos.Onu(ztest), onu_exp, rtol=5e-3)
assert np.allclose(tcos.efunc([1.0, 2.0]), [1.76225893, 2.97022048],
rtol=1e-4)
assert np.allclose(tcos.inv_efunc([1.0, 2.0]), [0.5674535, 0.33667534],
rtol=1e-4)
# Now a mixture of neutrino masses, with non-integer Neff
tcos = core.FlatLambdaCDM(80.0, 0.30, Tcmb0=3.0, Neff=3.04,
m_nu=u.Quantity([0.0, 0.01, 0.25], u.eV))
nurel_exp = nuprefac * tcos.Neff * np.array([149.386233, 74.87915, 50.0518,
14.002403, 1.03702333])
assert np.allclose(tcos.nu_relative_density(ztest), nurel_exp,
rtol=5e-3)
onu_exp = np.array([0.00584959, 0.01493142, 0.01772291,
0.01963451, 0.10227728])
assert np.allclose(tcos.Onu(ztest), onu_exp, rtol=5e-3)
开发者ID:ehsteve,项目名称:astropy,代码行数:60,代码来源:test_cosmology.py
示例5: testFull
def testFull(self, num_best=None, shardsize=100):
if self.cls == similarities.Similarity:
index = self.cls(None, corpus, num_features=len(dictionary), shardsize=shardsize)
else:
index = self.cls(corpus, num_features=len(dictionary))
if isinstance(index, similarities.MatrixSimilarity):
expected = numpy.array([
[0.57735026, 0.57735026, 0.57735026, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.40824831, 0.0, 0.40824831, 0.40824831, 0.40824831, 0.40824831, 0.40824831, 0.0, 0.0, 0.0, 0.0],
[0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.5, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.40824831, 0.0, 0.0, 0.0, 0.81649661, 0.0, 0.40824831, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.57735026, 0.57735026, 0.0, 0.0, 0.57735026, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1., 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.70710677, 0.70710677, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.57735026, 0.57735026],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.57735026],
], dtype=numpy.float32)
# HACK: dictionary can be in different order, so compare in sorted order
self.assertTrue(numpy.allclose(sorted(expected.flat), sorted(index.index.flat)))
index.num_best = num_best
query = corpus[0]
sims = index[query]
expected = [(0, 0.99999994), (2, 0.28867513), (3, 0.23570226), (1, 0.23570226)][ : num_best]
# convert sims to full numpy arrays, so we can use allclose() and ignore
# ordering of items with the same similarity value
expected = matutils.sparse2full(expected, len(index))
if num_best is not None: # when num_best is None, sims is already a numpy array
sims = matutils.sparse2full(sims, len(index))
self.assertTrue(numpy.allclose(expected, sims))
if self.cls == similarities.Similarity:
index.destroy()
开发者ID:ArifAhmed1995,项目名称:gensim,代码行数:32,代码来源:test_similarities.py
示例6: test_shared_do_alias
def test_shared_do_alias(self):
dtype = self.dtype
if dtype is None:
dtype = theano.config.floatX
rng = np.random.RandomState(utt.fetch_seed())
x = np.asarray(rng.uniform(1, 2, [4, 2]), dtype=dtype)
x = self.cast_value(x)
x_ref = self.ref_fct(x)
x_shared = self.shared_constructor(x, borrow=True)
total = self.theano_fct(x_shared)
total_func = theano.function([], total)
total_val = total_func()
assert np.allclose(self.ref_fct(x), total_val)
x /= .5
# not required by the contract but it is a feature we've implemented
if self.shared_borrow_true_alias:
assert np.allclose(self.ref_fct(x), total_func())
else:
assert np.allclose(x_ref, total_func())
开发者ID:rezaprimasatya,项目名称:Theano,代码行数:27,代码来源:test_sharedvar.py
示例7: test_tnu
def test_tnu():
cosmo = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=3.0)
assert np.allclose(cosmo.Tnu0.value, 2.1412975665108247, rtol=1e-6)
assert np.allclose(cosmo.Tnu(2).value, 6.423892699532474, rtol=1e-6)
z = [0.0, 1.0, 2.0, 3.0]
assert np.allclose(cosmo.Tnu(z), [2.14129757, 4.28259513,
6.4238927, 8.56519027], rtol=1e-6)
开发者ID:ehsteve,项目名称:astropy,代码行数:7,代码来源:test_cosmology.py
示例8: testSymmetry
def testSymmetry(self):
"""Verify that the projection is symmetrical about the equator
"""
for minDec in (-5.0, -1.0, 0.5):
maxDec = minDec + 2.0
config = EquatSkyMap.ConfigClass()
config.decRange = minDec, maxDec
skyMap = EquatSkyMap(config)
for tractInfo in skyMap[0:1]:
numPatches = tractInfo.getNumPatches()
midXIndex = numPatches[0] / 2
minPixelPosList = []
maxPixelPosList = []
maxYInd = numPatches[1] - 1
for xInd in (0, midXIndex, numPatches[0] - 1):
minDecPatchInfo = tractInfo.getPatchInfo((xInd,0))
minDecPosBox = afwGeom.Box2D(minDecPatchInfo.getOuterBBox())
minPixelPosList += [
minDecPosBox.getMin(),
afwGeom.Point2D(minDecPosBox.getMaxX(), minDecPosBox.getMinY()),
]
maxDecPatchInfo = tractInfo.getPatchInfo((xInd, maxYInd))
maxDecPosBox = afwGeom.Box2D(maxDecPatchInfo.getOuterBBox())
maxPixelPosList += [
maxDecPosBox.getMax(),
afwGeom.Point2D(maxDecPosBox.getMinX(), maxDecPosBox.getMaxY()),
]
wcs = tractInfo.getWcs()
minDecList = [wcs.pixelToSky(pos).getPosition(afwGeom.degrees)[1] for pos in minPixelPosList]
maxDecList = [wcs.pixelToSky(pos).getPosition(afwGeom.degrees)[1] for pos in maxPixelPosList]
self.assertTrue(numpy.allclose(minDecList, minDecList[0]))
self.assertTrue(numpy.allclose(maxDecList, maxDecList[0]))
self.assertTrue(minDecList[0] <= minDec)
self.assertTrue(maxDecList[0] >= maxDec)
开发者ID:jonathansick-shadow,项目名称:skymap,代码行数:35,代码来源:testEquatSkyMap.py
示例9: test_warp_no_reproject_bounds_res
def test_warp_no_reproject_bounds_res(runner, tmpdir):
srcname = 'tests/data/shade.tif'
outputname = str(tmpdir.join('test.tif'))
out_bounds = [-11850000, 4810000, -11849000, 4812000]
result = runner.invoke(main_group, [
'warp', srcname, outputname, '--res', 30, '--bounds'] + out_bounds)
assert result.exit_code == 0
assert os.path.exists(outputname)
with rasterio.open(srcname) as src:
with rasterio.open(outputname) as output:
assert output.crs == src.crs
assert np.allclose(output.bounds, out_bounds)
assert np.allclose([30, 30], [output.transform.a, -output.transform.e])
assert output.width == 34
assert output.height == 67
# dst-bounds should be an alias to bounds
outputname = str(tmpdir.join('test2.tif'))
out_bounds = [-11850000, 4810000, -11849000, 4812000]
result = runner.invoke(main_group, [
'warp', srcname, outputname, '--res', 30, '--dst-bounds'] + out_bounds)
assert result.exit_code == 0
assert os.path.exists(outputname)
with rasterio.open(srcname) as src:
with rasterio.open(outputname) as output:
assert np.allclose(output.bounds, out_bounds)
开发者ID:RodrigoGonzalez,项目名称:rasterio,代码行数:27,代码来源:test_rio_warp.py
示例10: test_connected
def test_connected(Simulator):
m = nengo.Network(label='test_connected', seed=123)
with m:
input = nengo.Node(output=lambda t: np.sin(t), label='input')
output = nengo.Node(output=lambda t, x: np.square(x),
size_in=1,
label='output')
nengo.Connection(input, output, synapse=None) # Direct connection
p_in = nengo.Probe(input, 'output')
p_out = nengo.Probe(output, 'output')
sim = Simulator(m)
runtime = 0.5
sim.run(runtime)
with Plotter(Simulator) as plt:
t = sim.trange()
plt.plot(t, sim.data[p_in], label='sin')
plt.plot(t, sim.data[p_out], label='sin squared')
plt.plot(t, np.sin(t), label='ideal sin')
plt.plot(t, np.sin(t) ** 2, label='ideal squared')
plt.legend(loc='best')
plt.savefig('test_node.test_connected.pdf')
plt.close()
sim_t = sim.trange()
sim_sin = sim.data[p_in].ravel()
sim_sq = sim.data[p_out].ravel()
t = 0.001 * np.arange(len(sim_t))
assert np.allclose(sim_t, t)
# 1-step delay
assert np.allclose(sim_sin[1:], np.sin(t[:-1]))
assert np.allclose(sim_sq[1:], sim_sin[:-1] ** 2)
开发者ID:ZeitgeberH,项目名称:nengo,代码行数:34,代码来源:test_node.py
示例11: test_normalization
def test_normalization():
"""Test that `match_template` gives the correct normalization.
Normalization gives 1 for a perfect match and -1 for an inverted-match.
This test adds positive and negative squares to a zero-array and matches
the array with a positive template.
"""
n = 5
N = 20
ipos, jpos = (2, 3)
ineg, jneg = (12, 11)
image = np.full((N, N), 0.5)
image[ipos:ipos + n, jpos:jpos + n] = 1
image[ineg:ineg + n, jneg:jneg + n] = 0
# white square with a black border
template = np.zeros((n + 2, n + 2))
template[1:1 + n, 1:1 + n] = 1
result = match_template(image, template)
# get the max and min results.
sorted_result = np.argsort(result.flat)
iflat_min = sorted_result[0]
iflat_max = sorted_result[-1]
min_result = np.unravel_index(iflat_min, result.shape)
max_result = np.unravel_index(iflat_max, result.shape)
# shift result by 1 because of template border
assert np.all((np.array(min_result) + 1) == (ineg, jneg))
assert np.all((np.array(max_result) + 1) == (ipos, jpos))
assert np.allclose(result.flat[iflat_min], -1)
assert np.allclose(result.flat[iflat_max], 1)
开发者ID:TheArindham,项目名称:scikit-image,代码行数:34,代码来源:test_template.py
示例12: isSkewSymmetric
def isSkewSymmetric(A):
"""
Returns True if input matrix is skew-symmetric.
Parameter
---------
A : array-like
The input matrix.
Returns
-------
isSkewSymmetric : bool
Returns True if the matrix is skew-symmetric; False otherwise.
See Also
--------
isSquare, isSymmetric, isUpperTriangular, isLowerTriangular, isDiagonal
"""
assert isSquare(A), 'Input matrix should be a square matrix.'
if np.allclose(A, -1*A.T) and np.allclose(A.diagonal(),0):
return True
else:
return False
开发者ID:kingraijun,项目名称:numerical_analysis,代码行数:25,代码来源:matrix_test.py
示例13: test_constant_scalar
def test_constant_scalar(Simulator, nl, plt, seed):
"""A Network that represents a constant value."""
N = 30
val = 0.5
m = nengo.Network(label='test_constant_scalar', seed=seed)
with m:
m.config[nengo.Ensemble].neuron_type = nl()
input = nengo.Node(output=val, label='input')
A = nengo.Ensemble(N, 1)
nengo.Connection(input, A)
in_p = nengo.Probe(input, 'output')
A_p = nengo.Probe(A, 'decoded_output', synapse=0.1)
sim = Simulator(m, dt=0.001)
sim.run(1.0)
t = sim.trange()
plt.plot(t, sim.data[in_p], label='Input')
plt.plot(t, sim.data[A_p], label='Neuron approximation, pstc=0.1')
plt.ylim([0, 1.05 * val])
plt.legend(loc=0)
assert np.allclose(sim.data[in_p], val, atol=.1, rtol=.01)
assert np.allclose(sim.data[A_p][-10:], val, atol=.1, rtol=.01)
开发者ID:Tayyar,项目名称:nengo,代码行数:25,代码来源:test_ensemble.py
示例14: test_hv
def test_hv(self):
def fn(x):
return np.dot(x, x).sum()
x = np.ones((3, 3))
F = HessianVector(fn)
self.assertTrue(np.allclose(x * 6, F(x, vectors=x)))
self.assertTrue(np.allclose(x * 2, F(x[0], vectors=x[0])))
开发者ID:adityachivu,项目名称:projects,代码行数:7,代码来源:test_symbolic.py
示例15: _test_pes
def _test_pes(Simulator, nl, plt, seed,
pre_neurons=False, post_neurons=False, weight_solver=False,
vin=np.array([0.5, -0.5]), vout=None, n=200,
function=None, transform=np.array(1.), rate=1e-3):
vout = np.array(vin) if vout is None else vout
model = nengo.Network(seed=seed)
with model:
model.config[nengo.Ensemble].neuron_type = nl()
u = nengo.Node(output=vin)
v = nengo.Node(output=vout)
a = nengo.Ensemble(n, dimensions=u.size_out)
b = nengo.Ensemble(n, dimensions=u.size_out)
e = nengo.Ensemble(n, dimensions=v.size_out)
nengo.Connection(u, a)
bslice = b[:v.size_out] if v.size_out < u.size_out else b
pre = a.neurons if pre_neurons else a
post = b.neurons if post_neurons else bslice
conn = nengo.Connection(pre, post,
function=function, transform=transform,
learning_rule_type=PES(rate))
if weight_solver:
conn.solver = nengo.solvers.LstsqL2(weights=True)
nengo.Connection(v, e, transform=-1)
nengo.Connection(bslice, e)
nengo.Connection(e, conn.learning_rule)
b_p = nengo.Probe(bslice, synapse=0.03)
e_p = nengo.Probe(e, synapse=0.03)
weights_p = nengo.Probe(conn, 'weights', sample_every=0.01)
corr_p = nengo.Probe(conn.learning_rule, 'correction', synapse=0.03)
with Simulator(model) as sim:
sim.run(0.5)
t = sim.trange()
weights = sim.data[weights_p]
plt.subplot(311)
plt.plot(t, sim.data[b_p])
plt.ylabel("Post decoded value")
plt.subplot(312)
plt.plot(t, sim.data[e_p])
plt.ylabel("Error decoded value")
plt.subplot(313)
plt.plot(t, sim.data[corr_p] / rate)
plt.ylabel("PES correction")
plt.xlabel("Time (s)")
tend = t > 0.4
assert np.allclose(sim.data[b_p][tend], vout, atol=0.05)
assert np.allclose(sim.data[e_p][tend], 0, atol=0.05)
assert np.allclose(sim.data[corr_p][tend] / rate, 0, atol=0.05)
assert not np.allclose(weights[0], weights[-1], atol=1e-5)
开发者ID:4n6strider,项目名称:nengo,代码行数:60,代码来源:test_learning_rules.py
示例16: test_warp_reproject_dst_bounds
def test_warp_reproject_dst_bounds(runner, tmpdir):
"""--bounds option works."""
srcname = 'tests/data/shade.tif'
outputname = str(tmpdir.join('test.tif'))
out_bounds = [-106.45036, 39.6138, -106.44136, 39.6278]
result = runner.invoke(
main_group, [
'warp', srcname, outputname, '--dst-crs', 'EPSG:4326',
'--res', 0.001, '--bounds'] + out_bounds)
assert result.exit_code == 0
assert os.path.exists(outputname)
with rasterio.open(outputname) as output:
assert output.crs == {'init': 'epsg:4326'}
assert np.allclose(output.bounds[0::3],
[-106.45036, 39.6278])
assert np.allclose([0.001, 0.001],
[output.transform.a, -output.transform.e])
# XXX: an extra row and column is produced in the dataset
# because we're using ceil instead of floor internally.
# Not necessarily a bug, but may change in the future.
assert np.allclose([output.bounds[2] - 0.001, output.bounds[1] + 0.001],
[-106.44136, 39.6138])
assert output.width == 10
assert output.height == 15
开发者ID:RodrigoGonzalez,项目名称:rasterio,代码行数:26,代码来源:test_rio_warp.py
示例17: test_return_internal_type
def test_return_internal_type(self):
dtype = self.dtype
if dtype is None:
dtype = theano.config.floatX
rng = np.random.RandomState(utt.fetch_seed())
x = np.asarray(rng.uniform(0, 1, [2, 4]), dtype=dtype)
x = self.cast_value(x)
x_ref = self.ref_fct(x)
x_shared = self.shared_constructor(x, borrow=False)
total = self.theano_fct(x_shared)
total_func = theano.function([], total)
# in this case we can alias with the internal value
x = x_shared.get_value(borrow=True, return_internal_type=True)
assert self.test_internal_type(x)
x /= .5
# this is not required by the contract but it is a feature we can
# implement for some type of SharedVariable.
assert np.allclose(self.ref_fct(x), total_func())
x = x_shared.get_value(borrow=False, return_internal_type=True)
assert self.test_internal_type(x)
assert x is not x_shared.container.value
x /= .5
# this is required by the contract
assert not np.allclose(self.ref_fct(x), total_func())
开发者ID:rezaprimasatya,项目名称:Theano,代码行数:32,代码来源:test_sharedvar.py
示例18: svd_example
def svd_example():
a = np.floor(np.random.rand(4, 4)*20-6)
logger.info("Matrix A:\n %s", a)
b = np.floor(np.random.rand(4, 1)*20-6)
logger.info("Matrix B:\n %s", b)
u, s, v_t = np.linalg.svd(a) # SVD decomposition of A
logger.info("Matrix U:\n %s", u)
logger.info("Matrix S:\n %s", s)
logger.info("Matrix V(transpose:\n %s", u)
logger.info("Computing inverse using linalg.pinv")
# Computing the inverse using pinv
inv_pinv = np.linalg.pinv(a)
logger.info("pinv:\n %s", inv_pinv)
# Computing inverse using matrix decomposition
logger.info("Computing inverse using svd matrix decomposition")
inv_svd = np.dot(np.dot(v_t.T, np.linalg.inv(np.diag(s))), u.T)
logger.info("svd inverse:\n %s", inv_svd)
logger.info("comparing the results from pinv and svd_inverse:\n %s",
np.allclose(inv_pinv, inv_svd))
logger.info("Sol1: Solving x using pinv matrix... x=A^-1 x b")
result_pinv_x = np.dot(inv_pinv, b)
logger.info("Sol2: Solving x using svd_inverse matrix... x=A^-1 x b")
result_svd_x = np.dot(inv_svd, b)
if not np.allclose(result_pinv_x, result_svd_x):
raise ValueError('Should have been True')
开发者ID:pramitchoudhary,项目名称:Concepts-Simplified,代码行数:31,代码来源:svd.py
示例19: test_tcmb
def test_tcmb():
cosmo = core.FlatLambdaCDM(70.4, 0.272, Tcmb0=3.0)
assert np.allclose(cosmo.Tcmb0.value, 3.0)
assert np.allclose(cosmo.Tcmb(2).value, 9.0)
z = [0.0, 1.0, 2.0, 3.0, 9.0]
assert np.allclose(cosmo.Tcmb(z).value,
[3.0, 6.0, 9.0, 12.0, 30.0], rtol=1e-6)
开发者ID:ehsteve,项目名称:astropy,代码行数:7,代码来源:test_cosmology.py
示例20: test_bprop
def test_bprop(self):
r = []
context = Context()
for i in xrange(self.N):
a = self.get_random_array()
a_gpu = Connector(GpuMatrix.from_npa(a, 'float'), bu_device_id=context)
vpooling_block = MeanPoolingBlock(a_gpu, axis=0)
voutput, dL_dvoutput = vpooling_block.output.register_usage(context, context)
_dL_voutput = self.get_random_array((dL_dvoutput.nrows, dL_dvoutput.ncols))
GpuMatrix.from_npa(_dL_voutput, 'float').copy_to(context, dL_dvoutput)
hpooling_block = MeanPoolingBlock(a_gpu, axis=1)
houtput, dL_dhoutput = hpooling_block.output.register_usage(context, context)
_dL_houtput = self.get_random_array((dL_dhoutput.nrows, dL_dhoutput.ncols))
GpuMatrix.from_npa(_dL_houtput, 'float').copy_to(context, dL_dhoutput)
vpooling_block.fprop()
vpooling_block.bprop()
dL_dmatrix = vpooling_block.dL_dmatrix.to_host()
r.append(np.allclose(dL_dmatrix,
np.repeat(_dL_voutput/a.shape[0], a.shape[0], 0),
atol=1e-6))
hpooling_block.fprop()
hpooling_block.bprop()
hpooling_block.dL_dmatrix.to_host()
dL_dmatrix = hpooling_block.dL_dmatrix.to_host()
r.append(np.allclose(dL_dmatrix,
np.repeat(_dL_houtput/a.shape[1], a.shape[1], 1),
atol=1e-6))
self.assertEqual(sum(r), 2 * self.N)
开发者ID:Sandy4321,项目名称:quagga,代码行数:33,代码来源:test_MeanPoolingBlock.py
注:本文中的numpy.allclose函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论