• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.split函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.split函数的典型用法代码示例。如果您正苦于以下问题:Python split函数的具体用法?Python split怎么用?Python split使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了split函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _read_tile

    def _read_tile(self, filename):

        with open(filename, "r") as tilefile:
            # this is reversed from the fortran b/c in is a reserved word
            self.ni, self.nj, self.nk = np.fromfile(tilefile, dtype="int32", 
                                                    count = 3, sep = " ")

            raw_data= np.genfromtxt(tilefile, 
                                    dtype = ("int32", "float64", "float64", "float64", "float64"),
                                    names = ("idx", "a", "b", "vla", "vlb"))

            self.ii, self.ij, self.ik = np.split(raw_data["idx"],
                                                 [self.ni,
                                                  self.ni+self.nj])

            self.x1a, self.x2a, self.x3a = np.split(raw_data["a"],
                                                    [self.ni,
                                                     self.ni+self.nj])

            self.x1b, self.x2b, self.x3b = np.split(raw_data["b"],
                                                    [self.ni,
                                                     self.ni+self.nj])

            self.vl1a, self.vl2a, self.vl3a = np.split(raw_data["vla"],
                                                    [self.ni,
                                                     self.ni+self.nj])

            self.vl1b, self.vl2b, self.vl3b = np.split(raw_data["vlb"],
                                                    [self.ni,
                                                     self.ni+self.nj])


            return
开发者ID:jschwab,项目名称:zeustools,代码行数:33,代码来源:grid.py


示例2: test_stratified_batches

def test_stratified_batches():
    data = np.array([('a', -1), ('b', 0), ('c', 1), ('d', -1), ('e', -1)],
                    dtype=[('x', np.str_, 8), ('y', np.int32)])

    assert list(data['x']) == ['a', 'b', 'c', 'd', 'e']
    assert list(data['y']) == [-1, 0, 1, -1, -1]

    batch_generator = training_batches(data, batch_size=3, n_labeled_per_batch=1)

    first_ten_batches = list(islice(batch_generator, 10))

    labeled_batch_portions = [batch[:1] for batch in first_ten_batches]
    unlabeled_batch_portions = [batch[1:] for batch in first_ten_batches]

    labeled_epochs = np.split(np.concatenate(labeled_batch_portions), 5)
    unlabeled_epochs = np.split(np.concatenate(unlabeled_batch_portions), 4)

    assert ([sorted(items['x'].tolist()) for items in labeled_epochs] ==
            [['b', 'c']] * 5)
    assert ([sorted(items['y'].tolist()) for items in labeled_epochs] ==
            [[0, 1]] * 5)
    assert ([sorted(items['x'].tolist()) for items in unlabeled_epochs] ==
            [['a', 'b', 'c', 'd', 'e']] * 4)
    assert ([sorted(items['y'].tolist()) for items in unlabeled_epochs] ==
            [[-1, -1, -1, -1, -1]] * 4)
开发者ID:ys2899,项目名称:mean-teacher,代码行数:25,代码来源:test_minibatching.py


示例3: drop_samples

def drop_samples(game, prob):
    """Drop samples from a sample game

    Samples are dropped independently with probability prob."""
    sample_map = {}
    for prof, pays in zip(np.split(game.profiles, game.sample_starts[1:]),
                          game.sample_payoffs):
        num_profiles, _, num_samples = pays.shape
        perm = rand.permutation(num_profiles)
        prof = prof[perm]
        pays = pays[perm]
        new_samples, counts = np.unique(
            rand.binomial(num_samples, prob, num_profiles), return_counts=True)
        splits = counts[:-1].cumsum()
        for num, prof_samp, pay_samp in zip(
                new_samples, np.split(prof, splits), np.split(pays, splits)):
            if num == 0:
                continue
            prof, pays = sample_map.setdefault(num, ([], []))
            prof.append(prof_samp)
            pays.append(pay_samp[..., :num])

    if sample_map:
        profiles = np.concatenate(list(itertools.chain.from_iterable(
            x[0] for x in sample_map.values())), 0)
        sample_payoffs = tuple(np.concatenate(x[1]) for x
                               in sample_map.values())
    else:  # No data
        profiles = np.empty((0, game.num_role_strats), dtype=int)
        sample_payoffs = []

    return rsgame.samplegame_copy(game, profiles, sample_payoffs, False)
开发者ID:yackj,项目名称:GameAnalysis,代码行数:32,代码来源:gamegen.py


示例4: split_dataset

def split_dataset(dataset, N=4000):
    perm = np.random.permutation(len(dataset['target']))
    dataset['data'] = dataset['data'][perm]
    dataset['target'] = dataset['target'][perm]
    x_train, x_test = np.split(dataset['data'],   [N])
    y_train, y_test = np.split(dataset['target'], [N])
    return x_train, y_train, x_test, y_test
开发者ID:fukatani,项目名称:soinn,代码行数:7,代码来源:train_mnist.py


示例5: update_h

def update_h(sigma2, phi, y, mu, psi):
    """Updates the hidden variables using updated parameters.

    This is an implementation of the equation:
..  math::
        \\hat{h} = (\\sigma^2 I + \\sum_{n=1}^N \\Phi_n^T A^T A \\Phi_n)^{-1} \\sum_{n=1}^N \\Phi_n^T A^T (y_n - A \\mu_n - b)

    """
    N = y.shape[0]
    K = phi.shape[1]

    A = psi.params[:2, :2]
    b = psi.translation

    partial_0 = 0
    for phi_n in np.split(phi, N, axis=0):
        partial_0 += phi_n.T @ A.T @ A @ phi_n

    partial_1 = sigma2 * np.eye(K) + partial_0

    partial_2 = np.zeros((K, 1))
    for phi_n, y_n, mu_n in zip(np.split(phi, N, axis=0), y, mu.reshape(-1, 2)):
        partial_2 += phi_n.T @ A.T @ (y_n - A @ mu_n - b).reshape(2, -1)

    return np.linalg.inv(partial_1) @ partial_2
开发者ID:jrdurrant,项目名称:vision,代码行数:25,代码来源:subspace_shape.py


示例6: split_data

def split_data(X,Y,degree):
       
      Testing_error =[] #all the testing errors of 10 fold cross validations
      Training_error = [] #all the training errors  of 10 fold cross validations
      X_sets =  np.split(X,10)
      Y_sets = np.split(Y,10)
      
      for i in range(len(X_sets)):
          X_test =np.vstack( X_sets[i])
          Y_test = np.vstack(Y_sets[i])
          if i<len(X_sets)-1: 
             X_train = np.vstack(X_sets[i+1:])      
             Y_train =np.vstack(Y_sets[i+1:])
          elif i==len(X_sets)-1 : 
             X_train = np.vstack(X_sets[:i])
             Y_train = np.vstack(Y_sets[:i])
          while i>0:
              tempX = np.vstack(X_sets[i-1])
              X_train = np.append(tempX,X_train)
              tempY = np.vstack(Y_sets[i-1])
              Y_train = np.append(tempY,Y_train)
              i = i-1
          X_train = np.vstack(X_train)
          Y_train = np.vstack(Y_train)
          Z_train,theta,Z_test = polynomial_withCV(X_train,Y_train,degree,X_test)
          Testing_error.append( mse(Z_test,theta,Y_test))
          Training_error.append(mse(Z_train,theta,Y_train))
      return sum(Testing_error),sum(Training_error)
开发者ID:ravitejachebrolu,项目名称:MachineLearning,代码行数:28,代码来源:singlefeature.py


示例7: get_train_data

    def get_train_data(self, label_types):
        labeled_images = self.get_labeled_images()
        x_train_all = np.asarray(map(
            lambda labeled_image_file: labeled_image_file.get_image(),
            labeled_images
        ))
        y_train_all = np.asarray(map(
            lambda labeled_image_file: label_to_output(labeled_image_file.get_label(), label_types),
            labeled_images
        ))
        length = len(labeled_images)

        # 元データをランダムに並べ替える
        indexes = np.random.permutation(length)
        x_train_all_rand = x_train_all[indexes]
        y_train_all_rand = y_train_all[indexes]

        # 平均画像を引く
        mean = self.get_mean_image()
        if mean is not None:
            x_train_all_rand -= mean
        # 正規化
        x_train_all /= 255

        # 1/5はテストに使う
        data_size = length * 4 / 5
        x_train, x_test = np.split(x_train_all_rand, [data_size])
        y_train, y_test = np.split(y_train_all_rand, [data_size])

        return x_train, x_test, y_train, y_test
开发者ID:syundo0730,项目名称:deresta-cnn,代码行数:30,代码来源:training_data.py


示例8: split_x

def split_x(x, split_pos):
    # NOTE: do not support multiple sentence tensors
    # sequence input , non-sequence input, and no non-sequence input
    # sequence input:
    if type(x) is not list:
        x=[x]

    if len(x) == 1:
        # sec1,                 sec2, sec3,...
        # sent1, sent2, sent5
        x01, x02 = tuple(np.split(x[0],[split_pos]))
        cond_list=[x02>=0,x02<0]
        offset = x02[0][0]
        choice_list=[x02-offset, x02 ]
        x02 = np.select(cond_list, choice_list)
        return ([x01],[x02])

    # doc1 doc2 doc3
    # sec1 sec2 ...

    # sec1, sec2, ...
    # sent1, sent2, ...

    x01, x02 = tuple(np.split(x[0], [split_pos]))
    offset = x02[0][0]
    x1, x2 = split_x(x[1:], offset)
    cond_list = [x02 >= 0, x02 < 0]
    choice_list = [x02 - offset, x02]
    x02 = np.select(cond_list, choice_list)
    return ([x01] + x1, [x02]+x2)
开发者ID:lxh5147,项目名称:cacdi_attention_model,代码行数:30,代码来源:attention_cacdi_exp_with_fuel.py


示例9: generate_svm

def generate_svm():
    digits, labels = load_digits(DIGITS_FN)

    print('preprocessing...')
    # shuffle digits
    rand = np.random.RandomState(321)
    shuffle = rand.permutation(len(digits))
    digits, labels = digits[shuffle], labels[shuffle]

    digits2 = list(map(deskew, digits))
    samples = preprocess_hog(digits2)

    train_n = int(0.9*len(samples))
    cv2.imshow('test set', mosaic(25, digits[train_n:]))
    digits_train, digits_test = np.split(digits2, [train_n])
    samples_train, samples_test = np.split(samples, [train_n])
    labels_train, labels_test = np.split(labels, [train_n])


    print('training SVM...')
    model = SVM(C=2.67, gamma=5.383)
    model.train(samples_train, labels_train)
    vis = evaluate_model(model, digits_test, samples_test, labels_test)
    print('saving SVM as "digits_svm.dat"...')
    return model

    cv2.waitKey(0)
开发者ID:shawnyanwang,项目名称:PIL_examples,代码行数:27,代码来源:digits.py


示例10: k_fold_cross_validation_sets

def k_fold_cross_validation_sets(X, y, k, shuffle=True):
    if shuffle:
        X, y = shuffle_data(X, y)

    n_samples = len(y)
    left_overs = {}
    n_left_overs = (n_samples % k)
    if n_left_overs != 0:
        left_overs["X"] = X[-n_left_overs:]
        left_overs["y"] = y[-n_left_overs:]
        X = X[:-n_left_overs]
        y = y[:-n_left_overs]

    X_split = np.split(X, k)
    y_split = np.split(y, k)
    sets = []
    for i in range(k):
        X_test, y_test = X_split[i], y_split[i]
        X_train = np.concatenate(X_split[:i] + X_split[i + 1:], axis=0)
        y_train = np.concatenate(y_split[:i] + y_split[i + 1:], axis=0)
        sets.append([X_train, X_test, y_train, y_test])

    # Add left over samples to last set as training samples
    if n_left_overs != 0:
        np.append(sets[-1][0], left_overs["X"], axis=0)
        np.append(sets[-1][2], left_overs["y"], axis=0)

    return np.array(sets)
开发者ID:NiranjanAgaram,项目名称:ML-From-Scratch,代码行数:28,代码来源:data_manipulation.py


