• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.zeros函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.zeros函数的典型用法代码示例。如果您正苦于以下问题:Python zeros函数的具体用法?Python zeros怎么用?Python zeros使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了zeros函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __init__

    def __init__(self, input, n_in, n_out):
        """ Initialize the parameters of the logistic regression

        :type input: theano.tensor.TensorType
        :param input: symbolic variable that describes the input of the
                      architecture (one minibatch)

        :type n_in: int
        :param n_in: number of input units, the dimension of the space in
                     which the datapoints lie

        :type n_out: int
        :param n_out: number of output units, the dimension of the space in
                      which the labels lie

        """

        # initialize with 0 the weights W as a matrix of shape (n_in, n_out)
        self.W = theano.shared(value=numpy.zeros((n_in, n_out),
                                                 dtype=theano.config.floatX),
                                name='W', borrow=True)
        # initialize the baises b as a vector of n_out 0s
        self.b = theano.shared(value=numpy.zeros((n_out,),
                                                 dtype=theano.config.floatX),
                               name='b', borrow=True)

        # compute vector of class-membership probabilities in symbolic form
        self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b)

        # compute prediction as class whose probability is maximal in
        # symbolic form
        self.y_pred = T.argmax(self.p_y_given_x, axis=1)

        # parameters of the model
        self.params = [self.W, self.b]
开发者ID:vivanac,项目名称:DeepLearningTutorials,代码行数:35,代码来源:logistic_sgd.py


示例2: calculate_zernikes

 def calculate_zernikes(self, workspace):
     zernike_indexes = cpmz.get_zernike_indexes(self.zernike_degree.value + 1)
     meas = workspace.measurements
     for o in self.objects:
         object_name = o.object_name.value
         objects = workspace.object_set.get_objects(object_name)
         #
         # First, get a table of centers and radii of minimum enclosing
         # circles per object
         #
         ij = np.zeros((objects.count + 1, 2))
         r = np.zeros(objects.count + 1)
         for labels, indexes in objects.get_labels():
             ij_, r_ = minimum_enclosing_circle(labels, indexes)
             ij[indexes] = ij_
             r[indexes] = r_
         #
         # Then compute x and y, the position of each labeled pixel
         # within a unit circle around the object
         #
         ijv = objects.ijv
         l = ijv[:, 2]
         yx = (ijv[:, :2] - ij[l, :]) / r[l, np.newaxis]
         z = cpmz.construct_zernike_polynomials(
                 yx[:, 1], yx[:, 0], zernike_indexes)
         for image_group in self.images:
             image_name = image_group.image_name.value
             image = workspace.image_set.get_image(
                     image_name, must_be_grayscale=True)
             pixels = image.pixel_data
             mask = (ijv[:, 0] < pixels.shape[0]) & \
                    (ijv[:, 1] < pixels.shape[1])
             mask[mask] = image.mask[ijv[mask, 0], ijv[mask, 1]]
             yx_ = yx[mask, :]
             l_ = l[mask]
             z_ = z[mask, :]
             if len(l_) == 0:
                 for i, (n, m) in enumerate(zernike_indexes):
                     ftr = self.get_zernike_magnitude_name(image_name, n, m)
                     meas[object_name, ftr] = np.zeros(0)
                     if self.wants_zernikes == Z_MAGNITUDES_AND_PHASE:
                         ftr = self.get_zernike_phase_name(image_name, n, m)
                         meas[object_name, ftr] = np.zeros(0)
                 continue
             areas = scind.sum(
                     np.ones(l_.shape, int), labels=l_, index=objects.indices)
             for i, (n, m) in enumerate(zernike_indexes):
                 vr = scind.sum(
                         pixels[ijv[mask, 0], ijv[mask, 1]] * z_[:, i].real,
                         labels=l_, index=objects.indices)
                 vi = scind.sum(
                         pixels[ijv[mask, 0], ijv[mask, 1]] * z_[:, i].imag,
                         labels=l_, index=objects.indices)
                 magnitude = np.sqrt(vr * vr + vi * vi) / areas
                 ftr = self.get_zernike_magnitude_name(image_name, n, m)
                 meas[object_name, ftr] = magnitude
                 if self.wants_zernikes == Z_MAGNITUDES_AND_PHASE:
                     phase = np.arctan2(vr, vi)
                     ftr = self.get_zernike_phase_name(image_name, n, m)
                     meas[object_name, ftr] = phase
开发者ID:dinglyosu,项目名称:CellProfiler,代码行数:60,代码来源:measureobjectintensitydistribution.py


