• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.concatenate函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.concatenate函数的典型用法代码示例。如果您正苦于以下问题:Python concatenate函数的具体用法?Python concatenate怎么用?Python concatenate使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了concatenate函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: parse_eph

def parse_eph(filenm):
    global period, time
    suffix = filenm.split(".")[-1]
    if suffix == "bestprof":
        x = bestprof.bestprof(filenm)
        fs = pu.p_to_f(x.p0_bary, x.p1_bary, x.p2_bary)
        epoch = x.epochi_bary + x.epochf_bary
        T = x.T
    elif suffix == "par":
        x = parfile.psr_par(filenm)
        # Try to see how many freq derivs we have
        fs = [x.F0]
        for ii in range(1, 20):  # hopefully 20 is an upper limit!
            attrib = "F%d" % ii
            if hasattr(x, attrib):
                fs.append(getattr(x, attrib))
            else:
                break
        epoch = x.PEPOCH
        T = (x.FINISH - x.START) * 86400.0
    else:
        print "I don't recognize the file type for", filenm
        sys.exit()
    newts = epoch + num.arange(int(T / 10.0 + 0.5), dtype=num.float) / 8640.0
    time = num.concatenate((time, newts))
    newps = 1.0 / pu.calc_freq(newts, epoch, *fs)
    period = num.concatenate((period, newps))
    print "%13.7f (%0.1f sec): " % (epoch, T), fs
开发者ID:JiangDong,项目名称:presto,代码行数:28,代码来源:fit_circular_orbit.py


示例2: Haffine_from_points

def Haffine_from_points(fp, tp):
    '''计算仿射变换的单应性矩阵H,使得tp是由fp经过仿射变换得到的'''
    if fp.shape != tp.shape:
        raise RuntimeError('number of points do not match')

    # 对点进行归一化
    # 映射起始点
    m = numpy.mean(fp[:2], axis=1)
    maxstd = numpy.max(numpy.std(fp[:2], axis=1)) + 1e-9
    C1 = numpy.diag([1/maxstd, 1/maxstd, 1])
    C1[0, 2] = -m[0] / maxstd
    C1[1, 2] = -m[1] / maxstd
    fp_cond = numpy.dot(C1, fp)

    # 映射对应点
    m = numpy.mean(tp[:2], axis=1)
    maxstd = numpy.max(numpy.std(tp[:2], axis=1)) + 1e-9
    C2 = numpy.diag([1/maxstd, 1/maxstd, 1])
    C2[0, 2] = -m[0] / maxstd
    C2[1, 2] = -m[1] / maxstd
    tp_cond = numpy.dot(C2, tp)

    # 因为归一化之后点的均值为0,所以平移量为0
    A = numpy.concatenate((fp_cond[:2], tp_cond[:2]), axis=0)
    U, S, V = numpy.linalg.svd(A.T)
    # 创建矩阵B和C
    tmp = V[:2].T
    B = tmp[:2]
    C = tmp[2:4]

    tmp2 = numpy.concatenate((numpy.dot(C, numpy.linalg.pinv(B)), numpy.zeros((2, 1))), axis=1)
    H = numpy.vstack((tmp2, [0, 0, 1]))

    H = numpy.dot(numpy.linalg.inv(C2), numpy.dot(H, C1))  # 反归一化
    return H / H[2, 2]  # 归一化,然后返回
开发者ID:MarkPrecursor,项目名称:Programming-Computer-Vision-with-python,代码行数:35,代码来源:homography.py


示例3: test_testUfuncs1

 def test_testUfuncs1 (self):
     "Test various functions such as sin, cos."
     (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
     self.assertTrue (eq(numpy.cos(x), cos(xm)))
     self.assertTrue (eq(numpy.cosh(x), cosh(xm)))
     self.assertTrue (eq(numpy.sin(x), sin(xm)))
     self.assertTrue (eq(numpy.sinh(x), sinh(xm)))
     self.assertTrue (eq(numpy.tan(x), tan(xm)))
     self.assertTrue (eq(numpy.tanh(x), tanh(xm)))
     olderr = numpy.seterr(divide='ignore', invalid='ignore')
     try:
         self.assertTrue (eq(numpy.sqrt(abs(x)), sqrt(xm)))
         self.assertTrue (eq(numpy.log(abs(x)), log(xm)))
         self.assertTrue (eq(numpy.log10(abs(x)), log10(xm)))
     finally:
         numpy.seterr(**olderr)
     self.assertTrue (eq(numpy.exp(x), exp(xm)))
     self.assertTrue (eq(numpy.arcsin(z), arcsin(zm)))
     self.assertTrue (eq(numpy.arccos(z), arccos(zm)))
     self.assertTrue (eq(numpy.arctan(z), arctan(zm)))
     self.assertTrue (eq(numpy.arctan2(x, y), arctan2(xm, ym)))
     self.assertTrue (eq(numpy.absolute(x), absolute(xm)))
     self.assertTrue (eq(numpy.equal(x, y), equal(xm, ym)))
     self.assertTrue (eq(numpy.not_equal(x, y), not_equal(xm, ym)))
     self.assertTrue (eq(numpy.less(x, y), less(xm, ym)))
     self.assertTrue (eq(numpy.greater(x, y), greater(xm, ym)))
     self.assertTrue (eq(numpy.less_equal(x, y), less_equal(xm, ym)))
     self.assertTrue (eq(numpy.greater_equal(x, y), greater_equal(xm, ym)))
     self.assertTrue (eq(numpy.conjugate(x), conjugate(xm)))
     self.assertTrue (eq(numpy.concatenate((x, y)), concatenate((xm, ym))))
     self.assertTrue (eq(numpy.concatenate((x, y)), concatenate((x, y))))
     self.assertTrue (eq(numpy.concatenate((x, y)), concatenate((xm, y))))
     self.assertTrue (eq(numpy.concatenate((x, y, x)), concatenate((x, ym, x))))
开发者ID:Sastria,项目名称:Sastria-Project,代码行数:33,代码来源:test_old_ma.py


示例4: _basic_insertion

    def _basic_insertion(self, celltype):
        # generate a list of which cell each point in self._data belongs in
        cell_indices = self._get_indices_for_points(self._data)

        # We now look for ranges of points belonging to the same cell.
        # 1. shift lengthwise and difference; runs of cells with the same
        # (i,j) indices will be zero, and nonzero value for i or j will
        # indicate a transition to a new cell.  (Just like find_runs().)
        differences = cell_indices[1:] - cell_indices[:-1]

        # Since nonzero() only works for 1D arrays, we merge the X and Y columns
        # together to detect any point where either X or Y are nonzero.  We have
        # to add 1 because we shifted cell_indices before differencing (above).
        diff_indices = nonzero(differences[:,0] + differences[:,1])[0] + 1

        start_indices = concatenate([[0], diff_indices])
        end_indices = concatenate([diff_indices, [len(self._data)]])

        for start,end in zip(start_indices, end_indices):
            gridx, gridy = cell_indices[start]  # can use 'end' here just as well
            if celltype == RangedCell:
                self._cellgrid[gridx,gridy].add_ranges([(start,end)])
            else:
                self._cellgrid[gridx,gridy].add_indices(range(start,end))
        return
开发者ID:5n1p,项目名称:chaco,代码行数:25,代码来源:subdivision_mapper.py


示例5: get_diffs_bw

def get_diffs_bw(detect_buffer):
  temp_buff = detect_buffer
  temp_buff_size = temp_buff.shape[0]
  diff_buff = None
  count = 0

  #Store contents of detect_buffer into a temp array
  #absdiff every third capture and throw it into a new temp array
  #Repeat until temp array has a size of 2, then return the bitwise and.
  while True:
    if temp_buff_size == 2:
      cummulativeFrames = cv2.bitwise_and(temp_buff[0], temp_buff[1])
      break
    else:
      count = 0 
      while count < (temp_buff_size / 3):

        diff1 = np.array([cv2.absdiff(temp_buff[(count*3)+2], temp_buff[(count*3)+1])])
        diff2 = np.array([cv2.absdiff(temp_buff[(count*3)+1], temp_buff[(count*3)+0])])

        if diff_buff == None:
          diff_buff = np.concatenate((diff1,diff2),axis=0)
        else:
          diff_buff = np.concatenate((diff_buff,diff1,diff2),axis=0)

        count+=1
    temp_buff = diff_buff 
    diff_buff = None
    temp_buff_size = temp_buff.shape[0]

  return cummulativeFrames
开发者ID:chappylol,项目名称:cv2_motiondetect,代码行数:31,代码来源:securitySystem.py


示例6: orthonormal_VanillaLSTMBuilder

def orthonormal_VanillaLSTMBuilder(lstm_layers, input_dims, lstm_hiddens, dropout_x=0., dropout_h=0., debug=False):
    """Build a standard LSTM cell, with variational dropout,
    with weights initialized to be orthonormal (https://arxiv.org/abs/1312.6120)

    Parameters
    ----------
    lstm_layers : int
        Currently only support one layer
    input_dims : int
        word vector dimensions
    lstm_hiddens : int
        hidden size
    dropout_x : float
        dropout on inputs, not used in this implementation, see `biLSTM` below
    dropout_h : float
        dropout on hidden states
    debug : bool
        set to True to skip orthonormal initialization

    Returns
    -------
    lstm_cell : VariationalDropoutCell
        A LSTM cell
    """
    assert lstm_layers == 1, 'only accept one layer lstm'
    W = orthonormal_initializer(lstm_hiddens, lstm_hiddens + input_dims, debug)
    W_h, W_x = W[:, :lstm_hiddens], W[:, lstm_hiddens:]
    b = nd.zeros((4 * lstm_hiddens,))
    b[lstm_hiddens:2 * lstm_hiddens] = -1.0
    lstm_cell = rnn.LSTMCell(input_size=input_dims, hidden_size=lstm_hiddens,
                             i2h_weight_initializer=mx.init.Constant(np.concatenate([W_x] * 4, 0)),
                             h2h_weight_initializer=mx.init.Constant(np.concatenate([W_h] * 4, 0)),
                             h2h_bias_initializer=mx.init.Constant(b))
    wrapper = VariationalDropoutCell(lstm_cell, drop_states=dropout_h)
    return wrapper
开发者ID:hridaydutta123,项目名称:gluon-nlp,代码行数:35,代码来源:utils.py


示例7: get_points

    def get_points(self, peak_shape=triangle, num_discrete=10):
        """
        Returns two lists of coordinates x y representing the whole spectrum, both the continuous and discrete components.
        The mesh is chosen by extending x to include details of the discrete peaks.

        Args:
            peak_shape: The window function used to calculate the peaks. See :obj:`triangle` for an example.
            num_discrete: Number of points that are added to mesh in each peak.

        Returns:
            (tuple): tuple containing:

                x2 (List[float]): The list of x coordinates (energy) in the whole spectrum.

                y2 (List[float]): The list of y coordinates (density) in the whole spectrum.

        """
        if peak_shape is None or self.discrete == []:
            return self.x[:], self.y[:]
        # A mesh for each discrete component:
        discrete_mesh = np.concatenate(list(map(lambda x: np.linspace(
            x[0] - x[2], x[0] + x[2], num=num_discrete, endpoint=True), self.discrete)))
        x2 = sorted(np.concatenate((discrete_mesh, self.x)))
        f = self.get_continuous_function()
        peak = np.vectorize(peak_shape)

        def g(x):
            t = 0
            for l in self.discrete:
                t += peak(x, loc=l[0], size=l[2]) * l[1]
            return t

        y2 = [f(x) + g(x) for x in x2]
        return x2, y2
开发者ID:Dih5,项目名称:xpecgen,代码行数:34,代码来源:xpecgen.py


示例8: test_clipping

def test_clipping():
    exterior = mpath.Path.unit_rectangle().deepcopy()
    exterior.vertices *= 4
    exterior.vertices -= 2
    interior = mpath.Path.unit_circle().deepcopy()
    interior.vertices = interior.vertices[::-1]
    clip_path = mpath.Path(vertices=np.concatenate([exterior.vertices,
                                                    interior.vertices]),
                           codes=np.concatenate([exterior.codes,
                                                 interior.codes]))

    star = mpath.Path.unit_regular_star(6).deepcopy()
    star.vertices *= 2.6

    ax1 = plt.subplot(121)
    col = mcollections.PathCollection([star], lw=5, edgecolor='blue',
                                      facecolor='red', alpha=0.7, hatch='*')
    col.set_clip_path(clip_path, ax1.transData)
    ax1.add_collection(col)

    ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
    patch = mpatches.PathPatch(star, lw=5, edgecolor='blue', facecolor='red',
                               alpha=0.7, hatch='*')
    patch.set_clip_path(clip_path, ax2.transData)
    ax2.add_patch(patch)

    ax1.set_xlim([-3, 3])
    ax1.set_ylim([-3, 3])
开发者ID:alephu5,项目名称:Soundbyte,代码行数:28,代码来源:test_artist.py


示例9: load

def load(root_path, debug = True):
    '''
    load cifar-10 dataset
    '''
    xs = []
    ys = []
    for b in xrange(1, 6):
        file = os.path.join(root_path, 'data_batch_%d' % (b, ))
        X, y = load_batch(file)
        xs.append(X)
        ys.append(y)
    X = np.concatenate(xs)
    y = np.concatenate(ys)
    file = os.path.join(root_path, 'test_batch')
    X_test, y_test = load_batch(file)
    
    if debug:
        # As a sanity check, we print out the size of the training and test data.
        print 'Cifar-10 dataset has been loaded'
        print 'X shape', X.shape
        print 'y shape', y.shape
        print 'X_test shape', X_test.shape
        print 'y_test shape', y_test.shape

    return X, y, X_test, y_test
开发者ID:HaoMood,项目名称:cs231n,代码行数:25,代码来源:cifar10.py


示例10: run_epoch

    def run_epoch(self, split, train=False, batch_size=128, return_pred=False):
        total = total_loss = 0
        func = self.model.train_on_batch if train else self.model.test_on_batch
        ids, preds, targs = [], [], []
        prog = Progbar(split.num_examples)
        for idx, X, Y, types in split.batches(batch_size):
            X.update({k: np.concatenate([v, types], axis=1) for k, v in Y.items()})
            batch_end = time()
            loss = func(X)
            prob = self.model.predict(X, verbose=0)['p_relation']
            prob *= self.typechecker.get_valid_cpu(types[:, 0], types[:, 1])
            pred = prob.argmax(axis=1)

            targ = Y['p_relation'].argmax(axis=1)
            ids.append(idx)
            targs.append(targ)
            preds.append(pred)
            total_loss += loss
            total += 1
            prog.add(idx.size, values=[('loss', loss), ('acc', np.mean(pred==targ))])
        preds = np.concatenate(preds).astype('int32')
        targs = np.concatenate(targs).astype('int32')
        ids = np.concatenate(ids).astype('int32')

        ret = {
            'f1': f1_score(targs, preds, average='micro', labels=self.labels),
            'precision': precision_score(targs, preds, average='micro', labels=self.labels),
            'recall': recall_score(targs, preds, average='micro', labels=self.labels),
            'accuracy': accuracy_score(targs, preds),
            'loss': total_loss / float(total),
            }
        if return_pred:
            ret.update({'ids': ids.tolist(), 'preds': preds.tolist(), 'targs': targs.tolist()})
        return ret
开发者ID:vzhong,项目名称:kbp2015,代码行数:34,代码来源:train.py


示例11: transfer_f

def transfer_f(dw,aas,aai,eps,deltaw,f):
    """
    Args:
    dw: size of the grid spacing
    aas=relative slowness of the signal mode
    aai=relative slowness of the idler mode
    lnl=inverse of the strength of the nonlinearity
    deltaw:  specifies the size of the frequency grid going from
    -deltaw to deltaw for each frequency
    f: shape of the pump function
    """
    ddws=np.arange(-deltaw-dw/2,deltaw+dw/2,dw)
    deltaks=aas*ddws
    ddwi=np.arange(-deltaw-dw/2,deltaw+dw/2,dw)
    deltaki=aai*ddwi
    ds=np.diag(deltaks)
    di=np.diag(deltaki)


    def ff(x,y):
        return f(x+y)
    
    v=eps*(dw)*ff(ddwi[:,None],ddws[None,:])
    G=1j*np.concatenate((np.concatenate((ds,v),axis=1),np.concatenate((-v,-di),axis=1)),axis=0)
    z=1;
    dsi=np.concatenate((deltaks,-deltaki),axis=0)
    U0=linalg.expm(-1j*np.diag(dsi)*z/2)
    GG=np.dot(np.dot(U0,linalg.expm(G)),U0)
    n=len(ddws)
    return (GG[0:n,0:n],GG[n:2*n,0:n],GG[0:n,n:2*n],GG[n:2*n,n:2*n])
开发者ID:nquesada,项目名称:VeryNonlinearQuantumOptics,代码行数:30,代码来源:heraldfock.py


示例12: phi_glob

def phi_glob(i, elements, nodes, resolution_per_element=41):
    """
    Compute (x, y) coordinates of the curve y = phi_i(x),
    where i is a global node number (used for plotting, e.g.).
    Method: Run through each element and compute the pieces
    of phi_i(x) on this element in the reference coordinate
    system. Adding up the patches yields the complete phi_i(x).
    """
    x_patches = []
    phi_patches = []
    for e in range(len(elements)):
        Omega_e = (nodes[elements[e][0]], nodes[elements[e][-1]])
        local_nodes = elements[e]
        d = len(local_nodes) - 1
        X = np.linspace(-1, 1, resolution_per_element)
        if i in local_nodes:
            r = local_nodes.index(i)
            phi = phi_r(r, X, d)
            phi_patches.append(phi)
            x = affine_mapping(X, Omega_e)
            x_patches.append(x)
        else:
            # i is not a node in the element, phi_i(x)=0
            x_patches.append(Omega_e)
            phi_patches.append([0, 0])
    x = np.concatenate(x_patches)
    phi = np.concatenate(phi_patches)
    return x, phi
开发者ID:abushets,项目名称:INF5620,代码行数:28,代码来源:fe_approx1D_v1.py


示例13: paradata

def paradata(wdir='.', type = 'phi', time = 0):
    " Read array with rank = 0 and read Np and Nq from header file "
    name = fname(wdir, type, time)
    name0 = name[0] + '.' + "%.2d" % 0
    pget(wdir,type,time)
    fhandler = open(name0)
    header = fhandler.readline().split()
    Np = int(header[5])
    Nq = int(header[6])
    size = Np*Nq
    for rank in range(size+1):
        if (rank < size):
            name_rank = name[0] + '.' + "%.2d" % rank
            print name_rank
            data = fread(name_rank)
        if (rank % Nq == 0):
            if (rank == Nq):
                datarr = datacol
                datacol = data
            elif (rank > 0):
                datarr = np.concatenate((datarr,datacol),axis=0)
                datacol = data
            else:
                datacol = data
        else:
            datacol = np.concatenate((datacol,data),axis=1)
    return datarr
开发者ID:viratupadhyay,项目名称:ida,代码行数:27,代码来源:ida.py


示例14: paradata_init

def paradata_init(ldir='.', type = 'phi', dim=2):
    name = fname_init(ldir,type)
    name0 = name + '.' + "%.2d" % 0
    fhandler = open(name0)
    header = fhandler.readline().split()
    Np = int(header[0])/int(header[2])
    Nq = int(header[1])/int(header[3])
    size = Np*Nq
    for rank in range(size+1):
        if (rank < size):
            name_rank = name + '.' + "%.2d" % rank
            data = fread(name_rank)
        if (rank % Nq == 0):
            if (rank == Nq):
                datarr = datacol
                datacol = data
            elif (rank > 0):
                datarr = np.concatenate((datarr,datacol),axis=0)
                datacol = data
            else:
                datacol = data
        else:
            datacol = np.concatenate((datacol,data),axis=1)
    if (dim == 2):
        datarr = datarr.reshape(int(header[0]),int(header[1]))

    return datarr
开发者ID:viratupadhyay,项目名称:ida,代码行数:27,代码来源:ida.py


示例15: display

    def display(self, xaxis, alpha, new=True):
        """
        E.display(xaxis, alpha = .8)

        :Arguments: xaxis, alpha

        Plots the CI region on the current figure, with respect to
        xaxis, at opacity alpha.

        :Note: The fill color of the envelope will be self.mass
            on the grayscale.
        """
        if new:
            figure()
        if self.ndim == 1:
            if self.mass>0.:
                x = concatenate((xaxis,xaxis[::-1]))
                y = concatenate((self.lo, self.hi[::-1]))
                fill(x,y,facecolor='%f' % self.mass,alpha=alpha, label = ('centered CI ' + str(self.mass)))
            else:
                pyplot(xaxis,self.value,'k-',alpha=alpha, label = ('median'))
        else:
            if self.mass>0.:
                subplot(1,2,1)
                contourf(xaxis[0],xaxis[1],self.lo,cmap=cm.bone)
                colorbar()
                subplot(1,2,2)
                contourf(xaxis[0],xaxis[1],self.hi,cmap=cm.bone)
                colorbar()
            else:
                contourf(xaxis[0],xaxis[1],self.value,cmap=cm.bone)
                colorbar()
开发者ID:CosmologyTaskForce,项目名称:pymc,代码行数:32,代码来源:Matplot.py


示例16: getData

def getData():
    data_list = [
        unpickle("data/cifar-10-batches-py/data_batch_1"),
        unpickle("data/cifar-10-batches-py/data_batch_2"),
        unpickle("data/cifar-10-batches-py/data_batch_3"),
        unpickle("data/cifar-10-batches-py/data_batch_4"),
        unpickle("data/cifar-10-batches-py/data_batch_5"),
        unpickle("data/cifar-10-batches-py/test_batch"),
    ]

    # samples = np.empty_like(data_list[0]['data'].astype(np.float32))
    samples = data_list[0]["data"].astype(np.float32)
    labels = np.array(data_list[0]["labels"], dtype=np.float32)
    for idx, d in enumerate(data_list):
        if idx != 0:
            samples = np.concatenate([samples, d["data"].astype(np.float32)])
            labels = np.concatenate([labels, np.array(d["labels"], dtype=np.float32)])

    img_idxs = []
    for idx, l in enumerate(labels):
        # 3 is cat, 5 is dog
        if l == 3 or l == 5:
            img_idxs.append(idx)

    data = samples[img_idxs]
    responses = labels[img_idxs]
    print ("Number of images used: " + str(len(img_idxs)))

    for idx, l in enumerate(responses):
        if l == 3:
            responses[idx] = 0
        else:
            responses[idx] = 1

    return (data, responses)
开发者ID:dighjd12,项目名称:AI-Project,代码行数:35,代码来源:doge.py


示例17: prepare_data

def prepare_data(data_x, data_mask, data_y):
    '''
    将数据分为训练集,验证集和测试集

    注意,因为要进行hstack, 行向量会变为列向量
    '''
    data_len = len(data_y)
    train_end = numpy.floor(data_len * 0.5)
    test_end = numpy.floor(data_len * 0.8)

    if data_x.ndim == 1:
        data_x.resize((data_x.shape[0],1))
    if data_mask != []  and data_mask.ndim == 1:
        data_mask.resize((data_mask.shape[0],1))
    if data_y.ndim == 1:
        data_y.resize((data_y.shape[0],1))

    if data_mask == []:
        allData = numpy.concatenate((data_x,data_y), axis=1)
    else:
        allData = numpy.concatenate((data_x,data_mask,data_y), axis=1)

    train_data = allData[:train_end,...]
    test_data = allData[train_end:test_end,...]
    valid_data = allData[test_end:,...]

    return train_data, valid_data, test_data 
开发者ID:SimonHL,项目名称:TSA,代码行数:27,代码来源:MaskRNN_EKF.py


示例18: test_negative_binomial_generator

def test_negative_binomial_generator():
    ctx = mx.context.current_context()
    for dtype in ['float16', 'float32', 'float64']:
        success_num = 2
        success_prob = 0.2
        buckets = [(-1.0, 2.5), (2.5, 5.5), (5.5, 8.5), (8.5, np.inf)]
        probs = [ss.nbinom.cdf(bucket[1], success_num, success_prob) -
                 ss.nbinom.cdf(bucket[0], success_num, success_prob) for bucket in buckets]
        generator_mx = lambda x: mx.nd.random.negative_binomial(success_num, success_prob,
                                                                shape=x, ctx=ctx, dtype=dtype).asnumpy()
        verify_generator(generator=generator_mx, buckets=buckets, probs=probs)
        generator_mx_same_seed = \
            lambda x: np.concatenate(
                [mx.nd.random.negative_binomial(success_num, success_prob, shape=x // 10, ctx=ctx, dtype=dtype).asnumpy()
                 for _ in range(10)])
        verify_generator(generator=generator_mx_same_seed, buckets=buckets, probs=probs)
        # Also test the Gamm-Poisson Mixture
        alpha = 1.0 / success_num
        mu = (1.0 - success_prob) / success_prob / alpha
        generator_mx = lambda x: mx.nd.random.generalized_negative_binomial(mu, alpha,
                                                                            shape=x, ctx=ctx, dtype=dtype).asnumpy()
        verify_generator(generator=generator_mx, buckets=buckets, probs=probs)
        generator_mx_same_seed = \
            lambda x: np.concatenate(
                [mx.nd.random.generalized_negative_binomial(mu, alpha, shape=x // 10, ctx=ctx, dtype=dtype).asnumpy()
                 for _ in range(10)])
        verify_generator(generator=generator_mx_same_seed, buckets=buckets, probs=probs)
开发者ID:pengzhao-intel,项目名称:incubator-mxnet,代码行数:27,代码来源:test_random.py


示例19: mnist_elm

def mnist_elm(n_hidden=50, domain=[-1., 1.]):
    print "hidden:", n_hidden

    # initialize
    train_set, valid_set, test_set = load_mnist()
    train_data, train_target = train_set
    valid_data, valid_target = valid_set
    test_data, test_target = test_set
    
    # size
    train_size = 50000 # max 50000
    valid_size = 10000 # max 10000
    test_size = 10000 # max 10000

    train_data, train_target = train_data[:train_size], train_target[:train_size]
    valid_data, valid_target = valid_data[:valid_size], valid_target[:valid_size]
    test_data, test_target = test_data[:test_size], test_target[:test_size]

    # train = train + valid
    train_data = np.concatenate((train_data, valid_data))
    train_target = np.concatenate((train_target, valid_target))
    
    # model
    model = ELMClassifier(n_hidden = n_hidden, domain = domain)

    # fit
    #print "fitting ..."
    model.fit(train_data, train_target)

    # test
    print "test score is ",
    score = model.score(test_data, test_target)
    print score
开发者ID:tmakiws,项目名称:multimodal_learning,代码行数:33,代码来源:elm2mnist.py


示例20: _submit_mapnode

 def _submit_mapnode(self, jobid):
     if jobid in self.mapnodes:
         return True
     self.mapnodes.append(jobid)
     mapnodesubids = self.procs[jobid].get_subnodes()
     numnodes = len(mapnodesubids)
     logger.info('Adding %d jobs for mapnode %s' % (numnodes,
                                                    self.procs[jobid]._id))
     for i in range(numnodes):
         self.mapnodesubids[self.depidx.shape[0] + i] = jobid
     self.procs.extend(mapnodesubids)
     self.depidx = ssp.vstack((self.depidx,
                               ssp.lil_matrix(np.zeros(
                                   (numnodes, self.depidx.shape[1])))),
                              'lil')
     self.depidx = ssp.hstack((self.depidx,
                               ssp.lil_matrix(
                                   np.zeros((self.depidx.shape[0],
                                             numnodes)))),
                              'lil')
     self.depidx[-numnodes:, jobid] = 1
     self.proc_done = np.concatenate((self.proc_done,
                                      np.zeros(numnodes, dtype=bool)))
     self.proc_pending = np.concatenate((self.proc_pending,
                                         np.zeros(numnodes, dtype=bool)))
     return False
开发者ID:aweinstein,项目名称:nipype,代码行数:26,代码来源:base.py



注:本文中的numpy.concatenate函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.conj函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.compress函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap