本文整理汇总了Python中numpy.sqrt函数的典型用法代码示例。如果您正苦于以下问题:Python sqrt函数的具体用法?Python sqrt怎么用?Python sqrt使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了sqrt函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: correlation_matrix_quadrature
def correlation_matrix_quadrature(a1, a2, rho=None):
"""
Calculate the quadrature correlation matrix with given field operators
:math:`a_1` and :math:`a_2`. If a density matrix is given the expectation
values are calculated, otherwise a matrix with operators is returned.
Parameters
----------
a1 : :class:`qutip.qobj.Qobj`
Field operator for mode 1.
a2 : :class:`qutip.qobj.Qobj`
Field operator for mode 2.
rho : :class:`qutip.qobj.Qobj`
Density matrix for which to calculate the covariance matrix.
Returns
-------
corr_mat: *array* of complex numbers or :class:`qutip.qobj.Qobj`
A 2-dimensional *array* of covariance values for the field quadratures,
or, if rho=0, a matrix of operators.
"""
x1 = (a1 + a1.dag()) / np.sqrt(2)
p1 = -1j * (a1 - a1.dag()) / np.sqrt(2)
x2 = (a2 + a2.dag()) / np.sqrt(2)
p2 = -1j * (a2 - a2.dag()) / np.sqrt(2)
basis = [x1, p1, x2, p2]
return correlation_matrix(basis, rho)
开发者ID:prvn16,项目名称:qutip,代码行数:34,代码来源:continuous_variables.py
示例2: align_magnetism
def align_magnetism(m, vectors):
""" Rotates a matrix, to align its components with the direction
of the magnetism """
if not len(m) == 2 * len(vectors): # stop if they don't have
# compatible dimensions
raise
# pauli matrices
from scipy.sparse import csc_matrix, bmat
sx = csc_matrix([[0.0, 1.0], [1.0, 0.0]])
sy = csc_matrix([[0.0, -1j], [1j, 0.0]])
sz = csc_matrix([[1.0, 0.0], [0.0, -1.0]])
n = len(m) / 2 # number of sites
R = [[None for i in range(n)] for j in range(n)] # rotation matrix
from scipy.linalg import expm # exponenciate matrix
for (i, v) in zip(range(n), vectors): # loop over sites
vv = np.sqrt(v.dot(v)) # norm of v
if vv > 0.000001: # if nonzero scale
u = v / vv
else: # if zero put to zero
u = np.array([0.0, 0.0, 0.0])
# rot = u[0]*sx + u[1]*sy + u[2]*sz
uxy = np.sqrt(u[0] ** 2 + u[1] ** 2) # component in xy plane
phi = np.arctan2(u[1], u[0])
theta = np.arctan2(uxy, u[2])
r1 = phi * sz / 2.0 # rotate along z
r2 = theta * sy / 2.0 # rotate along y
# a factor 2 is taken out due to 1/2 of S
rot = expm(1j * r2) * expm(1j * r1)
R[i][i] = rot # save term
R = bmat(R) # convert to full sparse matrix
mout = R * csc_matrix(m) * R.H # rotate matrix
return mout.todense() # return dense matrix
开发者ID:joselado,项目名称:quantum-honeycomp,代码行数:34,代码来源:rotate_spin.py
示例3: reg_score_function
def reg_score_function(X, y, mean, scale, shape, skewness):
""" GAS Skew t Regression Update term using gradient only - native Python function
Parameters
----------
X : float
datapoint for the right hand side variable
y : float
datapoint for the time series
mean : float
location parameter for the Skew t distribution
scale : float
scale parameter for the Skew t distribution
shape : float
tail thickness parameter for the Skew t distribution
skewness : float
skewness parameter for the Skew t distribution
Returns
----------
- Score of the Skew t family
"""
