本文整理汇总了Python中numpy.zeros_like函数的典型用法代码示例。如果您正苦于以下问题:Python zeros_like函数的具体用法?Python zeros_like怎么用?Python zeros_like使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了zeros_like函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: dateRange
def dateRange(first, last):
# Type check, float --> int
if isinstance(first[0], float):
temp = np.zeros_like(first, dtype='int')
for i in xrange(temp.size):
temp[i] = first[i]
first = tuple(temp)
if isinstance(last[0], float):
temp = np.zeros_like(last, dtype='int')
for i in xrange(temp.size):
temp[i] = last[i]
last = tuple(temp)
# Initialize date dictionary
dateList = {}
# Populate dictionary
first = dt.datetime(*first[:6])
last = dt.datetime(*last[:6])
n = (last + dt.timedelta(days=1) - first).days
dateList['year'] = np.array([(first + dt.timedelta(days=i)).year for i in xrange(n)])
dateList['month'] = np.array([(first + dt.timedelta(days=i)).month for i in xrange(n)])
dateList['day'] = np.array([(first + dt.timedelta(days=i)).day for i in xrange(n)])
return dateList
开发者ID:DAESCG,项目名称:example_sql_repo,代码行数:27,代码来源:write_rmm_db.py
示例2: viterbi_decode
def viterbi_decode(score, transition_params):
"""Decode the highest scoring sequence of tags outside of TensorFlow.
This should only be used at test time.
Args:
score: A [seq_len, num_tags] matrix of unary potentials.
transition_params: A [num_tags, num_tags] matrix of binary potentials.
Returns:
viterbi: A [seq_len] list of integers containing the highest scoring tag
indicies.
viterbi_score: A float containing the score for the Viterbi sequence.
"""
trellis = np.zeros_like(score)
backpointers = np.zeros_like(score, dtype=np.int32)
trellis[0] = score[0]
for t in range(1, score.shape[0]):
v = np.expand_dims(trellis[t - 1], 1) + transition_params
trellis[t] = score[t] + np.max(v, 0)
backpointers[t] = np.argmax(v, 0)
viterbi = [np.argmax(trellis[-1])]
for bp in reversed(backpointers[1:]):
viterbi.append(bp[viterbi[-1]])
viterbi.reverse()
viterbi_score = np.max(trellis[-1])
return viterbi, viterbi_score
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:30,代码来源:crf.py
示例3: reg
def reg(psf_model, parms):
"""
Regularization and derivative.
"""
eps = parms.eps
if (eps is None):
return np.zeros_like(psf_model)
psf_shape = psf_model.shape
d = np.zeros_like(psf_model)
r = np.zeros_like(psf_model)
for i in range(psf_shape[0]):
for j in range(psf_shape[1]):
if i > 0:
r[i, j] += (psf_model[i, j] - psf_model[i - 1, j]) ** 2.
d[i, j] += 2. * (psf_model[i, j] - psf_model[i - 1, j])
if j > 0:
r[i, j] += (psf_model[i, j] - psf_model[i, j - 1]) ** 2.
d[i, j] += 2. * (psf_model[i, j] - psf_model[i, j - 1])
if i < psf_shape[0] - 1:
r[i, j] += (psf_model[i, j] - psf_model[i + 1, j]) ** 2.
d[i, j] += 2. * (psf_model[i, j] - psf_model[i + 1, j])
if j < psf_shape[1] - 1:
r[i, j] += (psf_model[i, j] - psf_model[i, j + 1]) ** 2.
d[i, j] += 2. * (psf_model[i, j] - psf_model[i, j + 1])
r *= eps
d *= eps
return r, d
开发者ID:rossfadely,项目名称:wfc3psf,代码行数:28,代码来源:derivatives.py
示例4: finalize
def finalize(self):
"""Calculates the flux, inverse variance and resolution for this spectrum.
Uses the accumulated data from all += operations so far but does not prevent
further accumulation. This is the expensive step in coaddition so we make
it something that you have to call explicitly. If you forget to do this,
the flux,ivar,resolution attributes will be None.
If the coadded resolution matrix is not invertible, a warning message is
printed and the returned flux vector is zero (but ivar and resolution are
still valid).
"""
# Convert to a dense matrix if necessary.
if scipy.sparse.issparse(self.Cinv):
self.Cinv = self.Cinv.todense()
# What pixels are we using?
mask = (np.diag(self.Cinv) > 0)
keep = np.arange(len(self.Cinv_f))[mask]
keep_t = keep[:,np.newaxis]
# Initialize the results to zero.
self.flux = np.zeros_like(self.Cinv_f)
self.ivar = np.zeros_like(self.Cinv_f)
R = np.zeros_like(self.Cinv)
# Calculate the deconvolved flux,ivar and resolution for ivar > 0 pixels.
self.ivar[mask],R[keep_t,keep] = decorrelate(self.Cinv[keep_t,keep])
try:
R_it = scipy.linalg.inv(R[keep_t,keep].T)
self.flux[mask] = R_it.dot(self.Cinv_f[mask])/self.ivar[mask]
except np.linalg.linalg.LinAlgError:
self.log.warning('resolution matrix is singular so no coadded fluxes available.')
# Convert R from a dense matrix to a sparse one.
self.resolution = desispec.resolution.Resolution(R)
开发者ID:desihub,项目名称:desispec,代码行数:32,代码来源:coaddition.py
示例5: totalvalue
def totalvalue(cash_ini,orderform,valueform):
trades = pd.read_csv(orderform,header=None,sep=',')
trades = trades.dropna(axis = 1, how='all')
trades.columns = ['Year','Month','Day','Symbol','Order','Share']
dateall = []
for i in np.arange(len(trades.Year)):
dateall.append(dt.datetime(trades['Year'][i],trades['Month'][i],trades['Day'][i],16))
dateall = pd.to_datetime(dateall)
trades=trades.drop(['Year','Month','Day'],axis=1)
trades['Date']=dateall
trades.set_index('Date',inplace=True)
ls_symbols = []
for symbol in trades.Symbol:
if symbol not in ls_symbols:
ls_symbols.append(symbol)
startdate = dateall[0]
enddate = dateall[-1]
dt_timeofday = dt.timedelta(hours=16)
ldt_timestamps = du.getNYSEdays(startdate,enddate+dt_timeofday,dt_timeofday)
ls_keys = 'close'
c_dataobj = da.DataAccess('Yahoo')
price = c_dataobj.get_data(ldt_timestamps, ls_symbols, ls_keys)
orders = price*np.NaN
orders = orders.fillna(0)
for i in np.arange(len(trades.index)):
ind = trades.index[i]
if trades.ix[i,'Order']=='Buy':
orders.loc[ind,trades.ix[i,'Symbol']]+=trades.ix[i,'Share']
else:
orders.loc[ind,trades.ix[i,'Symbol']]+=-trades.ix[i,'Share']
# keys = ['price','orders']
# trading_table = pd.concat([ldf_data,orders],keys=keys,axis=1)
cash = np.zeros(np.size(price[ls_symbols[0]]),dtype=np.float)
cash[0] = cash_ini
# updating the cash value
for i in np.arange(len(orders.index)):
if i == 0:
cash[i] = cash[i] - pd.Series.sum(price.ix[i,:]*orders.ix[i,:])
else:
cash[i] = cash[i-1] - pd.Series.sum(price.ix[i,:]*orders.ix[i,:])
# updating ownership
ownership = orders*np.NaN
for i in np.arange(len(orders.index)):
ownership.ix[i,:]=orders.ix[:i+1,:].sum(axis=0)
# updating total portofolio value
value = np.zeros_like(cash)
for i in np.arange(len(ownership.index)):
value[i] = pd.Series.sum(price.ix[i,:]*ownership.ix[i,:])
keys = ['price','orders','ownership']
trading_table = pd.concat([price,orders,ownership],keys = keys, axis=1)
trading_table[('value','CASH')]=cash
trading_table[('value','STOCK')]=value
total = np.zeros_like(cash)
total = cash + value
trading_table[('value','TOTAL')]=total
trading_table[('value','TOTAL')].to_csv(valueform)
开发者ID:yesufeng,项目名称:computational-investing,代码行数:60,代码来源:trading.py
示例6: fit_deriv
def fit_deriv(cls, x, amplitude, x_0, width):
"""One dimensional Box model derivative with respect to parameters"""
d_amplitude = cls.evaluate(x, 1, x_0, width)
d_x_0 = np.zeros_like(x)
d_width = np.zeros_like(x)
return [d_amplitude, d_x_0, d_width]
开发者ID:robcross,项目名称:astropy,代码行数:7,代码来源:functional_models.py
示例7: dataVtk_3dMatrix
def dataVtk_3dMatrix(points,bounds,vectors):
"""
Function that turns a vtk output formated data to 3d field matrix data
from [(x1,y1,z1),...,(xn,yn,zn)]
to [[[[x1,y1,z1],[...],[x3,y1,z1]],[[x1,y2,z1],[...],[...]],[[x1,y3,z1],[...],[...]]]
,[[[x1,y1,z2],[...],[...]],[...],[...]] , [.........]]
-points => list of the coordinates of the poitns where the data is located.
-bounds => bounds of the data.(Xmin,Xmax,Ymin,Ymax,Zmin,Zmax)
-vectors => vector data of the field at the 'points'
"""
#asign variables
(xmin,xmax,ymin,ymax,zmin,zmax) = bounds
#generate the output arrays
grid3d = N.mgrid[zmin:zmax+1, ymin:ymax+1, xmin:xmax+1]
pnts3d = N.zeros_like(grid3d[0],dtype= N.ndarray)
vect3d = N.zeros_like(grid3d[0],dtype= N.ndarray)
#loop and rearange
for i in range(len(points)):
x_t = points[i][0]
y_t = points[i][1]
z_t = points[i][2]
pnts3d[z_t+zmax][y_t+ymax][x_t+xmax] = points[i]
vect3d[z_t+zmax][y_t+ymax][x_t+xmax] = vectors[i]
return {'points':pnts3d,'vectors':vect3d}
开发者ID:carlosloslas,项目名称:PyVortexInfoVisualisation,代码行数:27,代码来源:VTK_ReadVf3d.py
示例8: __init__
def __init__(self, network, **kwargs):
# due to the way that theano handles updates, we cannot update a
# parameter twice during the same function call. so, instead of handling
# everything in the updates for self.f_learn(...), we split the
# parameter updates into two function calls. the first "prepares" the
# parameters for the gradient computation by moving the entire model one
# step according to the current velocity. then the second computes the
# gradient at that new model position and performs the usual velocity
# and parameter updates.
self.params = network.params(**kwargs)
self.momentum = kwargs.get('momentum', 0.5)
# set up space for temporary variables used during learning.
self._steps = []
self._velocities = []
for param in self.params:
v = param.get_value()
n = param.name
self._steps.append(theano.shared(np.zeros_like(v), name=n + '_step'))
self._velocities.append(theano.shared(np.zeros_like(v), name=n + '_vel'))
# step 1. move to the position in parameter space where we want to
# compute our gradient.
prepare = []
for param, step, velocity in zip(self.params, self._steps, self._velocities):
prepare.append((step, self.momentum * velocity))
prepare.append((param, param + step))
logging.info('compiling NAG adjustment function')
self.f_prepare = theano.function([], [], updates=prepare)
super(NAG, self).__init__(network, **kwargs)
开发者ID:majidaldo,项目名称:theano-nets,代码行数:33,代码来源:trainer.py
示例9: get_jk_coulomb
def get_jk_coulomb(mol, dm, hermi=1, coulomb_allow='SSSS',
opt_llll=None, opt_ssll=None, opt_ssss=None):
if coulomb_allow.upper() == 'LLLL':
logger.info(mol, 'Coulomb integral: (LL|LL)')
j1, k1 = _call_veff_llll(mol, dm, hermi, opt_llll)
n2c = j1.shape[1]
vj = numpy.zeros_like(dm)
vk = numpy.zeros_like(dm)
vj[...,:n2c,:n2c] = j1
vk[...,:n2c,:n2c] = k1
elif coulomb_allow.upper() == 'SSLL' \
or coulomb_allow.upper() == 'LLSS':
logger.info(mol, 'Coulomb integral: (LL|LL) + (SS|LL)')
vj, vk = _call_veff_ssll(mol, dm, hermi, opt_ssll)
j1, k1 = _call_veff_llll(mol, dm, hermi, opt_llll)
n2c = j1.shape[1]
vj[...,:n2c,:n2c] += j1
vk[...,:n2c,:n2c] += k1
else: # coulomb_allow == 'SSSS'
logger.info(mol, 'Coulomb integral: (LL|LL) + (SS|LL) + (SS|SS)')
vj, vk = _call_veff_ssll(mol, dm, hermi, opt_ssll)
j1, k1 = _call_veff_llll(mol, dm, hermi, opt_llll)
n2c = j1.shape[1]
vj[...,:n2c,:n2c] += j1
vk[...,:n2c,:n2c] += k1
j1, k1 = _call_veff_ssss(mol, dm, hermi, opt_ssss)
vj[...,n2c:,n2c:] += j1
vk[...,n2c:,n2c:] += k1
return vj, vk
开发者ID:pengdl,项目名称:pyscf,代码行数:29,代码来源:dhf.py
示例10: sor
def sor(A, b):
sol = []
n = len(A)
D = np.zeros_like(A)
L = np.zeros_like(A)
for i in range(0,n):
D[i][i] = A[i][i];
for i in range(0,n):
for j in range(0,i):
L[i][j] = -A[i][j];
omega = omegafind(A,D)
Q = D/omega -L
Tj = np.linalg.inv(Q).dot(Q-A)
c = np.linalg.inv(Q).dot(b)
x = np.zeros_like(b)
for itr in range(ITERATION_LIMIT):
x=Tj.dot(x) + c;
sol = x
return list(sol)
开发者ID:chaikt12,项目名称:UECM3033_assign2,代码行数:27,代码来源:task1.py
示例11: filter_frames
def filter_frames(self, data):
data = data[0]
lp = gaussian_filter(data, 100)
hp = data - lp # poormans background subtraction
hp -= np.min(hp)
sh = hp.shape
print "here"
hp = hp.astype('uint32')
hp = flex.int(hp)
print "here now"
mask = flex.bool(np.ones_like(hp).astype('bool'))
print "here now"
result1 = flex.bool(np.zeros_like(hp).astype('bool'))
spots = np.zeros_like(hp).astype('bool')
print "here now"
for i in range(3, self.parameters['spotsize'], 5):
print "here now"
algorithm = DispersionThreshold(sh, (i, i), 1, 1, 0, -1)
print "here now"
print type(hp), type(mask), type(result1)
thing = algorithm(hp, mask, result1)
print "here now"
spots = spots + result1.as_numpy_array()
return [data, spots*data]
开发者ID:rcatwood,项目名称:Savu,代码行数:26,代码来源:dials_find_spots.py
示例12: initialize_adam
def initialize_adam(parameters):
'''
初始化v和s,他们都是字典类型的向量,都包含了以下字段
-key:'dW1','db1',...'dWL','dbL'
-values:与对应的梯度/参数相同维度的值为零的numpy矩阵
:param parameters: -包含了以下参数的字典变量
parameters['W'+str(l)] = W1
parameters['b'+str(l)] = bl
:return:
v - 包含梯度的指数加权平均值,字段如下:
v['dW'+str(l)] = ...
v['db'+str(l)] = ...
s - 包含平方梯度的指数加权平均值,字段如下:
s['dW'+str(l)] = ...
s['db'+str(l)] = ...
'''
L = len(parameters)//2
v= {}
s = {}
for l in range(L):
v['dW'+str(l+1)] = np.zeros_like(parameters['W'+str(l+1)])
v['db'+str(l+1)] = np.zeros_like(parameters['b'+str(l+1)])
s['dW'+str(l+1)] = np.zeros_like(parameters['W'+str(l+1)])
s['db'+str(l+1)] = np.zeros_like(parameters['b'+str(l+1)])
return(v,s)
开发者ID:491811030,项目名称:hellow-world,代码行数:30,代码来源:work_1.py
示例13: compute_normals
def compute_normals(im_pos, n_offset=3):
"""
Converts an XYZ image to a Normal Image
--Input--
im_pos : ndarray (NxMx3)
Image with x/y/z values for each pixel
n_offset : int
Smoothness factor for calculating the gradient
--Output--
normals : ndarray (NxMx3)
Image with normal vectors for each pixel
"""
gradients_x = np.zeros_like(im_pos)
gradients_y = np.zeros_like(im_pos)
for i in range(3):
gradients_x[:, :, i], gradients_y[:, :, i] = np.gradient(im_pos[:, :, i], n_offset)
gradients_x /= np.sqrt(np.sum(gradients_x**2, -1))[:, :, None]
gradients_y /= np.sqrt(np.sum(gradients_y**2, -1))[:, :, None]
normals = np.cross(gradients_x.reshape([-1, 3]),
gradients_y.reshape([-1, 3])).reshape(im_pos.shape)
normals /= np.sqrt(np.sum(normals**2, -1))[:, :, None]
normals = np.nan_to_num(normals)
return normals
开发者ID:MerDane,项目名称:pyKinectTools,代码行数:26,代码来源:Normals.py
示例14: calculate_feed_tonnage_constrain
def calculate_feed_tonnage_constrain(self,schedule,opening = None,closing = None):
if opening is None:
opening = np.zeros(self.ndp,dtype=np.int)
else:
assert(schedule.shape[0] == opening.shape[0])
if closing is None:
closing = np.zeros(self.ndp,dtype=np.int)
closing[:] = self.nperiods - 1
else:
assert(schedule.shape[0] == closing.shape[0])
production_period = self.calculate_feed_tonnage(schedule,opening,closing)
#calculate the deviation from feed targets
#logger.debug("minimum_feed_production=%f",self.minimum_feed_production)
#logger.debug("maximum_feed_production=%f",self.maximum_feed_production)
minp = np.zeros_like(production_period)
indices = np.where(production_period < self.minimum_feed_production)[0]
if len(indices) > 0:
minp[indices] = self.minimum_feed_production - production_period[indices]
maxp = np.zeros_like(production_period)
indices = np.where(production_period > self.maximum_feed_production)[0]
if len(indices) > 0:
maxp[indices] = production_period[indices] - self.maximum_feed_production
return tuple(maxp) + tuple(minp)
开发者ID:exepulveda,项目名称:phd_coding,代码行数:31,代码来源:bcproblem.py
示例15: predictionToPosition
def predictionToPosition(self,pi, dim = 64):
pirescale = np.expand_dims(pi, axis=1)
pirescale = np.append(pirescale, np.zeros_like(pirescale), axis=1)
positions = np.zeros_like(pirescale)
positions[:,0] = pirescale[:,0] // dim
positions[:,1] = pirescale[:,0] % dim
return positions
开发者ID:bruzat,项目名称:starcraft-reinforcement-learning,代码行数:7,代码来源:beacon.py
示例16: fdtd
def fdtd(input_grid, steps):
grid = input_grid.copy()
old_grid = np.zeros_like(input_grid)
previous_grid = np.zeros_like(input_grid)
l_x = grid.shape[0]
l_y = grid.shape[1]
for i in range(steps):
np.copyto(previous_grid, old_grid)
np.copyto(old_grid, grid)
for x in range(l_x):
for y in range(l_y):
grid[x,y] = 0.0
if 0 < x+1 < l_x:
grid[x,y] += old_grid[x+1,y]
if 0 < x-1 < l_x:
grid[x,y] += old_grid[x-1,y]
if 0 < y+1 < l_y:
grid[x,y] += old_grid[x,y+1]
if 0 < y-1 < l_y:
grid[x,y] += old_grid[x,y-1]
grid[x,y] /= 2.0
grid[x,y] -= previous_grid[x,y]
return grid
开发者ID:OnlySang,项目名称:pythran,代码行数:28,代码来源:fdtd.py
示例17: _transform_dense
def _transform_dense(self, X):
non_zero = (X != 0.0)
X_nz = X[non_zero]
X_step = np.zeros_like(X)
X_step[non_zero] = np.sqrt(X_nz * self.sample_interval_)
X_new = [X_step]
log_step_nz = self.sample_interval_ * np.log(X_nz)
step_nz = 2 * X_nz * self.sample_interval_
for j in range(1, self.sample_steps):
factor_nz = np.sqrt(step_nz /
np.cosh(np.pi * j * self.sample_interval_))
X_step = np.zeros_like(X)
X_step[non_zero] = factor_nz * np.cos(j * log_step_nz)
X_new.append(X_step)
X_step = np.zeros_like(X)
X_step[non_zero] = factor_nz * np.sin(j * log_step_nz)
X_new.append(X_step)
return np.hstack(X_new)
开发者ID:ManrajGrover,项目名称:scikit-learn,代码行数:25,代码来源:kernel_approximation.py
示例18: curvesSimilar
def curvesSimilar(t1, y1, t2, y2, tol):
"""
This function returns True if the two given curves are similar enough within tol. Otherwise returns False.
t1: time/domain of standard curve we assume to be correct
y1: values of standard curve, usually either temperature in (K) or log of a mol fraction
t2: time/domain of test curve
y2: values of test curve, usually either temperature in (K) or log of a mol fraction
The test curve is first synchronized to the standard curve using geatNearestTime function. We then calculate the value of
abs((y1-y2')/y1), giving us a normalized difference for every point. If the average value of these differences is less
than tol, we say the curves are similar.
We choose this criteria because it is compatible with step functions we expect to see in ignition systems.
"""
# Make synchornized version of t2,y2 called t2sync,y2sync.
t2sync=numpy.zeros_like(t1)
y2sync=numpy.zeros_like(t1)
for i, timepoint1 in enumerate(t1):
time_index = findNearest(t2, timepoint1)
t2sync[i]=t2[time_index]
y2sync[i]=y2[time_index]
# Get R^2 value equivalent:
normalizedError=abs((y1-y2sync)/y1)
normalizedError=sum(normalizedError)/len(y1)
if normalizedError > tol:
return False
else:
return True
开发者ID:Alborzi,项目名称:RMG-Py,代码行数:31,代码来源:observablesRegression.py
示例19: num_sdss_rand_both_catalogs
def num_sdss_rand_both_catalogs(hemi, grid):
d_rand = load_sdss_rand_both_catalogs(hemi)
n_noisy = grid.num_from_radecz(d_rand['ra'],d_rand['dec'], d_rand['z'])
# get the distance-from-observer 3d grid
d_obs = grid.distance_from_observer()
d_obs_max = d_obs[n_noisy>0].max()
d_obs_1d = np.linspace(0, d_obs_max+1., 100)
n_1d = np.zeros_like(d_obs_1d)
delta_d_obs = d_obs_1d[1]-d_obs_1d[0]
for i,this_d_obs in enumerate(d_obs_1d):
wh=np.where((np.abs(d_obs-this_d_obs)<(0.5*delta_d_obs)) & (n_noisy>0))
if len(wh[0])==0: continue
n_1d[i] = np.median(n_noisy[wh])
# now interpolate n_1d onto 3d grid
from scipy import interpolate
f = interpolate.interp1d(d_obs_1d, n_1d)
n_median = np.zeros_like(n_noisy)
wh_ok_interp = np.where((d_obs>np.min(d_obs_1d))&(d_obs<np.max(d_obs_1d)))
n_median[wh_ok_interp] = f(d_obs[wh_ok_interp])
weight = np.zeros_like(n_median)
weight[n_noisy>12]=1.
n_median *= weight
#pl.figure(1); pl.clf(); pl.imshow(n_noisy[:,:,128], vmin=0,vmax=n_median.max()); pl.colorbar()
#pl.figure(2); pl.clf(); pl.imshow(n_median[:,:,128], vmin=0,vmax=n_median.max()); pl.colorbar()
#ipdb.set_trace()
return n_median, weight
开发者ID:amanzotti,项目名称:vksz,代码行数:27,代码来源:vksz.py
示例20: pop
def pop(self, index=-1):
if not isinstance(index, int):
msg = "{0} indices must be integers, not {1}"
raise TypeError(msg.format(self.__class__.__name__,
index.__class__.__name__))
if index < 0:
index += self._len
if index < 0:
raise IndexError
if self.storage == "numpy":
ret_data = datacopy(self._data[index])
ret_lengths = None
if self._arity > 1:
ret_lengths = _get_lenarray_empty(ret_data.shape)
ret = self._element(
_mode="from_numpy",
data_store=ret_data,
len_data_store=ret_lengths,
)
self._data[index:self._len-1] = self._data[index+1:self._len]
try:
self._data[self._len-1] = np.zeros_like(self._data[self._len-1])
except ValueError: # numpy bug
for field in self._data.dtype.fields:
self._data[self._len-1][field] = np.zeros_like(self._data[self._len-1][field])
self._del_child_lengths(index)
elif self._elementary:
ret = self._data[:self._len][index]
self._data.__delitem__(index)
else:
ret = self._children[:self._len][index].copy()
self._children.__delitem__(index)
self._data.__delitem__(index)
self._len -= 1
return ret
开发者ID:agoose77,项目名称:seamless,代码行数:35,代码来源:silkarray.py
注:本文中的numpy.zeros_like函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论