示例3: __fen2tensor

    def __fen2tensor(self, fen):

        frdpos = np.zeros((9, 10, 16), dtype=OUT_TYPE)
        frdmove = np.zeros((9, 10, 16), dtype=OUT_TYPE)
        emypos = np.zeros((9, 10, 16), dtype=OUT_TYPE)
        emymove = np.zeros((9, 10, 16), dtype=OUT_TYPE)
        movelabel = np.zeros((9, 10, 16), dtype=OUT_TYPE)

        fenlist = fen.split('\t')
        frdpos, emypos = self.__f2tpos(fenlist[0], frdpos, emypos)
        frdmove = self.__f2tfrdmove(fenlist[1], frdmove, frdpos)

        label = fenlist[2].strip().split('-')
        layer = np.argmax(frdpos[self.__loca2i(label[0][0])][self.__loca2i(label[0][1])])
        movelabel[self.__loca2i(label[1][0])][self.__loca2i(label[1][1])][layer] = 1

        if fenlist[0].split()[1] == 'b':
            self.__switch_round(frdpos)
            self.__switch_round(frdmove)
            self.__switch_round(emypos)
            self.__switch_round(movelabel)

        # shuffle   random
        self.__shuffle([frdpos, frdmove, movelabel], self.__shuffle_args())
        self.__shuffle([emypos], self.__shuffle_args())

        return frdpos, frdmove, emypos, movelabel
开发者ID:milkpku,项目名称:BetaElephant,代码行数:27,代码来源:dataset.py


示例4: makeHist

	def makeHist(self, normalize = True, doPMF = True):
		if self.isDataPickled:
			return

		if not self.Dim == 1:
			raise TypeError('Variable # mismatch')

		z = self.z
		Nframes = len(z)
		bin_min = 0.98 * z.min(); bin_max = 1.02*z.max()
		delta = (bin_max - bin_min)/float(self.nbins)
		bin_centers = np.zeros(self.nbins)
		bin_vals = np.zeros(self.nbins)
		pmf = np.zeros(self.nbins)
		for i in range(self.nbins):
			bin_centers[i] = bin_min + (i+0.5) * delta
			
		frameStatus = pb(Text = 'Binning frame by frame', Steps = Nframes)
		for i in range(Nframes):
		
			assignment = int((z[i] - bin_min)/delta)
			bin_vals[assignment] += 1.0
		
			frameStatus.Update(i)
		
		if normalize:
			#bin_vals /= (np.sum(bin_vals) * delta)
			bin_vals /= np.trapz(bin_vals, bin_centers, dx = delta)
		if doPMF:
			pmf = - np.log(bin_vals)
		

		hist = {'bin_centers': bin_centers, 'bin_vals': bin_vals, 'pmf' : pmf}
		pickle.dump(hist, open(self.data, 'w'))
		self.isDataPickled = True
开发者ID:tanmoy7989,项目名称:c25ld,代码行数:35,代码来源:Utils.py


示例5: __init__

  def __init__(self):
    """
    Setup tri33 cell.
    """
    vertices = numpy.array([[-1.0, -1.0],
                            [+1.0, -1.0],
                            [-1.0, +1.0]])
    quadPts = vertices[:]
    quadWts = numpy.array( [2.0/3.0, 2.0/3.0, 2.0/3.0])