m1 = (np.sqrt(shape)*sp.gamma((shape-1.0)/2.0))/(np.sqrt(np.pi)*sp.gamma(shape/2.0))
mean = mean + (skewness - (1.0/skewness))*scale*m1
if (y-mean)>=0:
return ((shape+1)/shape)*((y-mean)*X)/(np.power(skewness*scale,2) + (np.power(y-mean,2)/shape))
else:
return ((shape+1)/shape)*((y-mean)*X)/(np.power(scale,2) + (np.power(skewness*(y-mean),2)/shape))
开发者ID:RJT1990,项目名称:pyflux,代码行数:33,代码来源:skewt.py
示例4: __init__
def __init__(self, class_dim, word_dim, hidden_dim, sen_len, batch_size, truncate=-1):
# Assign instance variables
self.class_dim = class_dim
self.word_dim = word_dim
self.hidden_dim = hidden_dim
self.sen_len = sen_len
self.batch_size = batch_size
self.truncate = truncate
params = {}
# Initialize the network parameters
params["E"] = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (word_dim, hidden_dim)) #Ebdding Matirx
params["W"] = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (4, hidden_dim, hidden_dim * 4)) #W[0-1].dot(x), W[2-3].(i,f,o,c)
params["B"] = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (2, hidden_dim * 4)) #B[0-1] for W[0-1]
params["lrW"] = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (2, hidden_dim, class_dim)) #LR W and b
params["lrb"] = np.random.uniform(-np.sqrt(1./hidden_dim), np.sqrt(1./hidden_dim), (class_dim))
# Assign paramenters' names
self.param_names = {"orign":["E", "W", "B", "lrW", "lrb"],
"cache":["mE", "mW", "mB", "mlrW", "mlrb"]}
# Theano: Created shared variables
self.params = {}
# Model's shared variables
for _n in self.param_names["orign"]:
self.params[_n] = theano.shared(value=params[_n].astype(theano.config.floatX), name=_n)
# Shared variables for RMSProp
for _n in self.param_names["cache"]:
self.params[_n] = theano.shared(value=np.zeros(params[_n[1:]].shape).astype(theano.config.floatX), name=_n)
# Build model graph
self.__theano_build__()
开发者ID:ludybupt,项目名称:rnn-theano,代码行数:29,代码来源:lstm.py
示例5: neg_loglikelihood
def neg_loglikelihood(y, mean, scale, shape, skewness):
""" Negative loglikelihood function
Parameters
----------
y : np.ndarray
univariate time series
mean : np.ndarray
array of location parameters for the Skew t distribution
scale : float
scale parameter for the Skew t distribution
shape : float
tail thickness parameter for the Skew t distribution
skewness : float
skewness parameter for the Skew t distribution
Returns
----------
- Negative loglikelihood of the Skew t family
"""
m1 = (np.sqrt(shape)*sp.gamma((shape-1.0)/2.0))/(np.sqrt(np.pi)*sp.gamma(shape/2.0))
mean = mean + (skewness - (1.0/skewness))*scale*m1
return -np.sum(Skewt.logpdf_internal(x=y, df=shape, loc=mean, gamma=skewness, scale=scale))
开发者ID:RJT1990,项目名称:pyflux,代码行数:27,代码来源:skewt.py
示例6: fix_poly
def fix_poly(polygon):
ret = np.array([ [0,0],[0,0],[0,0],[0,0] ],np.float32)
min_ = np.sqrt(polygon[0][0][0]**2 + polygon[0][0][1]**2)
minc = 0
for i in range(1,4):
if np.sqrt(polygon[i][0][0]**2 + polygon[i][0][1]**2) < min_:
min_ = np.sqrt(polygon[i][0][0]**2 + polygon[i][0][1]**2)
minc = i
#found top left vertex, rotate until it's on the top left
for i in range(minc):
polygon = np.roll(polygon,-1,axis=0)
#if needed, "invert" the order.