示例11: to_json

    def to_json(self):
        base = super().to_json()
        base['offsets'] = self.payoff_to_json(self._offset)
        base['coefs'] = self.payoff_to_json(self._coefs)

        lengths = {}
        for role, strats, lens in zip(
                self.role_names, self.strat_names,
                np.split(self._lengths, self.role_starts[1:])):
            lengths[role] = {s: self.payoff_to_json(l)
                             for s, l in zip(strats, lens)}
        base['lengths'] = lengths

        profs = {}
        for role, strats, data in zip(
                self.role_names, self.strat_names,
                np.split(np.split(self._profiles, self._size_starts[1:]),
                         self.role_starts[1:])):
            profs[role] = {strat: [self.profile_to_json(p) for p in dat]
                           for strat, dat in zip(strats, data)}
        base['profiles'] = profs

        alphas = {}
        for role, strats, alphs in zip(
                self.role_names, self.strat_names,
                np.split(np.split(self._alpha, self._size_starts[1:]),
                         self.role_starts[1:])):
            alphas[role] = {s: a.tolist() for s, a in zip(strats, alphs)}
        base['alphas'] = alphas

        base['type'] = 'rbf.1'
        return base
开发者ID:egtaonline,项目名称:GameAnalysis,代码行数:32,代码来源:learning.py


示例12: update_stipples

    def update_stipples(self, cells):
        """ Updates stipple locations from an image
                cells should be an image of the same size as self.img
                with pixel values representing which Voronoi cell that
                pixel falls into
        """
        indices = np.argsort(cells.flat)
        _, boundaries = np.unique(cells.flat[indices], return_index=True)

        gxs = np.split(self.gx.flat[indices], boundaries)[1:]
        gys = np.split(self.gy.flat[indices], boundaries)[1:]
        gws = np.split(1 - self.img.flat[indices], boundaries)[1:]

        w = self.img.shape[1] / 2.0
        h = self.img.shape[0] / 2.0

        for i, (gx, gy, gw) in enumerate(zip(gxs, gys, gws)):
            weight = np.sum(gw)
            if weight > 0:
                x = np.sum(gx * gw) / weight
                y = np.sum(gy * gw) / weight

                self.stipples[i,:] = [(x - w) / w, (y - h) / h]
            else:
                self.stipples[i,:] = np.random.uniform(-1, 1, size=2)
开发者ID:BenFrantzDale,项目名称:OpenFL,代码行数:25,代码来源:stippler.py


示例13: make_predictions

def make_predictions(net, data, labels, num_classes):
    data = np.require(data, requirements='C')
    labels = np.require(labels, requirements='C')

    preds = np.zeros((data.shape[1], num_classes), dtype=np.single)
    softmax_idx = net.get_layer_idx('probs', check_type='softmax')

    t0 = time.time()
    net.libmodel.startFeatureWriter(
        [data, labels, preds], softmax_idx)
    net.finish_batch()
    print "Predicted %s cases in %.2f seconds." % (
        labels.shape[1], time.time() - t0)

    if net.multiview_test:
        #  We have to deal with num_samples * num_views
        #  predictions.
        num_views = net.test_data_provider.num_views
        num_samples = labels.shape[1] / num_views
        split_sections = range(
            num_samples, num_samples * num_views, num_samples)
        preds = np.split(preds, split_sections, axis=0)
        labels = np.split(labels, split_sections, axis=1)
        preds = reduce(np.add, preds)
        labels = labels[0]

    return preds, labels
开发者ID:invisibleroads,项目名称:noccn,代码行数:27,代码来源:predict.py


示例14: train

 def train(self, trainfile_name):
   train_X, train_Y, num_classes = self.make_data(trainfile_name)
   accuracies = []
   fscores = []
   if self.cv:
     num_points = train_X.shape[0]
     fol_len = num_points / self.folds
     rem = num_points % self.folds
     X_folds = numpy.split(train_X, self.folds) if rem == 0 else numpy.split(train_X[:-rem], self.folds)
     Y_folds = numpy.split(train_Y, self.folds) if rem == 0 else numpy.split(train_Y[:-rem], self.folds)
     for i in range(self.folds):
       train_folds_X = []
       train_folds_Y = []
       for j in range(self.folds):
         if i != j:
           train_folds_X.append(X_folds[j])
           train_folds_Y.append(Y_folds[j])
       train_fold_X = numpy.concatenate(train_folds_X)
       train_fold_Y = numpy.concatenate(train_folds_Y)
       classifier = self.fit_model(train_fold_X, train_fold_Y, num_classes)
       predictions = self.classify(classifier, X_folds[i])
       accuracy, weighted_fscore, _ = self.evaluate(Y_folds[i], predictions)
       accuracies.append(accuracy)
       fscores.append(weighted_fscore)
     accuracies = numpy.asarray(accuracies)
     fscores = numpy.asarray(fscores)
     print >>sys.stderr, "Accuracies:", accuracies
     print >>sys.stderr, "Average: %0.4f (+/- %0.4f)"%(accuracies.mean(), accuracies.std() * 2)
     print >>sys.stderr, "Fscores:", fscores
     print >>sys.stderr, "Average: %0.4f (+/- %0.4f)"%(fscores.mean(), fscores.std() * 2)
   self.classifier = self.fit_model(train_X, train_Y, num_classes)
   cPickle.dump(classifier, open(self.trained_model_name, "wb"))
   #pickle.dump(tagset, open(self.stored_tagset, "wb"))
   print >>sys.stderr, "Done"
开发者ID:BMKEG,项目名称:exp-parser,代码行数:34,代码来源:nn_classifier.py


示例15: conf2yap

def conf2yap(conf_fname, yap_filename):
    print("Yap file : ", yap_filename)
    positions, radii, meta = clff.read_conf_file(conf_fname)
    positions[:, 0] -= float(meta['lx'])/2
    positions[:, 1] -= float(meta['ly'])/2
    positions[:, 2] -= float(meta['lz'])/2

    if 'np_fixed' in meta:
        # for conf with fixed particles
        split_line = len(positions) - int(meta['np_fixed'])
        pos_mobile, pos_fixed = np.split(positions, [split_line])
        rad_mobile, rad_fixed = np.split(radii, [split_line])
        yap_out = pyp.layer_switch(3)
        yap_out = pyp.add_color_switch(yap_out, 3)
        yap_out = np.row_stack((yap_out,
                                particles_yaparray(pos_mobile, rad_mobile)))
        yap_out = pyp.add_layer_switch(yap_out, 4)
        yap_out = pyp.add_color_switch(yap_out, 4)
        yap_out = np.row_stack((yap_out,
                                particles_yaparray(pos_fixed, rad_fixed)))
    else:
        yap_out = pyp.layer_switch(3)
        yap_out = pyp.add_color_switch(yap_out, 3)
        yap_out = np.row_stack((yap_out,
                                particles_yaparray(positions, radii)))

    pyp.savetxt(yap_filename, yap_out)
开发者ID:rmari,项目名称:LF_DEM,代码行数:27,代码来源:yapgen.py


示例16: gradient_p

def gradient_p(X,y,theta,alpha,m,numIterations):

    errors1_x1 = 0
    errors1_x2 = 0

    errors2_x1 = 0
    errors2_x2 = 0

    x1,x2 = np.split(X,2)
    y1,y2 = np.split(y,2)

    for i in range(0,numIterations):
        
        h1 = x1.dot(theta)
        errors1_x1 = (h1 - y1) * x1[:, 0]
        errors1_x2 = (h1 - y1) * x1[:, 1]

        h2 = x2.dot(theta)
        errors2_x1 = (h2 - y2) * x2[:, 0]
        errors2_x2 = (h2 - y2) * x2[:, 1]
    
        theta[0]=theta[0]-(alpha/m)*(errors1_x1.sum()+errors2_x1.sum())
        theta[1]=theta[1]-(alpha/m)*(errors1_x2.sum()+errors2_x2.sum())
        
    return theta
开发者ID:arthurbatista,项目名称:ml,代码行数:25,代码来源:linreg.py


示例17: make_batch

    def make_batch(self):
        # make datasets
        x_dataset, y_dataset = ps.make_sente_datasets(1,100)
        #print(x_dataset[110])
        #print(y_dataset[110])
        x_dataset = np.asarray(x_dataset)
        y_dataset = np.asarray(y_dataset)

        nb_data = x_dataset.shape[0]

        x_train,x_test = np.split(x_dataset,[nb_data*0.9])
        y_train,y_test = np.split(y_dataset,[nb_data*0.9])

        #x_train = x_train.reshape(x_train.shape[0], 1, 15, 9)
        #x_test = x_test.reshape(x_test.shape[0], 1, 15, 9)
        x_train = x_train.reshape(x_train.shape[0], 1, 11, 9)
        x_test = x_test.reshape(x_test.shape[0], 1, 11, 9)

        y_train = np_utils.to_categorical(y_train, nb_classes)
        y_test = np_utils.to_categorical(y_test, nb_classes)
        print("x_train shape:", x_train.shape)
        print(x_train.shape[0], "train samples")
        print(x_test.shape[0], "test samples")

        return x_train, y_train, x_test, y_test
开发者ID:Tachibana1993,项目名称:TACHIBANA,代码行数:25,代码来源:CNNpolicy.py


示例18: main

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--checkpoint_dir', type=str, default='checkpoints',
                       help='checkpoint directory')
    parser.add_argument('--save_every', type=int, default=1000,
                       help='save frequency')
    args = parser.parse_args()

    # Read the training data
    inputFile = open("data/input.txt","rU")
    trainingData = inputFile.read()

    # Count vocab 
    counter = collections.Counter(trainingData)
    count_pairs = sorted(counter.items(), key=lambda x: -x[1])
    chars, _ = list(zip(*count_pairs))
    vocabSize = len(chars)
    print vocabSize
    vocab = dict(zip(chars, range(len(chars))))
    inputTensor = np.array(map(vocab.get, trainingData))

    numBatches = inputTensor.size / (batchSize * numSteps)

    print numBatches

    inputTensor = inputTensor[:numBatches * batchSize * numSteps]
    inData = inputTensor
    targetData = np.copy(inputTensor)
    targetData[:-1] = inData[1:]
    targetData[-1] = inData[0]
    inDataBatches = np.split(inData.reshape(batchSize, -1), numBatches, 1)
    targetDataBatches = np.split(targetData.reshape(batchSize, -1), numBatches, 1)
    
    lstmTrain(args)
开发者ID:anujsampat,项目名称:CS767-MachineLearning,代码行数:34,代码来源:train.py


示例19: spiralroll

def spiralroll(B, orient=1):
    ''' undo spiral flatten '''
    k = int(np.sqrt(B.size))
    if k**2-B.size != 0:
        print('ERR: unable to form a square 2D array!')
    else:
        C = np.copy(B)
        C = C[::-1]
        if k%2:
            A, C = np.split(C, [1])
            A = A.reshape(1,1)
            start = 2
        else:
            A, C = np.split(C, [4])
            A = A[::-1].reshape(2,2)
            A[-1] = A[-1, ::-1]
            start = 3
        for ix in range(start, k, 2):
            A = np.pad(A, ((1, 1), (1, 1)), mode='constant')
            C1, C2, C3, C4, C = np.split(C, [ix, ix*2, ix*3, ix*4])
            A[1:, 0] = C1
            A[-1, 1:] = C2
            A[-2::-1, -1] = C3
            A[0, -2::-1] = C4
        if orient is 0:
            A = A.T
        return A
开发者ID:harrispirie,项目名称:stmpy,代码行数:27,代码来源:driftcorr.py


示例20: blocksort2D

def blocksort2D(sfield, ofield, db):
    """
    Takes two nx x ny fields and divides them into blocks - the new fields have
    dimensions nx' x ny' where nx' = nx/db, ny' = ny/db
    db is half the block width in number of grid cells. 
    the fields are averaged over the block area (db points) and then 
    ofield is sorted according to sfield (spatial structure is lost)
    
    the returned value is a dictionary with sfield as the key and ofield as the value 
    
    assumes nx = ny = even integer.
    db must be a multiple of nx
    
    """
    nx = sfield.shape[0]
    ny = sfield.shape[1]
    
    nxblock = nx / db
    nyblock = ny / db
    
    #tave_field = np.mean(field[ti-ntave:ti,:,:])
    #tave_field = np.squeeze(tave_field)
    
    #split up field column-wise, take average row-wise. then split up resulting field row-wise, and take average column-wise.
    blocksfield = np.average(np.split(np.average(np.split(sfield, nxblock, axis=1), axis=-1), nyblock, axis=1), axis=-1)
    
    blockofield = np.average(np.split(np.average(np.split(ofield, nxblock, axis=1), axis=-1), nyblock, axis=1), axis=-1)
    
    blocksfield = blocksfield.flatten()
    blockofield = blockofield.flatten()
    
    d = dict(zip(blocksfield, blockofield))
    od = collections.OrderedDict(sorted(d.items()))
    
    return od
开发者ID:cpatrizio88,项目名称:SAM_init_plot,代码行数:35,代码来源:block_fns.py



注:本文中的numpy.split函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.sqrt函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.spacing函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap