本文整理汇总了Python中numpy.compress函数的典型用法代码示例。如果您正苦于以下问题:Python compress函数的具体用法?Python compress怎么用?Python compress使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了compress函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: calcZ01andZ10
def calcZ01andZ10(Y, MPS):
try:
U, S, V = spla.svd(Y, full_matrices=True)
except spla.LinAlgError as err:
if 'empty' in err.message:
row, col = Y.shape
Z01 = np.array([], dtype=Y.dtype).reshape(row, 0)
Z10 = np.array([], dtype=Y.dtype).reshape(0, col)
print "Empty", Z01.shape, Z10.shape
else:
print >> sys.stderr, "calcZ01andZ10: Error", I, err
raise
else:
print "S", S, "\nU", U, "\nV", V
__, chi, __ = MPS.shape
mask = (S > expS) #np.array([True] * S.shape[0])
mask[xiTilde - chi:] = False
U = np.compress(mask, U, 1)
S = np.compress(mask, S, 0)
V = np.compress(mask, V, 0)
Ssq = np.diag(np.sqrt(S))
Z01 = np.dot(U, Ssq)
Z10 = np.dot(Ssq, V)
print "Fill ", U.shape, V.shape, "mask", mask
eps = np.linalg.norm(np.dot(Z01, Z10))
print "eps", I, eps
print "Z01", Z01.shape, "\n", Z01, "\nZ10", Z10.shape, "\n", Z10
return Z01, Z10
开发者ID:xrincon,项目名称:tdvp,代码行数:31,代码来源:rhoItdvp.py
示例2: create_projection_as_numeric_array_3D
def create_projection_as_numeric_array_3D(self, attr_indices, **settings_dict):
valid_data = settings_dict.get("valid_data")
class_list = settings_dict.get("class_list")
jitter_size = settings_dict.get("jitter_size", 0.0)
if valid_data == None:
valid_data = self.get_valid_list(attr_indices)
if sum(valid_data) == 0:
return None
if class_list == None and self.data_has_class:
class_list = self.original_data[self.data_class_index]
xarray = self.no_jittering_scaled_data[attr_indices[0]]
yarray = self.no_jittering_scaled_data[attr_indices[1]]
zarray = self.no_jittering_scaled_data[attr_indices[2]]
if jitter_size > 0.0:
xarray += (np.random.random(len(xarray))-0.5)*jitter_size
yarray += (np.random.random(len(yarray))-0.5)*jitter_size
zarray += (np.random.random(len(zarray))-0.5)*jitter_size
if class_list != None:
data = np.compress(valid_data, np.array((xarray, yarray, zarray, class_list)), axis = 1)
else:
data = np.compress(valid_data, np.array((xarray, yarray, zarray)), axis = 1)
data = np.transpose(data)
return data
开发者ID:Isilendil,项目名称:orange3,代码行数:26,代码来源:scaling.py
示例3: calculate_realexptime
def calculate_realexptime(id_arr, utc_arr, dsec_arr, diff_arr, req_texp, utc_list):
"""Calculates the real exposure time.
This makes the following assumptions:
#. That the measurement after the turn of the second is a fiducial
#. That there is an integer number of frames between each fiducial exposure
#. We then set up a metric which is Y=np.sum(i-int(i)) where i=dt/t_exp
#. Then the minimum of Y is found between the requested exposure time and the median time difference
#. And the best exposure time is the time at that minimum
returns median exposure time and real exposure time
"""
t_exp=0
# calculate the median time
try:
t_wrong=np.median(diff_arr)
except:
raise SaltError('Unable to calculate median time difference')
# Compress the arrays to find those closest to the second mark
mask=(dsec_arr<t_wrong)*(diff_arr>0)
t=np.compress(mask,utc_arr)
s=np.compress(mask,dsec_arr)
id=np.compress(mask,id_arr)
# Now set up the components in the equation
try:
t_start=t[0]
dt=t[1:]-t[0]
except Exception, e:
msg='Unable to set up necessary arrays because %s' % e
raise SaltError(msg)
开发者ID:astrophysaxist,项目名称:pysalt,代码行数:32,代码来源:slotutcfix.py
示例4: test8
def test8():
global L0, N
L = deepcopy(L0)
rho = zeros(N, 'double')
rho[random.sample(xrange(N), N/2)] = 1
print rho
LI = linalg.inv(L)
#print L
#print LI
#I = numpy.dot(L,LI)
#I[abs(I)<0.001] = 0
#print I
t = numpy.greater(rho, 0)
X = numpy.zeros((N,N))
for i in xrange(N):
X[0][i] = i
print X
LIC = numpy.compress(t, LI, 1)
print LIC
LIC = numpy.compress(t, LIC, 0)
print LIC
LICI = linalg.inv(LIC)
print LICI
开发者ID:jpcoles,项目名称:jcode,代码行数:28,代码来源:wt.py
示例5: myzpk2tf
def myzpk2tf(self, z, p, k):
z = np.atleast_1d(z)
k = np.atleast_1d(k)
if len(z.shape) > 1:
temp = np.poly(z[0])
b = np.zeros((z.shape[0], z.shape[1] + 1), temp.dtype.char)
if len(k) == 1:
k = [k[0]] * z.shape[0]
for i in range(z.shape[0]):
b[i] = k[i] * poly(z[i])
else:
b = k * np.poly(z)
a = np.atleast_1d(np.poly(p))
# Use real output if possible. Copied from numpy.poly, since
# we can't depend on a specific version of numpy.
if issubclass(b.dtype.type, np.complexfloating):
# if complex roots are all complex conjugates, the roots are real.
roots = np.asarray(z, complex)
pos_roots = np.compress(roots.imag > 0, roots)
neg_roots = np.conjugate(np.compress(roots.imag < 0, roots))
if len(pos_roots) == len(neg_roots):
if np.all(np.sort_complex(neg_roots) == np.sort_complex(pos_roots)):
b = b.real.copy()
if issubclass(a.dtype.type, np.complexfloating):
# if complex roots are all complex conjugates, the roots are real.
roots = np.asarray(p, complex)
pos_roots = np.compress(roots.imag > 0, roots)
neg_roots = np.conjugate(np.compress(roots.imag < 0, roots))
if len(pos_roots) == len(neg_roots):
if np.all(np.sort_complex(neg_roots) == np.sort_complex(pos_roots)):
a = a.real.copy()
return b, a
开发者ID:mrow4a,项目名称:UNI,代码行数:32,代码来源:main.py
示例6: estimateState
def estimateState(self):
""" Updates the estimate of the state """
best = numpy.argmax(self.Weights)
beststate = self.States[best,:]
#print "Best State:", beststate
cond = (numpy.sum(numpy.fabs(self.States - beststate), axis=1) < 1)
beststates = numpy.compress(cond, self.States, axis=0)
bestweights = numpy.compress(cond, self.Weights)
#print "States", self.States
#print "States within window:", cond
#print "States close to best", len(beststates), beststates
#print "Weights close to best", bestweights
#print "Product:", (bestweights*beststates.T).T
bestweights /= numpy.sum(bestweights)
self.State = numpy.sum((bestweights*beststates.T).T, axis=0)
#print "Estimate:", self.State
#print numpy.fabs(numpy.arctan2(self.State[Localisation.YDOT], self.State[Localisation.XDOT]) - self.State[Localisation.THETA]) - self.__controlToVelocityVector()
if numpy.isnan(self.State[0]):
print "FAIL"
self.__updateAttributesFromState()
开发者ID:RJianCheng,项目名称:naowalkoptimiser,代码行数:26,代码来源:MCLLocalisation.py
示例7: unpack_data
def unpack_data(path, delimiter, filtr=False, split_column=-1):
"""Measurements and errors are assumed to be alternating. The last
pair of columns corresponds to the dependent variable
while the preceeding are independent.
If filtr is True, values larger than the error are removed.
If split_column is given, the data is split into lumps with a column
value in that column, e.g if split_column=(n-1) [n.b we count from 0] and
the nth column contains trial number, chemical type etc. this value will
be used to categorise the rest of the data and the other procedures
will run sequentially on each category, as if they were in different files."""
raw = np.loadtxt(path, delimiter=delimiter, skiprows=1)
data_name = os.path.splitext(os.path.basename(path))[0]
if split_column != -1:
raws = split_file(raw, split_column, data_name)
else:
# Needed to generalise following iterative step.
raws = [(data_name, raw)]
for (name, raw) in raws:
meas = raw[:, ::2].transpose()
err = raw[:, 1::2].transpose()
if filtr:
test = (abs(meas) >= err).prod(axis=0)
meas = np.compress(test, meas, axis=1)
err = np.compress(test, err, axis=1)
if meas.shape[0] == 2:
A = (meas[:-1].ravel(), err[:-1].ravel())
yield name, (A, (meas[-1], err[-1]))
else:
yield name, ((meas[:-1], err[:-1]), (meas[-1], err[-1]))
开发者ID:alephu5,项目名称:chipy,代码行数:34,代码来源:fileops.py
示例8: utest
def utest( self, score ):
"""
Gives the Mann-Withney U test probability that the score is
random. See:
Mason & Graham (2002) Areas beneath the relative operating
characteristics (ROC) and relative operating levels (ROL)
curves: Statistical significance and interpretation
Note (1): P-values below ~1e-16 are reported as 0.0.
See zprob() in Biskit.Statistics.stats!
Note (2): the P-value does not distinguish between positive
and negative deviations from random -- a ROC area of 0.1 will
get the same P-value as a ROC area of 0.9.
@param score: the score predicted for each item
@type score: [ float ]
@return: 1-tailed P-value
@rtype: float
"""
sample1 = N.compress( self.positives, score )
sample1 = sample1[-1::-1] # invert order
sample2 = N.compress( N.logical_not( self.positives ), score )
sample2 = sample2[-1::-1] # invert order
sample1 = sample1.tolist()
sample2 = sample2.tolist()
p = stats.mannwhitneyu( sample1, sample2 )
return p[1]
开发者ID:ostrokach,项目名称:biskit,代码行数:33,代码来源:ROCalyzer.py
示例9: whiskers_and_fliers
def whiskers_and_fliers(x, q1, q3, transformout=None):
wnf = {}
if transformout is None:
transformout = lambda x: x
iqr = q3 - q1
# get low extreme
loval = q1 - (1.5 * iqr)
whislo = np.compress(x >= loval, x)
if len(whislo) == 0 or np.min(whislo) > q1:
whislo = q1
else:
whislo = np.min(whislo)
# get high extreme
hival = q3 + (1.5 * iqr)
whishi = np.compress(x <= hival, x)
if len(whishi) == 0 or np.max(whishi) < q3:
whishi = q3
else:
whishi = np.max(whishi)
wnf['fliers'] = np.hstack([
transformout(np.compress(x < whislo, x)),
transformout(np.compress(x > whishi, x))
])
wnf['whishi'] = transformout(whishi)
wnf['whislo'] = transformout(whislo)
return wnf
开发者ID:SeanMcKnight,项目名称:wqio,代码行数:30,代码来源:misc.py
示例10: doit
def doit(input_file, output_file, regularization, wants_normalization):
# Read the entire file.
data= tuple(tuple(map(float, line.split(','))) for line in input_file)
if len(data) == 0:
print("no data", file=sys.stderr)
return
# Create X and Y indices. Assume the last column contains the output and
# the rest contain the inputs.
y_index= len(data[0]) - 1
x_indices= tuple(range(y_index))
# Create and print the model parameters, normalizing the data if requested.
data= np.array(data)
x= np.compress(as_bools(x_indices), data, 1)
mu= list(it.repeat(0.0, x.shape[1]))
sigma= list(it.repeat(1.0, x.shape[1]))
if wants_normalization:
for i in range(x.shape[1]):
mu[i]= np.mean(x[:,i])
sigma[i]= np.std(x[:,i])
if sigma[i] == 0.0:
sigma[i]= 1.0
x[:,i]= (x[:,i] - mu[i]) / sigma[i]
y= np.compress(as_bools(y_index), data, 1).squeeze()
model= MinimizedModel(x, y, regularization, mu, sigma)
print(model, file=output_file)
开发者ID:Tenchumaru,项目名称:home,代码行数:27,代码来源:lor.py
示例11: setFlaggedImageRange
def setFlaggedImageRange(self):
(nx,ny) = self.raw_image.shape
num_elements = nx * ny
if self._flags_array is None:
if not self._nan_flags_array is None:
flags_array = self._nan_flags_array.copy()
else:
flags_array = numpy.zeros((nx,ny),int);
else:
flags_array = self._flags_array.copy()
if not self._nan_flags_array is None:
flags_array = flags_array + self._nan_flags_array
flattened_flags = numpy.reshape(flags_array,(num_elements,))
if self.raw_image.dtype == numpy.complex64 or self.raw_image.dtype == numpy.complex128:
real_array = self.raw_image.real
imag_array = self.raw_image.imag
flattened_real_array = numpy.reshape(real_array.copy(),(num_elements,))
flattened_imag_array = numpy.reshape(imag_array.copy(),(num_elements,))
real_flagged_array = numpy.compress(flattened_flags == 0, flattened_real_array)
imag_flagged_array = numpy.compress(flattened_flags == 0, flattened_imag_array)
flagged_image = numpy.zeros(shape=real_flagged_array.shape,dtype=self.raw_image.dtype)
flagged_image.real = real_flagged_array
flagged_image.imag = imag_flagged_array
else:
flattened_array = numpy.reshape(self.raw_image.copy(),(num_elements,))
flagged_image = numpy.compress(flattened_flags == 0, flattened_array)
self.setImageRange(flagged_image)
开发者ID:kernsuite-debian,项目名称:meqtrees-timba,代码行数:27,代码来源:QwtPlotImage_qt4.py
示例12: fit_gauss_to_hist
def fit_gauss_to_hist(binheights,
binedges,
binerrors,
fitmin=0,
fitmax=None,
p0=None, # guesses for norm, mu, sigma
fitcolor="r"):
left_binedges = binedges[:-1]
if fitmax == None:
fitmax = np.max(binedges)
# cut data to values needed for fitting
cut_mask = (left_binedges>fitmin)*(left_binedges<fitmax)
fitx = np.compress(cut_mask, left_binedges)
fity = np.compress(cut_mask, binheights)
cut_binerrors = np.compress(cut_mask, binerrors)
# p0 = [200.,meanguess,10.]
popt, pcov = scipy.optimize.curve_fit(gauss, fitx, fity,
sigma=cut_binerrors,
absolute_sigma=True,
p0=p0)
perr = np.sqrt(np.diag(pcov))
# draw fitfunction
xbase = np.linspace(fitmin,fitmax,1000)
plt.plot(xbase, gauss(xbase, popt[0], popt[1], popt[2]),
color=fitcolor,
linewidth=2.)
print "optimized norm, mu, sigma:\n", popt
print "corresponding errors\n", np.sqrt(np.diag(pcov))
print "corresponding covariance matrix:\n", pcov
return popt, pcov
开发者ID:elimik31,项目名称:castor_bachelor_michael,代码行数:34,代码来源:energy_distr.py
示例13: _addChildren
def _addChildren(self, parent_node_num, I, cur_depth, right_mask, left_mask, y):
"""Modifies self.nodes_dict, self.stack
"""
# do the right branch
r_tmp = numpy.compress(right_mask, y)
if (r_tmp.shape[0] > 0):
# then there is a reason to add a right child
r_node_num = self.num_nodes
r_child = TreeNode()
r_child.parent = parent_node_num
r_child.constval = numpy.average(r_tmp)
self.nodes_dict[parent_node_num].Rchild = r_node_num
self.nodes_dict[r_node_num] = r_child
self.stack.append( self.StackEntry(r_node_num, cur_depth+1,\
numpy.compress(right_mask, I)))
self.num_nodes += 1
# do the left branch
l_tmp = numpy.compress(left_mask, y)
if (l_tmp.shape[0] > 0):
l_node_num = self.num_nodes
l_child = TreeNode()
l_child.parent = parent_node_num
l_child.constval = numpy.average(l_tmp)
self.nodes_dict[parent_node_num].Lchild = l_node_num
self.nodes_dict[l_node_num] = l_child
self.stack.append( self.StackEntry(l_node_num, cur_depth+1,\
numpy.compress(left_mask, I)))
self.num_nodes += 1
开发者ID:trentmc,项目名称:mojito_r_tapas,代码行数:29,代码来源:Cart.py
示例14: getMaxPoints
def getMaxPoints(arr):
# [TODO] Work out for RGB rather than array, and maybe we don't need the filter, but hopefully speeds it up.
# Reference http://scipy-cookbook.readthedocs.io/items/FiltFilt.html
arra = filtfilt(b,a,arr)
maxp = maxpoints(arra, order=(len(arra)/20), mode='wrap')
minp = minpoints(arra, order=(len(arra)/20), mode='wrap')
points = []
for i in range(3):
mas = np.equal(np.greater_equal(maxp,(i*(len(arra)/3))), np.less_equal(maxp,((i+1)*len(arra)/3)))
k = np.compress(mas[0], maxp)
if len(k)==0:
continue
points.append(sum(k)/len(k))
if len(points) == 1:
return points, []
points = np.compress(np.greater_equal(arra[points],(max(arra)-min(arra))*0.40 + min(arra)),points)
rifts = []
for i in range(len(points)-1):
mas = np.equal(np.greater_equal(minp, points[i]),np.less_equal(minp,points[i+1]))
k = np.compress(mas[0], minp)
rifts.append(k[arra[k].argmin()])
return points, rifts
开发者ID:FredrikUlvin,项目名称:pietifier,代码行数:27,代码来源:pietifier.py
示例15: gammaGunFilter
def gammaGunFilter(data, quiet=True):
'''Filters gamma gun data set to clean it up some, removing some of the crap.'''
if not quiet: print "Filtering"
data = np.compress([len(event[2]) >= 2 for event in data], data, axis=0) #|Get at least two ROI's
data = np.compress([np.max(event[2]['eta'])*np.min(event[2]['eta']) < 0 for event in data],
data, axis=0) #|Require an eta separation of opposite endcaps to prevent high errors
return data
开发者ID:bencbartlett,项目名称:tVertexing,代码行数:7,代码来源:Vertexing.py
示例16: _findRobots
def _findRobots(self):
""" Finds the robots amoung the edges found
"""
## for each right edge find the next closest left edge. This forms an edge pair that could be robot
self.Robots = list()
if len(self.RightEdges) == 0 or len(self.LeftEdges) == 0:
return
for rightedge in self.RightEdges:
leftedge = self.LeftEdges[0]
i = 1
while leftedge < rightedge:
if i >= len(self.LeftEdges):
break
leftedge = self.LeftEdges[i]
i = i + 1
## now calculate the distance between the two edges
distance = self.__calculateDistanceBetweenEdges(leftedge, rightedge)
if distance > self.MINIMUM_NAO_WIDTH and distance < self.MAXIMUM_NAO_WIDTH:
x = self.CartesianData[0,rightedge:leftedge+1]
y = self.CartesianData[1,rightedge:leftedge+1]
r = self.PolarData[0,rightedge:leftedge+1]
c = numpy.less(r, 409.5)
x = numpy.compress(c, x)
y = numpy.compress(c, y)
robotx = self.__averageObjectDistance(x)
roboty = self.__averageObjectDistance(y)
c = numpy.logical_and(numpy.less(numpy.fabs(x - robotx), self.MAXIMUM_NAO_WIDTH), numpy.less(numpy.fabs(y - roboty), self.MAXIMUM_NAO_WIDTH))
x = numpy.compress(c, x)
y = numpy.compress(c, y)
robotr = math.sqrt(robotx**2 + roboty**2)
robotbearing = math.atan2(roboty, robotx)
self.Robots.append(Robot(robotx, roboty, robotr, robotbearing, x, y))
开发者ID:RJianCheng,项目名称:naowalkoptimiser,代码行数:35,代码来源:NAOFinder.py
示例17: roiEnergyAnalysis
def roiEnergyAnalysis(data):
'''Troubleshooting function, compares the observed sum energy in an ROI to the genEnergy'''
genEnergies = []
sumEnergies = []
pbar = progressbar("Processing event &count&:", len(data)+1)
pbar.start()
count = 0
for event in data:
genEnergy = event[2]['getpt'] * np.cosh(event[2]['geneta'])
for i in range(len(genEnergy)):
clustersIndices = np.compress(event[1]['ROI'] == i, event[1]['clusterID'], axis=0) #|Only take clusters corresponding to right ROI
clusterEnergies = []
for clusterID in clustersIndices: #|Only take hits corresponding to correct cluster
hits = np.compress(event[0]['clusterID'] == clusterID, event[0], axis=0)
energies = hits['en']
for energy in energies:
clusterEnergies.append(energy) #|Add the energy to the cluster energies
ROIEnergy = np.sum(clusterEnergies)
# Append to original lists
genEnergies.append(genEnergy[i])
sumEnergies.append(ROIEnergy)
pbar.update(count)
count += 1
pbar.finish()
# np.save("sums.npy", sumEnergies)
# np.save("gens.npy", genEnergies)
# Plot it
Plotter.sumEnergyVsGenEnergy(sumEnergies, genEnergies)
开发者ID:bencbartlett,项目名称:tVertexing,代码行数:28,代码来源:Vertexing.py
示例18: calculate_switch_length
def calculate_switch_length(inheritance, positions, ignore_size=0,
index_only=False):
assert inheritance.shape[0] == positions.size
# only 1s and 2s are relevant
exclude = np.any(inheritance < 3, axis=1)
inh_copy = np.compress(exclude, inheritance.copy(), axis=0)
forgiven = [forgive(col, ignore_size) for col in inh_copy.T]
switches = [derive_position_switch_array(np.compress(fgv, col))
for col, fgv in zip(inh_copy.T, forgiven)]
filtered_pos = None
if index_only:
mean_length = [np.mean(s) for s in switches]
medi_length = [np.median(s) for s in switches]
maxi_length = [np.median(s) for s in switches]
else:
assert inheritance.shape[0] == positions.shape[0]
pos = np.compress(exclude, positions)
filtered_pos = [np.insert(np.take(np.compress(fgv, pos),
sw.cumsum() - 1), 0, pos[0])
for fgv, sw in zip(forgiven, switches)]
mean_length = np.array([np.mean(np.diff(f)) for f in filtered_pos])
medi_length = np.array([np.median(np.diff(f)) for f in filtered_pos])
maxi_length = np.array([np.max(np.diff(f)) for f in filtered_pos])
return mean_length, medi_length, maxi_length, filtered_pos
开发者ID:hardingnj,项目名称:phasing,代码行数:30,代码来源:switch.py
示例19: contributions
def contributions(Ilength, Olength, scale, kernel,kernel_width):
# Antialiasing for downsizing
if scale < 1:
h = lambda x: kernel(x,scale)
kernel_width = kernel_width/scale
else:
h = kernel
# output space coordinate
x = np.arange(Olength, dtype = float)
x.shape += (1,)
# input space coord so that 0.5 in Out ~ 0.5 in In, and 0.5+scale in Out ~
# 0.5 + 1 in In
u = x/scale + 0.5*(-1+1.0/scale)
left = np.floor(u-kernel_width/2)
P = math.ceil(kernel_width) + 2
indices = left + np.arange(P)
weights = h(u - indices)
norm = np.sum(weights,axis=1)
norm.shape += (1,)
weights = weights/norm
indices = np.minimum(np.maximum(0,indices),Ilength-1)
indices = np.array(indices,dtype = int)
kill = np.ma.any(weights,0)
weights = np.compress(kill,weights,1)
indices = np.compress(kill,indices,1)
return (weights,indices)
开发者ID:nikky4D,项目名称:xform_recipes,代码行数:29,代码来源:imresize.py
示例20: lcylimits
def lcylimits(self):
"""Determine the y-limts depending on what plots are selected """
mask = (self.dtime > self.lcx1)*(self.dtime<self.lcx2)*(self.goodframes>0)
if self.ratiovar.get():
rarr=np.compress(mask,self.ratio)
y1=rarr.min()
y2=rarr.max()
ylabel='Star1/Star2'
else:
if self.star2var.get() and self.star1var.get():
cfarr=np.compress(mask,self.cflux).max()
tfarr=np.compress(mask,self.tflux).max()
y1=0
y2=cfarr < tfarr and tfarr or cfarr
ylabel='Star Flux'
elif self.star2var.get():
cfarr=np.compress(mask,self.cflux)
y1=0
y2=cfarr.max()
ylabel='Star2 Flux'
else:
tfarr=np.compress(mask,self.tflux)
y1=0
y2=tfarr.max()
ylabel='Star1 Flux'
return y1, y2, ylabel
开发者ID:astrophysaxist,项目名称:pysalt,代码行数:26,代码来源:old_slotview.py
注:本文中的numpy.compress函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论