dist1 = dist_line(polygon[0],polygon[2],polygon[1])
dist3 = dist_line(polygon[0],polygon[2],polygon[3])
if dist3 > dist1:
x = polygon[3][0][0]
y = polygon[3][0][1]
polygon[3][0][0] = polygon[1][0][0]
polygon[3][0][1] = polygon[1][0][1]
polygon[1][0][0] = x
polygon[1][0][1] = y
ret[0] = polygon[0][0]
ret[1] = polygon[1][0]
ret[2] = polygon[2][0]
ret[3] = polygon[3][0]
return ret
开发者ID:rodrigolc,项目名称:SudokuSolver,代码行数:28,代码来源:extract_sudoku.py
示例7: __init__
def __init__(self, n_in, n_out, W_init=None, b_init=None,
activation=T.tanh):
self.activation = activation
if W_init is None:
rng = numpy.random.RandomState(1234)
W_values = numpy.asarray(rng.uniform(
low=-numpy.sqrt(6. / (n_in + n_out)),
high=numpy.sqrt(6. / (n_in + n_out)),
size=(n_in, n_out)
),
dtype=theano.config.floatX
)
if activation == theano.tensor.nnet.sigmoid:
W_values *= 4
W_init = theano.shared(value=W_values, name='W', borrow=True)
if b_init is None:
b_values = numpy.zeros((n_out,), dtype=theano.config.floatX)
b_init = theano.shared(value=b_values, name='b', borrow=True)
self.W = W_init
self.b = b_init
# parameters of the model
self.params = [self.W, self.b]
开发者ID:hx364,项目名称:Synonym_Extraction,代码行数:25,代码来源:mlp.py
示例8: test_ogamma
def test_ogamma():
"""Tests the effects of changing the temperature of the CMB"""
# Tested against Ned Wright's advanced cosmology calculator,
# Sep 7 2012. The accuracy of our comparision is limited by
# how many digits it outputs, which limits our test to about
# 0.2% accuracy. The NWACC does not allow one
# to change the number of nuetrino species, fixing that at 3.
# Also, inspection of the NWACC code shows it uses inaccurate
# constants at the 0.2% level (specifically, a_B),
# so we shouldn't expect to match it that well. The integral is
# also done rather crudely. Therefore, we should not expect
# the NWACC to be accurate to better than about 0.5%, which is
# unfortunate, but reflects a problem with it rather than this code.
# More accurate tests below using Mathematica
z = np.array([1.0, 10.0, 500.0, 1000.0])
cosmo = core.FlatLambdaCDM(H0=70, Om0=0.3, Tcmb0=0, Neff=3)
assert np.allclose(cosmo.angular_diameter_distance(z).value,
[1651.9, 858.2, 26.855, 13.642], rtol=5e-4)
cosmo = core.FlatLambdaCDM(H0=70, Om0=0.3, Tcmb0=2.725, Neff=3)
assert np.allclose(cosmo.angular_diameter_distance(z).value,
[1651.8, 857.9, 26.767, 13.582], rtol=5e-4)
cosmo = core.FlatLambdaCDM(H0=70, Om0=0.3, Tcmb0=4.0, Neff=3)
assert np.allclose(cosmo.angular_diameter_distance(z).value,
[1651.4, 856.6, 26.489, 13.405], rtol=5e-4)
# Next compare with doing the integral numerically in Mathematica,
# which allows more precision in the test. It is at least as
# good as 0.01%, possibly better
cosmo = core.FlatLambdaCDM(H0=70, Om0=0.3, Tcmb0=0, Neff=3.04)
assert np.allclose(cosmo.angular_diameter_distance(z).value,
[1651.91, 858.205, 26.8586, 13.6469], rtol=1e-5)
cosmo = core.FlatLambdaCDM(H0=70, Om0=0.3, Tcmb0=2.725, Neff=3.04)
assert np.allclose(cosmo.angular_diameter_distance(z).value,
[1651.76, 857.817, 26.7688, 13.5841], rtol=1e-5)
cosmo = core.FlatLambdaCDM(H0=70, Om0=0.3, Tcmb0=4.0, Neff=3.04)
assert np.allclose(cosmo.angular_diameter_distance(z).value,
[1651.21, 856.411, 26.4845, 13.4028], rtol=1e-5)
# Just to be really sure, we also do a version where the integral
# is analytic, which is a Ode = 0 flat universe. In this case
# Integrate(1/E(x),{x,0,z}) = 2 ( sqrt((1+Or z)/(1+z)) - 1 )/(Or - 1)
# Recall that c/H0 * Integrate(1/E) is FLRW.comoving_distance.
Ogamma0h2 = 4 * 5.670373e-8 / 299792458.0 ** 3 * 2.725 ** 4 / 1.87837e-26
Onu0h2 = Ogamma0h2 * 7.0 / 8.0 * (4.0 / 11.0) ** (4.0 / 3.0) * 3.04
Or0 = (Ogamma0h2 + Onu0h2) / 0.7 ** 2
Om0 = 1.0 - Or0
hubdis = 299792.458 / 70.0
cosmo = core.FlatLambdaCDM(H0=70, Om0=Om0, Tcmb0=2.725, Neff=3.04)
targvals = 2.0 * hubdis * \
(np.sqrt((1.0 + Or0 * z) / (1.0 + z)) - 1.0) / (Or0 - 1.0)
assert np.allclose(cosmo.comoving_distance(z).value, targvals, rtol=1e-5)
# Try Tcmb0 = 4
Or0 *= (4.0 / 2.725) ** 4
Om0 = 1.0 - Or0
cosmo = core.FlatLambdaCDM(H0=70, Om0=Om0, Tcmb0=4.0, Neff=3.04)
targvals = 2.0 * hubdis * \
(np.sqrt((1.0 + Or0 * z) / (1.0 + z)) - 1.0) / (Or0 - 1.0)
assert np.allclose(cosmo.comoving_distance(z).value, targvals, rtol=1e-5)
开发者ID:ehsteve,项目名称:astropy,代码行数:60,代码来源:test_cosmology.py
示例9: EN_CID
def EN_CID(y):
"""
CID measure from Batista, G. E. A. P. A., Keogh, E. J., Tataw, O. M. & de
Souza, V. M. A. CID: an efficient complexity-invariant distance for time
series. Data Min Knowl. Disc. 28, 634-669 (2014).
Arguments
---------
y: a nitime time-series object, or numpy vector
"""
# Make the input a row vector of numbers:
y = makeRowVector(vectorize(y))
# Prepare the output dictionary
out = {}
# Original definition (in Table 2 of paper cited above)
out['CE1'] = np.sqrt(np.mean(np.power(np.diff(y),2))); # sum -> mean to deal with non-equal time-series lengths
# Definition corresponding to the line segment example in Fig. 9 of the paper
# cited above (using Pythagoras's theorum):
out['CE2'] = np.mean(np.sqrt(1 + np.power(np.diff(y),2)));
return out
开发者ID:jamesmccormac,项目名称:hctsa_python,代码行数:27,代码来源:tsStats.py
示例10: CA
def CA(self):
# return NPortZ(self).CA
z0 = self.z0
A = np.mat(self.A)
T = np.matrix([[np.sqrt(z0), -(A[0,1]+A[0,0]*z0)/np.sqrt(z0)],
[-1/np.sqrt(z0), -(A[1,1]+A[1,0]*z0)/np.sqrt(z0)]])
return np.array(T * np.mat(self.CS) * T.H)
开发者ID:dreyfert,项目名称:pycircuit,代码行数:7,代码来源:nport.py
示例11: DM
def DM(self, z):
"""Transverse Comoving Distance (Mpc)
Parameters
----------
z : float
redshift
Returns
-------
y : float
The transverse comoving distance in Mpc, given by Hogg eqn 16
Examples
--------
>>> cosmo = Cosmology()
>>> cosmo.DM(1.0)
3303.8288058874678
"""
# Compute the transverse comoving distance in Mpc (Eqn 16)
if self.OmegaK > 0.0:
return self.DH / np.sqrt(self.OmegaK) * \
np.sinh(np.sqrt(self.OmegaK)*self.DC(z)/self.DH)
elif self.OmegaK == 0.0:
return self.DC(z)
elif self.OmegaK < 0.0:
return self.DH / np.sqrt(np.abs(self.OmegaK)) * \
np.sin(np.sqrt(np.abs(self.OmegaK))*self.DC(z)/self.DH)
开发者ID:jakevdp,项目名称:ASTR599_homework,代码行数:28,代码来源:cosmology.py
示例12: __init__
def __init__(self, rng, input, n_in, n_out, W=None, b=None,
activation=T.tanh):
self.input = input[0]
# initialize weights into this layer
if W is None:
W_values = np.asarray(
rng.uniform(
size=(n_in, n_out),
low=-np.sqrt(6. / (n_in + n_out)),
high=np.sqrt(6. / (n_in + n_out)),
),
dtype=theano.config.floatX
)
if activation == theano.tensor.nnet.sigmoid:
W_values *= 4
W = theano.shared(value=W_values, name='W', borrow=True)
# initialize bias term weights into this layer
if b is None:
b_values = np.zeros((n_out,), dtype=theano.config.floatX)
b = theano.shared(value=b_values, name='b', borrow=True)
self.W = W
self.b = b
lin_output = T.dot(self.input, self.W) + self.b
self.output = (
lin_output if activation is None
else activation(lin_output)
)
self.params = [self.W, self.b]
开发者ID:frw,项目名称:2048-DRL,代码行数:34,代码来源:neural_network.py
示例13: test_decimate
def test_decimate():
"""Test decimation of digitizer headshapes with too many points."""
# load headshape and convert to meters
hsp_mm = _get_ico_surface(5)['rr'] * 100
hsp_m = hsp_mm / 1000.
# save headshape to a file in mm in temporary directory
tempdir = _TempDir()
sphere_hsp_path = op.join(tempdir, 'test_sphere.txt')
np.savetxt(sphere_hsp_path, hsp_mm)
# read in raw data using spherical hsp, and extract new hsp
with warnings.catch_warnings(record=True) as w:
raw = read_raw_kit(sqd_path, mrk_path, elp_txt_path, sphere_hsp_path)
assert_true(any('more than' in str(ww.message) for ww in w))
# collect headshape from raw (should now be in m)
hsp_dec = np.array([dig['r'] for dig in raw.info['dig']])[8:]
# with 10242 points and _decimate_points set to resolution of 5 mm, hsp_dec
# should be a bit over 5000 points. If not, something is wrong or
# decimation resolution has been purposefully changed
assert_true(len(hsp_dec) > 5000)
# should have similar size, distance from center
dist = np.sqrt(np.sum((hsp_m - np.mean(hsp_m, axis=0))**2, axis=1))
dist_dec = np.sqrt(np.sum((hsp_dec - np.mean(hsp_dec, axis=0))**2, axis=1))
hsp_rad = np.mean(dist)
hsp_dec_rad = np.mean(dist_dec)
assert_almost_equal(hsp_rad, hsp_dec_rad, places=3)
开发者ID:HSMin,项目名称:mne-python,代码行数:29,代码来源:test_kit.py
示例14: getEff
def getEff(s, cut, comp='joint', reco=True):
eff, sig, relerr = {},{},{}
a = np.log10(s['MC_energy'])
Ebins = getEbins()
Emids = getMids(Ebins)
erangeDict = getErange()
c0 = cut
if comp != 'joint':
compcut = s['comp'] == comp
c0 = cut * compcut
# Set radii for finding effective area
rDict = {}
keys = ['low', 'mid', 'high']
for key in keys:
rDict[key] = np.array([600, 800, 1100, 1700, 2600, 2900])
rDict['low'][1] = 600
Ebreaks = np.array([4, 5, 6, 7, 8, 9])
rgrp = np.digitize(Emids, Ebreaks) - 1
for key in keys:
# Get efficiency and sigma
simcut = np.array([sim in erangeDict[key] for sim in s['sim']])
k = np.histogram(a[c0*simcut], bins=Ebins)[0]
#k = Nfinder(a, c0*simcut)
n = s['MC'][comp][key].astype('float')
eff[key], sig[key], relerr[key] = np.zeros((3, len(k)))
with np.errstate(divide='ignore', invalid='ignore'):
eff[key] = k / n
var = (k+1)*(k+2)/((n+2)*(n+3)) - (k+1)**2/((n+2)**2)
sig[key] = np.sqrt(var)
# Multiply by throw area
r = np.array([rDict[key][i] for i in rgrp])
eff[key] *= np.pi*(r**2)
sig[key] *= np.pi*(r**2)
# Deal with parts of the arrays with no information
for i in range(len(eff[key])):
if n[i] == 0:
eff[key][i] = 0
sig[key][i] = np.inf
# Combine low, mid, and high energy datasets
eff_tot = (np.sum([eff[key]/sig[key] for key in keys], axis=0) /
np.sum([1/sig[key] for key in keys], axis=0))
sig_tot = np.sqrt(1 / np.sum([1/sig[key]**2 for key in keys], axis=0))
with np.errstate(divide='ignore'):
relerr = sig_tot / eff_tot
# UGH : find better way to do this
if reco:
eff_tot = eff_tot[20:]
sig_tot = sig_tot[20:]
relerr = relerr[20:]
return eff_tot, sig_tot, relerr
开发者ID:jrbourbeau,项目名称:ShowerLLH_scripts,代码行数:60,代码来源:eff.py
示例15: testStudentLogPDFMultidimensional
def testStudentLogPDFMultidimensional(self):
with self.test_session():
batch_size = 6
df = constant_op.constant([[1.5, 7.2]] * batch_size)
mu = constant_op.constant([[3., -3.]] * batch_size)
sigma = constant_op.constant([[-math.sqrt(10.), math.sqrt(15.)]] *
batch_size)
df_v = np.array([1.5, 7.2])
mu_v = np.array([3., -3.])
sigma_v = np.array([np.sqrt(10.), np.sqrt(15.)])
t = np.array([[-2.5, 2.5, 4., 0., -1., 2.]], dtype=np.float32).T
student = student_t.StudentT(df, loc=mu, scale=sigma)
log_pdf = student.log_prob(t)
log_pdf_values = self.evaluate(log_pdf)
self.assertEqual(log_pdf.get_shape(), (6, 2))
pdf = student.prob(t)
pdf_values = self.evaluate(pdf)
self.assertEqual(pdf.get_shape(), (6, 2))
if not stats:
return
expected_log_pdf = stats.t.logpdf(t, df_v, loc=mu_v, scale=sigma_v)
expected_pdf = stats.t.pdf(t, df_v, loc=mu_v, scale=sigma_v)
self.assertAllClose(expected_log_pdf, log_pdf_values)
self.assertAllClose(np.log(expected_pdf), log_pdf_values)
self.assertAllClose(expected_pdf, pdf_values)
self.assertAllClose(np.exp(expected_log_pdf), pdf_values)
开发者ID:LiuCKind,项目名称:tensorflow,代码行数:27,代码来源:student_t_test.py
示例16: testStudentSampleMultiDimensional
def testStudentSampleMultiDimensional(self):
with self.test_session():
batch_size = 7
df = constant_op.constant([[3., 7.]] * batch_size)
mu = constant_op.constant([[3., -3.]] * batch_size)
sigma = constant_op.constant([[math.sqrt(10.), math.sqrt(15.)]] *
batch_size)
df_v = [3., 7.]
mu_v = [3., -3.]
sigma_v = [np.sqrt(10.), np.sqrt(15.)]
n = constant_op.constant(200000)
student = student_t.StudentT(df=df, loc=mu, scale=sigma)
samples = student.sample(n, seed=123456)
sample_values = self.evaluate(samples)
self.assertEqual(samples.get_shape(), (200000, batch_size, 2))
self.assertAllClose(
sample_values[:, 0, 0].mean(), mu_v[0], rtol=1e-2, atol=0)
self.assertAllClose(
sample_values[:, 0, 0].var(),
sigma_v[0]**2 * df_v[0] / (df_v[0] - 2),
rtol=1e-1,
atol=0)
self._checkKLApprox(df_v[0], mu_v[0], sigma_v[0], sample_values[:, 0, 0])
self.assertAllClose(
sample_values[:, 0, 1].mean(), mu_v[1], rtol=1e-2, atol=0)
self.assertAllClose(
sample_values[:, 0, 1].var(),
sigma_v[1]**2 * df_v[1] / (df_v[1] - 2),
rtol=1e-1,
atol=0)
self._checkKLApprox(df_v[0], mu_v[0], sigma_v[0], sample_values[:, 0, 1])
开发者ID:LiuCKind,项目名称:tensorflow,代码行数:31,代码来源:student_t_test.py
示例17: second_order_score
def second_order_score(y, mean, scale, shape, skewness):
""" GAS Skew t Update term potentially using second-order information - native Python function
Parameters
----------
y : float
datapoint for the time series
mean : float
location parameter for the Skew t distribution
scale : float
scale parameter for the Skew t distribution
shape : float
tail thickness parameter for the Skew t distribution
skewness : float
skewness parameter for the Skew t distribution
Returns
----------
- Adjusted score of the Skew t family
"""
m1 = (np.sqrt(shape)*sp.gamma((shape-1.0)/2.0))/(np.sqrt(np.pi)*sp.gamma(shape/2.0))
mean = mean + (skewness - (1.0/skewness))*scale*m1
if (y-mean)>=0:
return ((shape+1)/shape)*(y-mean)/(np.power(skewness*scale,2) + (np.power(y-mean,2)/shape))
else:
return ((shape+1)/shape)*(y-mean)/(np.power(scale,2) + (np.power(skewness*(y-mean),2)/shape))
开发者ID:RJT1990,项目名称:pyflux,代码行数:30,代码来源:skewt.py
示例18: logarithmic_negativity
def logarithmic_negativity(V):
"""
Calculate the logarithmic negativity given the symmetrized covariance
matrix, see :func:`qutip.continous_variables.covariance_matrix`. Note that
the two-mode field state that is described by `V` must be Gaussian for this
function to applicable.
Parameters
----------
V : *2d array*
The covariance matrix.
Returns
-------
N: *float*, the logarithmic negativity for the two-mode Gaussian state
that is described by the the Wigner covariance matrix V.
"""
A = V[0:2, 0:2]
B = V[2:4, 2:4]
C = V[0:2, 2:4]
sigma = np.linalg.det(A) + np.linalg.det(B) - 2 * np.linalg.det(C)
nu_ = sigma / 2 - np.sqrt(sigma ** 2 - 4 * np.linalg.det(V)) / 2
if nu_ < 0.0:
return 0.0
nu = np.sqrt(nu_)
lognu = -np.log(2 * nu)
logneg = max(0, lognu)
return logneg
开发者ID:prvn16,项目名称:qutip,代码行数:34,代码来源:continuous_variables.py
示例19: screen_potential
def screen_potential(r, v, charge):
"""Split long-range potential into short-ranged contributions.
The potential v is a long-ranted potential with the asymptotic form Z/r
corresponding to the given charge.
Return a potential vscreened and charge distribution rhocomp such that
v(r) = vscreened(r) + vHartree[rhocomp](r).
The returned quantities are truncated to a reasonable cutoff radius.
"""
vr = v * r + charge
err = 0.0
i = len(vr)
while err < 1e-5:
# Things can be a bit sensitive to the threshold. The O.pz-mt setup
# gets 20-30 Bohr long compensation charges if it's 1e-6.
i -= 1
err = abs(vr[i])
i += 1
icut = np.searchsorted(r, r[i] * 1.1)
rcut = r[icut]
rshort = r[:icut]
a = rcut / 5.0 # XXX why is this so important?
vcomp = charge * erf(rshort / (np.sqrt(2.0) * a)) / rshort
# XXX divide by r
rhocomp = charge * (np.sqrt(2.0 * np.pi) * a)**(-3) * \
np.exp(-0.5 * (rshort / a)**2)
vscreened = v[:icut] + vcomp
return vscreened, rhocomp
开发者ID:robwarm,项目名称:gpaw-symm,代码行数:34,代码来源:pseudopotential.py
示例20: GetCorV
def GetCorV(self, inAmpField):
lplcCo=inAmpField.lplcCo
try:
self.CorV=1./ np.sqrt(1./(self.AppV**2) - lplcCo)
except:
self.CorV=1./ np.sqrt(1./(self.AppV[1:-1, 1:-1]**2) - lplcCo)
return
开发者ID:NoisyLeon,项目名称:SW4Py,代码行数:7,代码来源:field2d_cartesian.py
注:本文中的numpy.sqrt函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论