    # Compute basis fns and derivatives at quadrature points
    basis = numpy.zeros( (3, 3), dtype=numpy.float64)
    basisDeriv = numpy.zeros( (3, 3, 2), dtype=numpy.float64)
    iQuad = 0
    for q in quadPts:
      basis[iQuad] = numpy.array([self.N0(q), self.N1(q), self.N2(q)],
                                 dtype=numpy.float64).reshape( (3,) )
      deriv = numpy.array([[self.N0p(q), self.N0q(q)],
                           [self.N1p(q), self.N1q(q)],
                           [self.N2p(q), self.N2q(q)]])      
      basisDeriv[iQuad] = deriv.reshape((3, 2))
      iQuad += 1

    self.cellDim = 2
    self.numCorners = len(vertices)
    self.numQuadPts = len(quadPts)
    self.vertices = vertices
    self.quadPts = quadPts
    self.quadWts = quadWts
    self.basis = basis
    self.basisDeriv = basisDeriv
    return
开发者ID:panzhengyang,项目名称:pylith,代码行数:32,代码来源:TestFIATSimplex.py


示例6: backprop

    def backprop(self, x, y):
        activation = x
        activations = [x]
        zs = []

        for weight, bias in zip(self.weights, self.biases):
            z = np.dot(activation, weight)+bias
            zs.append(z)
            activation = sigmoid(z)
            activations.append(activation)

        delta = (activation-y)*sigmoid_prime(zs[-1])

        nabla_weights = [np.zeros(w.shape) for w in self.weights]
        nabla_biases = [np.zeros(b.shape) for b in self.biases]

        nabla_weights[-1] = np.dot(activations[-2].transpose(), delta)
        nabla_biases[-1] = delta

        for l in xrange(2, len(self.layers)):
            delta = np.dot(delta, self.weights[-l+1].transpose())*sigmoid_prime(zs[-l])
            nabla_weights[-l] = np.dot(activations[-l-1].transpose(), delta)
            nabla_biases[-l] = delta

        return (nabla_weights, nabla_biases)
开发者ID:Enhuiz,项目名称:text-classification-with-bp-network,代码行数:25,代码来源:network.py


示例7: divide_arrays

    def divide_arrays(self, num_array, num_array_error, den_array, den_array_error):
        '''
        This function calculates the ratio of two arrays and calculate the respective error values
        '''

        nbr_elements = np.shape(num_array)[0]
        
        # calculate the ratio array
        ratio_array = np.zeros(nbr_elements)
        for i in range(nbr_elements):
            if den_array[i] is 0:
                _tmp_ratio = 0
            else:
                _tmp_ratio = num_array[i] / den_array[i]
            ratio_array[i] = _tmp_ratio
            
        # calculate the error of the ratio array
        ratio_error_array = np.zeros(nbr_elements)
        for i in range(nbr_elements):
            
            if (num_array[i] == 0) or (den_array[i] == 0): 
                ratio_error_array[i] = 0 
            else:
                tmp1 = pow(num_array_error[i] / num_array[i],2)
                tmp2 = pow(den_array_error[i] / den_array[i],2)
                ratio_error_array[i] = math.sqrt(tmp1+tmp2)*(num_array[i]/den_array[i])
    
        return [ratio_array, ratio_error_array]        
开发者ID:JeanBilheux,项目名称:RefRed,代码行数:28,代码来源:reduction_quicknxs.py


示例8: test_reset_data_shape

 def test_reset_data_shape(self):
     shape1 = 10, 10, 10
     shape3 = 10, 10, 10, 3
     
     # Init data (explicit shape)
     data = np.zeros((10, 10, 10, 1), dtype=np.uint8)
     T = Texture3D(data=data)
     assert T.shape == (10, 10, 10, 1)
     assert T._format == gl.GL_LUMINANCE
     
     # Set data to rgb
     T.set_data(np.zeros(shape3, np.uint8))
     assert T.shape == (10, 10, 10, 3)
     assert T._format == gl.GL_RGB
     
     # Set data to grayscale
     T.set_data(np.zeros(shape1, np.uint8))
     assert T.shape == (10, 10, 10, 1)
     assert T._format == gl.GL_LUMINANCE
     
     # Set size to rgb
     T.resize(shape3)
     assert T.shape == (10, 10, 10, 3)
     assert T._format == gl.GL_RGB
     
     # Set size to grayscale
     T.resize(shape1)
     assert T.shape == (10, 10, 10, 1)
     assert T._format == gl.GL_LUMINANCE
开发者ID:gbaty,项目名称:vispy,代码行数:29,代码来源:test_texture.py


示例9: torgerson

def torgerson(distances, n_components=2):
    """
    Perform classical mds (Torgerson scaling).

    ..note ::
        If the distances are euclidean then this is equivalent to projecting
        the original data points to the first `n` principal components.

    """
    distances = np.asarray(distances)
    assert distances.shape[0] == distances.shape[1]
    N = distances.shape[0]
    # O ^ 2
    D_sq = distances ** 2

    # double center the D_sq
    rsum = np.sum(D_sq, axis=1, keepdims=True)
    csum = np.sum(D_sq, axis=0, keepdims=True)
    total = np.sum(csum)
    D_sq -= rsum / N
    D_sq -= csum / N
    D_sq += total / (N ** 2)
    B = np.multiply(D_sq, -0.5, out=D_sq)

    U, L, _ = np.linalg.svd(B)
    if n_components > N:
        U = np.hstack((U, np.zeros((N, n_components - N))))
        L = np.hstack((L, np.zeros((n_components - N))))
    U = U[:, :n_components]
    L = L[:n_components]
    D = np.diag(np.sqrt(L))
    return np.dot(U, D)
开发者ID:RachitKansal,项目名称:orange3,代码行数:32,代码来源:manifold.py


示例10: sort_assemblies

    def sort_assemblies(self, pattern, assemblies) :
        """ Sort the assemblies by reactivity.
        """ 
        # TODO(robertsj): Consider a cleaner approach for this sorting.
        
        # We build a 2-d array of [index,kinf] pairs.  Sorting this gives
        #   permuted index in the first entry.  The location of each
        #   original index will become the new pattern.  (Note that kinf
        #   is negated so we get descending order of reactivity. It seems
        #   argsort has no option for ascend/descend.
        pattern_length = len(pattern)
        index = np.zeros((pattern_length,2))
        for i in range(0, pattern_length) :
            index[i][0] = i
            index[i][1] = -assemblies[i].kinf()
        index=index[index[:,1].argsort(),0]
        
        # Define the sorted pattern and assemblies using the permuted 
        #   indices. Note that each pattern element will be unique, even 
        #   if a small number of unique assemblies  defined the pattern
        #   initially.
        sorted_pattern = np.zeros(len(pattern),dtype='i')
        sorted_assemblies = []
        for i in range(0, pattern_length) :
            sorted_pattern[i] = (np.where(index == i))[0][0]
            sorted_assemblies.append(assemblies[int(index[i])])

        return sorted_pattern, sorted_assemblies
开发者ID:archphy,项目名称:poropy,代码行数:28,代码来源:reactor.py


示例11: test_setitem_all_no_store

    def test_setitem_all_no_store(self):

        data = np.zeros((10, 10), dtype=np.uint8)
        T = Texture(data=data, store=False)
        T[...] = np.ones((10, 10), np.uint8)
        assert len(T._pending_data) == 1
        assert np.allclose(data, np.zeros((10, 10)))
开发者ID:gbaty,项目名称:vispy,代码行数:7,代码来源:test_texture.py


示例12: _create_collision_coefficient_matrix

    def _create_collision_coefficient_matrix(self):
        self.C_ul_interpolator = {}
        self.delta_E_matrices = {}
        self.g_ratio_matrices = {}
        collision_group = self.atom_data.collision_data.groupby(level=['atomic_number', 'ion_number'])
        for species in self.nlte_species:
            no_of_levels = self.atom_data.levels.ix[species].energy.count()
            C_ul_matrix = np.zeros(
                    (
                        no_of_levels,
                        no_of_levels,
                        len(self.atom_data.collision_data_temperatures))
                    )
            delta_E_matrix = np.zeros((no_of_levels, no_of_levels))
            g_ratio_matrix = np.zeros((no_of_levels, no_of_levels))

            for (
                    atomic_number,
                    ion_number,
                    level_number_lower,
                    level_number_upper), line in (
                            collision_group.get_group(species).iterrows()):
                        # line.columns : delta_e, g_ratio, temperatures ...
                C_ul_matrix[level_number_lower, level_number_upper, :] = line.values[2:]
                delta_E_matrix[level_number_lower, level_number_upper] = line['delta_e']
                #TODO TARDISATOMIC fix change the g_ratio to be the otherway round - I flip them now here.
                g_ratio_matrix[level_number_lower, level_number_upper] = line['g_ratio']
            self.C_ul_interpolator[species] = interpolate.interp1d(
                    self.atom_data.collision_data_temperatures,
                    C_ul_matrix)
            self.delta_E_matrices[species] = delta_E_matrix

            self.g_ratio_matrices[species] = g_ratio_matrix
开发者ID:rcthomas,项目名称:tardis,代码行数:33,代码来源:atomic.py


示例13: conv_backward_naive

def conv_backward_naive(dout, cache):
    """
    A naive implementation of the backward pass for a convolutional layer.

    Inputs:
    - dout: Upstream derivatives.
    - cache: A tuple of (x, w, b, conv_param) as in conv_forward_naive

    Returns a tuple of:
    - dx: Gradient with respect to x
    - dw: Gradient with respect to w
    - db: Gradient with respect to b
    """
    dx, dw, db = None, None, None
    x, w, b, conv_param = cache
    stride = conv_param['stride']
    pad = conv_param['pad']
    N, C, H, W = x.shape
    F, _, HH, WW = w.shape
    Hp = 1 + (H + 2 * pad - HH) / stride
    Wp = 1 + (W + 2 * pad - WW) / stride
    dx = np.zeros(x.shape)
    dw = np.zeros(w.shape)
    db = np.zeros(b.shape)
    for i in xrange(N):
        # for j in xrange(F):
        data = x[i]
        data = np.pad(data, ((0, 0), (pad, pad), (pad, pad)), 'constant')
        paded_dxi = np.pad(dx[i], ((0, 0), (pad, pad), (pad, pad)), 'constant')
        filter_vert_indices = 0
        filter_hori_indices = 0
        for s in xrange(Hp):
            filter_hori_indices = 0
            for p in xrange(Wp):
                data_fragment = data[:, filter_vert_indices:filter_vert_indices+HH,
                                                         filter_hori_indices:filter_hori_indices+WW]
                dw += np.einsum('i, jkl->ijkl', dout[i, :, s, p], data_fragment)
                # paded_dxi[:, filter_vert_indices:filter_vert_indices+HH,
                #                                          filter_hori_indices:filter_hori_indices+WW] = \
                #                                          np.einsum('ijkl,i->jkl', w, dout[i, :, s, p])
                # paded_dxi[:, filter_vert_indices:filter_vert_indices+HH,
                #                                          filter_hori_indices:filter_hori_indices+WW] = \
                #                                          np.tensordot(w, dout[i, :, s, p], axes = ([0], [0]))
                for f in xrange(F):
                    paded_dxi[:, filter_vert_indices:filter_vert_indices+HH,
                                        filter_hori_indices:filter_hori_indices+WW] \
                                         += w[f] * dout[i, f, s, p]
                filter_hori_indices += stride
            filter_vert_indices += stride
        dx[i] = paded_dxi[:, pad:-pad, pad:-pad]
    db = np.einsum('ijkl->j', dout)
    # print(dx)

    #############################################################################
    # TODO: Implement the convolutional backward pass.                          #
    #############################################################################
    #############################################################################
    #                             END OF YOUR CODE                              #
    #############################################################################
    return dx, dw, db
开发者ID:Zardinality,项目名称:cs231n_project,代码行数:60,代码来源:layers.py


示例14: conv3d_oneToMany

def conv3d_oneToMany(x, xShape, w, wShape, strideT, strideY, strideX, inName):
    [ntp, nyp, nxp, nifp, nofp] = wShape
    [nb, nt, ny, nx, nf] = xShape

    # stride must be divisible by both weights and input
    assert ntp % strideT == 0
    assert nyp % strideY == 0
    assert nxp % strideX == 0
    assert nt % strideT == 0
    assert ny % strideY == 0
    assert nx % strideX == 0

    assert nifp == nf

    print "Building weight indices for conv3d"
    # Build gather indices for weights
    # Must be in shape of target output weights
    weightIdxs = np.zeros(
        (int(ntp / strideT), int(nyp / strideY), int(nxp / strideX), nifp, nofp * strideT * strideX * strideY, 5)
    ).astype(np.int32)
    # Adding kernel number to end of features
    for itp in range(ntp):
        for iyp in range(nyp):
            for ixp in range(nxp):
                for iifp in range(nifp):
                    for iofp in range(nofp):
                        # Calculate output indices given input indices
                        # Must reverse, as we're using conv2d as transpose conv2d
                        otp = int((ntp - itp - 1) / strideT)
                        oyp = int((nyp - iyp - 1) / strideY)
                        oxp = int((nxp - ixp - 1) / strideX)
                        oifp = iifp  # Input features stay the same
                        # oofp uses iofp as offset, plus an nf stride based on which kernel it belongs to
                        kernelIdx = (itp % strideT) * strideY * strideX + (iyp % strideY) * strideX + (ixp % strideX)
                        oofp = iofp + nofp * kernelIdx
                        weightIdxs[otp, oyp, oxp, oifp, oofp, :] = [itp, iyp, ixp, iifp, iofp]

    print "Building output indices for conv3d"
    # Build gather indices for output
    # Must be in shape of target output data
    dataIdxs = np.zeros((nb, nt * strideT, ny * strideY, nx * strideX, nofp, 5)).astype(np.int32)
    for oob in range(nb):
        for oot in range(nt * strideT):
            for ooy in range(ny * strideY):
                for oox in range(nx * strideX):
                    for oof in range(nofp):
                        # Calculate input indices given output indices
                        iib = oob
                        iit = oot / strideT
                        iiy = ooy / strideY
                        iix = oox / strideX
                        kernelIdx = (oot % strideT) * strideY * strideX + (ooy % strideY) * strideX + (oox % strideX)
                        iif = oof + nofp * kernelIdx
                        dataIdxs[oob, oot, ooy, oox, oof, :] = [iib, iit, iiy, iix, iif]

    # Build convolution structure
    w_reshape = tf.gather_nd(w, weightIdxs)
    o_reshape = tf.nn.conv3d(x, w_reshape, strides=[1, 1, 1, 1, 1], padding="SAME", name=inName)
    o = tf.gather_nd(o_reshape, dataIdxs)
    return o
开发者ID:slundqui,项目名称:TFSparseCode,代码行数:60,代码来源:utils.py


示例15: fix_labels

def fix_labels(mnist_label, add_num):
    """
    Args:
    label: [[int]] arary, class labels
    n: int, number of add data

    Returns:
    [[int]] array

    """

    c_num = len(mnist_label[0])

    # add one dimention
    fixed_label = np.c_[mnist_label, np.zeros(len(mnist_label))]
    assert len(fixed_label[0]) == c_num + 1

    # generate new class label
    new_label = np.zeros(c_num + 1)
    new_label[c_num] = 1
    new_label = np.array([new_label for i in range(add_num)])

    # add new class label
    fixed_label = np.r_[fixed_label, new_label]
    assert len(fixed_label) == len(mnist_label) + add_num

    return fixed_label
开发者ID:masaponto,项目名称:dentaku,代码行数:27,代码来源:data_processer.py


示例16: all_patches

def all_patches(padded_brain,i,predict_patchsize,obs_patchsize,num_channels):
    
    image = padded_brain[i]
    ishape_h , ishape_w = padded_brain.shape[1:3]
    #ipdb.set_trace()
    #ipdb.set_trace()
    half_obs_patchsize = obs_patchsize/2
    half_predict_patchsize = predict_patchsize/2
    extended_image = np.zeros((ishape_h+obs_patchsize-predict_patchsize,ishape_w+obs_patchsize-predict_patchsize,num_channels))
    extended_image[half_obs_patchsize - half_predict_patchsize   : -(half_obs_patchsize - half_predict_patchsize),half_obs_patchsize - half_predict_patchsize  : -(half_obs_patchsize - half_predict_patchsize)]= image
    num_patches_rows = ishape_h // predict_patchsize
    num_patches_cols = ishape_w // predict_patchsize
    
    list_patches = np.zeros((num_patches_cols*num_patches_rows, obs_patchsize, obs_patchsize, num_channels))
    index = 0
    h_range = np.arange(obs_patchsize/2,ishape_h+obs_patchsize/2,predict_patchsize)
    #h_range = h_range[:-1]
    v_range = np.arange(obs_patchsize/2,ishape_w+obs_patchsize/2,predict_patchsize)
    #v_range = v_range[:-1]
    #ipdb.set_trace()
    for index_h in h_range:
        for index_w in v_range:
            patch_brian = extended_image[index_h-obs_patchsize/2: index_h+obs_patchsize/2 ,index_w-obs_patchsize/2: index_w+obs_patchsize/2,:]
            #if patch_brian.shape == (38,29,4):
            #   ipdb.set_trace()
             
            list_patches[index,:,:,:] = patch_brian
            index += 1
    #ipdb.set_trace()
    assert index == num_patches_rows*num_patches_cols
    return list_patches       
开发者ID:havaeimo,项目名称:PL2_added_layers,代码行数:31,代码来源:generate_prediction_patch.py


示例17: photoz

def photoz(s1100,e1100=0.,s14=0.,e14=0.,ntry=50000):
    '''
    Determine the photometric redshift of a galaxy given the
    measured 1.4 cm and 1100 micron flux and uncertainty
    '''
    z = np.arange(0,10,.05)
    ngal = 44
    if s14 == 0:
        ratioin = -1
        ratiosig = -1
    else:
        ratioin = s1100/s14
        ratiosig = (e1100/s1100**2+e14/s14**2)**.5
    a = idlsave.read('fluxratio1100.sav')
    dat = a.get('data')
    zs = a.get('redshift')
    averatio = np.zeros(200)
    sigma = np.zeros(200)
    array = np.random.randn(ntry)
    array1 = np.random.randn(ntry)
    if s14 <= 0.:
        ydarts = (s1100+array*e1100)/(np.abs(array1*e14))
    else:
        ydarts = array*ratiosig+ratioin
    xdarts = np.zeros(ntry)
    for i in range(ntry):
        jrangal = np.floor(ngal*np.random.rand(1))[0]
        testtrack = dat[:,jrangal]
        yval = ydarts[i]
        xdarts[i] = np.interp(yval,testtrack,z)
    return xdarts,ydarts
开发者ID:tconklin,项目名称:coprops,代码行数:31,代码来源:getz.py


示例18: backprop

 def backprop(self, x, y):
     """Return a tuple ``(nabla_b, nabla_w)`` representing the
     gradient for the cost function C_x.  ``nabla_b`` and
     ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
     to ``self.biases`` and ``self.weights``."""
     nabla_b = [np.zeros(b.shape) for b in self.biases]
     nabla_w = [np.zeros(w.shape) for w in self.weights]
     # feedforward
     activation = x
     activations = [x] # list to store all the activations, layer by layer
     zs = [] # list to store all the z vectors, layer by layer
     for b, w in zip(self.biases, self.weights):
         z = np.dot(w, activation)+b
         zs.append(z)
         activation = sigmoid(z)
         activations.append(activation)
     # backward pass
     delta = self.cost_derivative(activations[-1], y) * \
         sigmoid_prime(zs[-1])
     nabla_b[-1] = delta
     nabla_w[-1] = np.dot(delta, activations[-2].transpose())
     # Note that the variable l in the loop below is used a little
     # differently to the notation in Chapter 2 of the book.  Here,
     # l = 1 means the last layer of neurons, l = 2 is the
     # second-last layer, and so on.  It's a renumbering of the
     # scheme in the book, used here to take advantage of the fact
     # that Python can use negative indices in lists.
     for l in xrange(2, self.num_layers):
         z = zs[-l]
         sp = sigmoid_prime(z)
         delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
         nabla_b[-l] = delta
         nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
     return (nabla_b, nabla_w)
开发者ID:ztq09290929,项目名称:AnnTest,代码行数:34,代码来源:network.py


示例19: train_set_loss_vars_for_cur_batches

 def train_set_loss_vars_for_cur_batches(self):
   """
   Called via Engine.SeqTrainParallelControl.
   """
   assert self.train_have_loss_for_cur_batches()
   # See EngineUtil.assign_dev_data for reference.
   from Dataset import Dataset
   n_time, n_batch = Dataset.index_shape_for_batches(self.train_batches)
   n_output_dim = self.output_layer.attrs['n_out']
   output_loss = numpy.zeros((n_batch,), "float32")
   output_hat_y = numpy.zeros((n_time, n_batch, n_output_dim), "float32")
   offset_slice = 0
   for batch in self.train_batches:
     for seq in batch.seqs:
       o = seq.batch_frame_offset
       q = seq.batch_slice + offset_slice
       l = seq.frame_length
       # input-data, input-index will also be set in this loop. That is data-key "data".
       for k in [self.output_target]:
         if l[k] == 0: continue
         loss, hat_y = self.get_loss_and_hat_y(seq.seq_idx)
         assert seq.seq_start_frame[k] < hat_y.shape[0]
         assert seq.seq_end_frame[k] <= hat_y.shape[0]
         output_loss[q] += loss * float(l[k]) / hat_y.shape[0]
         output_hat_y[o[k]:o[k] + l[k], q] = hat_y[seq.seq_start_frame[k]:seq.seq_end_frame[k]]
   self.output_var_loss.set_value(output_loss)
   self.output_var_hat_y.set_value(output_hat_y)
开发者ID:atuxhe,项目名称:returnn,代码行数:27,代码来源:SprintErrorSignals.py


示例20: value_of_policy

def value_of_policy(sigma):
    "Computes the value of following policy sigma."

    # Set up the stochastic kernel p_sigma as a 2D array:
    N = len(S)
    p_sigma = zeros((N, N))   
    for x in S:
        for y in S: 
            p_sigma[x, y] = phi(y - sigma[x])

    # Create the right Markov operator M_sigma:
    M_sigma = lambda h: dot(p_sigma, h)

    # Set up the function r_sigma as an array:
    r_sigma = array([U(x - sigma[x]) for x in S])
    # Reshape r_sigma into a column vector:
    r_sigma = r_sigma.reshape((N, 1))

    # Initialize v_sigma to zero:
    v_sigma = zeros((N,1))
    # Initialize the discount factor to 1:
    discount = 1

    for i in range(50):
        v_sigma = v_sigma + discount * r_sigma 
        r_sigma = M_sigma(r_sigma)
        discount = discount * rho

    return v_sigma
开发者ID:1simon,项目名称:edtc-code,代码行数:29,代码来源:kurtzvsigma.py



注:本文中的numpy.zeros函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.zeros_like函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.where函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap