本文整理汇总了Python中numpy.ma.getmask函数的典型用法代码示例。如果您正苦于以下问题:Python getmask函数的具体用法?Python getmask怎么用?Python getmask使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了getmask函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: cloud_statistics
def cloud_statistics(file_name):
"""
Return core duration, minimum core base, maximum core height, mean core
mass, formation time, dissipation time, maximum depth, depth evolution and
corresponding times for tracked clouds.
Parameters
----------
file_name : netCDF file name
id_profile file for a tracked core with dimensions double t(t),
double z(z).
Return
------
tuple : cloud_id, lifetime, base, top, mass, l_min, l_max, depths,
max_depth, times
"""
# Read netCDF dataset
data = Dataset(file_name)
# Core ID
cloud_id = int(file_name[-11:-3])
# Core duration (seconds)
times = data.variables['t'][...]
lifetime = len(times)*mc.dt
# Formation time, dissipation time (seconds)
l_min = times.min()*mc.dt
l_max = times.max()*mc.dt
# Minimum core base, maximum core height, maximum depth, depth evolution
# (metres)
area = ma.masked_invalid(data.variables['AREA'][...])
z = data.variables['z'][...]
z = z*np.ones(np.shape(area))
z = ma.masked_array(z, ma.getmask(area))
bases = z.min(axis=1)
tops = z.max(axis=1)
depths = tops - bases + mc.dz
max_depth = depths.max()
base = bases.min()
top = tops.max()
# Mean core mass mass (kilograms)
qn = ma.masked_invalid(data.variables['QN'][...])
rho = ma.masked_invalid(data.variables['RHO'][...])
mass = np.mean(np.sum(area*rho*mc.dz, axis=1))
# Remove missing values
times = ma.masked_array(times, ma.getmask(depths))
depths = depths[~depths.mask]
times = times[~times.mask]
data.close()
return cloud_id, lifetime, base, top, mass, l_min, l_max, depths, \
max_depth, times
开发者ID:vladpopa,项目名称:ent_analysis,代码行数:59,代码来源:core_id_stats.py
示例2: outer
def outer (self, a, b):
"Return the function applied to the outer product of a and b."
a = _makeMaskedArg(a)
b = _makeMaskedArg(b)
ma = getmask(a)
mb = getmask(b)
if ma is nomask and mb is nomask:
m = None
else:
ma = getmaskarray(a)
mb = getmaskarray(b)
m = logical_or.outer(ma, mb)
d = numpy.maximum.outer(filled(a), filled(b))
return TransientVariable(d, mask=m)
开发者ID:NESII,项目名称:uvcdat,代码行数:14,代码来源:MV2.py
示例3: test_testCI
def test_testCI(self):
# Test of conversions and indexing
x1 = np.array([1, 2, 4, 3])
x2 = array(x1, mask=[1, 0, 0, 0])
x3 = array(x1, mask=[0, 1, 0, 1])
x4 = array(x1)
# test conversion to strings
str(x2) # raises?
repr(x2) # raises?
assert_(eq(np.sort(x1), sort(x2, fill_value=0)))
# tests of indexing
assert_(type(x2[1]) is type(x1[1]))
assert_(x1[1] == x2[1])
assert_(x2[0] is masked)
assert_(eq(x1[2], x2[2]))
assert_(eq(x1[2:5], x2[2:5]))
assert_(eq(x1[:], x2[:]))
assert_(eq(x1[1:], x3[1:]))
x1[2] = 9
x2[2] = 9
assert_(eq(x1, x2))
x1[1:3] = 99
x2[1:3] = 99
assert_(eq(x1, x2))
x2[1] = masked
assert_(eq(x1, x2))
x2[1:3] = masked
assert_(eq(x1, x2))
x2[:] = x1
x2[1] = masked
assert_(allequal(getmask(x2), array([0, 1, 0, 0])))
x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
assert_(allequal(getmask(x3), array([0, 1, 1, 0])))
x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
assert_(allequal(getmask(x4), array([0, 1, 1, 0])))
assert_(allequal(x4, array([1, 2, 3, 4])))
x1 = np.arange(5) * 1.0
x2 = masked_values(x1, 3.0)
assert_(eq(x1, x2))
assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask))
assert_(eq(3.0, x2.fill_value))
x1 = array([1, 'hello', 2, 3], object)
x2 = np.array([1, 'hello', 2, 3], object)
s1 = x1[1]
s2 = x2[1]
assert_equal(type(s2), str)
assert_equal(type(s1), str)
assert_equal(s1, s2)
assert_(x1[1:1].shape == (0,))
开发者ID:numpy,项目名称:numpy,代码行数:49,代码来源:test_old_ma.py
示例4: __call__
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
if cbook.iterable(value):
vtype = 'array'
val = ma.asarray(value).astype(np.float)
else:
vtype = 'scalar'
val = ma.array([value]).astype(np.float)
self.autoscale_None(val)
vmin, vmax = self.vmin, self.vmax
cmin, cmax = self.cmin * vmin, self.cmax * vmax
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin == vmax:
result = 0.0 * val
else:
if clip:
mask = ma.getmask(val)
val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
mask=mask)
result = 0. * val + 0.5
result[val > cmax] = (ma.log10(val[val > cmax]) - ma.log10(cmax)) / (np.log10(vmax) - np.log10(cmax)) / 2. + 0.5
result[val < cmin] = -(ma.log10(-val[val < cmin]) - ma.log10(-cmin)) / (np.log10(-vmin) - np.log10(-cmin)) / 2. + 0.5
if vtype == 'scalar':
result = result[0]
return result
开发者ID:iceseismic,项目名称:sito,代码行数:27,代码来源:imaging.py
示例5: plot_spin_temp_lv
def plot_spin_temp_lv(values, ax, key, label, max_clip=None):
scale_vals = values[key]
dataset = values[~ma.getmask(scale_vals)]
if max_clip:
scale_vals = np.clip(dataset[key], 0, max_clip)
base = np.array([dataset['longitude'], dataset['Velocity'], scale_vals],
dtype=[('l', float), ('b', float), ('scale', float)])
sample = base
#vmax = np.max(sample[2,:])
#cm = plt.cm.get_cmap('RdYlBu_r')
cm = plt.cm.get_cmap('viridis')
x = sample[0,:]
y = sample[1,:]
z = sample[2,:]
idx = z.argsort()
x, y, z = x[idx], y[idx], z[idx]
# spin temp plot needs log, min 3
sc = ax.scatter(x, y, c=z, s=25, cmap=cm, norm=matplotlib.colors.PowerNorm(0.5, vmin=3))
formatter = LogFormatter(10, labelOnlyBase=False)
ticks = [0, 5, 10, 20, 40, 70, 100, 150, 200, 300]
cb = plt.colorbar(sc, ticks=ticks, format=formatter)
ax.set_xlim(values['longitude'].max() + 5, values['longitude'].min() - 5)
ax.set_xlabel('Galactic longitude (deg)')
ax.set_ylabel('LSR Velocity (km/s)')
cb.set_label(label)
return None
开发者ID:jd-au,项目名称:magmo-HI,代码行数:32,代码来源:examine_gas.py
示例6: __call__
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
result, is_scalar = self.process_value(value)
self.autoscale_None(result)
vmin, vmax = self.vmin, self.vmax
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin == vmax:
result.fill(0)
else:
if clip:
mask = ma.getmask(result)
result = ma.array(np.clip(result.filled(vmax), vmin, vmax),
mask=mask)
# in-place equivalent of above can be much faster
resdat = self._transform(result.data)
resdat -= self._lower
resdat /= (self._upper - self._lower)
if is_scalar:
result = result[0]
return result
开发者ID:aseagram,项目名称:matplotlib,代码行数:25,代码来源:colors.py
示例7: __setslice__
def __setslice__(self, i, j, value):
"Sets the slice described by [i,j] to `value`."
_localdict = self.__dict__
d = self._data
m = _localdict['_fieldmask']
names = self.dtype.names
if value is masked:
for n in names:
m[i:j][n] = True
elif not self._hardmask:
fval = filled(value)
mval = getmaskarray(value)
for n in names:
d[n][i:j] = fval
m[n][i:j] = mval
else:
mindx = getmaskarray(self)[i:j]
dval = np.asarray(value)
valmask = getmask(value)
if valmask is nomask:
for n in names:
mval = mask_or(m[n][i:j], valmask)
d[n][i:j][~mval] = value
elif valmask.size > 1:
for n in names:
mval = mask_or(m[n][i:j], valmask)
d[n][i:j][~mval] = dval[~mval]
m[n][i:j] = mask_or(m[n][i:j], mval)
self._fieldmask = m
开发者ID:mbentz80,项目名称:jzigbeercp,代码行数:29,代码来源:mrecords.py
示例8: __call__
def __call__(self, value, clip=None):
"""Map value to the interval [0, 1]. The clip argument is unused."""
result, is_scalar = self.process_value(value)
self.autoscale_None(result)
vmin, vcenter, vmax = self.vmin, self.vcenter, self.vmax
if vmin == vmax == vcenter:
result.fill(0)
elif not vmin <= vcenter <= vmax:
raise ValueError("minvalue must be less than or equal to "
"centervalue which must be less than or "
"equal to maxvalue")
else:
vmin = float(vmin)
vcenter = float(vcenter)
vmax = float(vmax)
# in degenerate cases, prefer the center value to the extremes
degen = (result == vcenter) if vcenter == vmax else None
x, y = [vmin, vcenter, vmax], [0, 0.5, 1]
result = ma.masked_array(np.interp(result, x, y),
mask=ma.getmask(result))
if degen is not None:
result[degen] = 0.5
if is_scalar:
result = np.atleast_1d(result)[0]
return(result)
开发者ID:Timothy-W-Hilton,项目名称:TimPyUtils,代码行数:29,代码来源:midpt_norm.py
示例9: __call__
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
if cbook.iterable(value):
vtype = 'array'
val = ma.asarray(value).astype(numpy.float)
else:
vtype = 'scalar'
val = ma.array([value]).astype(numpy.float)
if self.staticrange is None:
self.autoscale_None(val)
vmin, vmax = self.vmin, self.vmax
else:
self.vmin, self.vmax = None, None
self.autoscale_None(val)
vmin, vmax = self.vmax - self.staticrange, self.vmax
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin==vmax:
result = 0.0 * val
else:
vmin = float(vmin)
vmax = float(vmax)
rmin = float(self.rmin)
rmax = float(self.rmax)
if clip:
mask = ma.getmask(val)
val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
mask=mask)
result = (val-vmin) * ((rmax-rmin) / (vmax-vmin)) + rmin
if vtype == 'scalar':
result = result[0]
return result
开发者ID:priyom,项目名称:priyomdb,代码行数:35,代码来源:vorbis-to-spectrum.py
示例10: onMouseOver
def onMouseOver(self, event):
"""
"""
if event.inaxes == self.ax1:
if (event.xdata != None and event.ydata != None):
xidx = (int(event.xdata/
(float(self.omf.parameters['xstepsize'])*1.0e10)))
yidx = (int(event.ydata/
(float(self.omf.parameters['ystepsize'])*1.0e10)))
value = self.angle[xidx,yidx]
if ma.getmask(self.angle)[xidx,yidx]:
self.datavalue.SetStatusText('Angle Value: MASKED')
else:
value = -degrees(value)
if (value < 0.0): value +=360
self.datavalue.SetStatusText('Angle Value: '
+str('%.2f'%value))
else:
self.datavalue.SetLabel('')
return
开发者ID:reflectometry,项目名称:osrefl,代码行数:30,代码来源:wxzslice.py
示例11: __call__
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
result, is_scalar = self.process_value(value)
result = ma.masked_less_equal(result, 0, copy=False)
self.autoscale_None(result)
vmin, vmax = self.vmin, self.vmax
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin <= 0:
raise ValueError("values must all be positive")
elif vmin == vmax:
result.fill(0)
else:
if clip:
mask = ma.getmask(result)
result = ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask)
# in-place equivalent of above can be much faster
resdat = result.data
mask = result.mask
if mask is np.ma.nomask:
mask = resdat <= 0
else:
mask |= resdat <= 0
cbook._putmask(resdat, mask, 1)
np.log(resdat, resdat)
resdat -= np.log(vmin)
resdat /= np.log(vmax) - np.log(vmin)
result = np.ma.array(resdat, mask=mask, copy=False)
if is_scalar:
result = result[0]
return result
开发者ID:rinigan,项目名称:matplotlib,代码行数:35,代码来源:colors.py
示例12: __call__
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
result, is_scalar = self.process_value(value)
self.autoscale_None(result)
gamma = self.gamma
vmin, vmax = self.vmin, self.vmax
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin == vmax:
result.fill(0)
else:
if clip:
mask = ma.getmask(result)
val = ma.array(np.clip(result.filled(vmax), vmin, vmax),
mask=mask)
resdat = result.data
resdat -= vmin
np.power(resdat, gamma, resdat)
resdat /= (vmax - vmin) ** gamma
result = np.ma.array(resdat, mask=result.mask, copy=False)
result[(value < 0)&~result.mask] = 0
if is_scalar:
result = result[0]
return result
开发者ID:mahmoud-lsw,项目名称:gammatools,代码行数:27,代码来源:mpl_util.py
示例13: __call__
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
if cbook.iterable(value):
vtype = 'array'
val = ma.asarray(value).astype(np.float)
else:
vtype = 'scalar'
val = ma.array([value]).astype(np.float)
self.autoscale_None(val)
vmin, vmax = self.vmin, self.vmax
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin<=0:
raise ValueError("values must all be positive")
elif vmin==vmax:
return 0.0 * val
else:
if clip:
mask = ma.getmask(val)
val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
mask=mask)
result = (ma.log(val)-np.log(vmin))/(np.log(vmax)-np.log(vmin))
if vtype == 'scalar':
result = result[0]
return result
开发者ID:AndreI11,项目名称:SatStressGui,代码行数:28,代码来源:colors.py
示例14: __call__
def __call__(self, value, clip=None, midpoint=None):
if clip is None:
clip = self.clip
if cbook.iterable(value):
vtype = 'array'
val = ma.asarray(value).astype(np.float)
else:
vtype = 'scalar'
val = ma.array([value]).astype(np.float)
self.autoscale_None(val)
vmin, vmax = self.vmin, self.vmax
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin==vmax:
return 0.0 * val
else:
if clip:
mask = ma.getmask(val)
val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
mask=mask)
result = (val-vmin) * (1.0/(vmax-vmin))
#result = (ma.arcsinh(val)-np.arcsinh(vmin))/(np.arcsinh(vmax)-np.arcsinh(vmin))
result = result**(1./self.nthroot)
if vtype == 'scalar':
result = result[0]
return result
开发者ID:Fade89,项目名称:agpy,代码行数:31,代码来源:sqrt_norm.py
示例15: _unscented_correct
def _unscented_correct(cross_sigma, mu_pred, sigma2_pred, obs_mu_pred, obs_sigma2_pred, z):
"""Correct predicted state estimates with an observation
Parameters
----------
cross_sigma : [n_dim_state, n_dim_obs] array
cross-covariance between the state at time t given all observations
from timesteps [0, t-1] and the observation at time t
mu_pred : [n_dim_state] array
mean of state at time t given observations from timesteps [0, t-1]
sigma2_pred : [n_dim_state, n_dim_state] array
square root of covariance of state at time t given observations from
timesteps [0, t-1]
obs_mu_pred : [n_dim_obs] array
mean of observation at time t given observations from times [0, t-1]
obs_sigma2_pred : [n_dim_obs] array
square root of covariance of observation at time t given observations
from times [0, t-1]
z : [n_dim_obs] array
observation at time t
Returns
-------
mu_filt : [n_dim_state] array
mean of state at time t given observations from time steps [0, t]
sigma2_filt : [n_dim_state, n_dim_state] array
square root of covariance of state at time t given observations from
time steps [0, t]
"""
n_dim_state = len(mu_pred)
n_dim_obs = len(obs_mu_pred)
if not np.any(ma.getmask(z)):
##############################################
# Same as this, but more stable (supposedly) #
##############################################
# K = cross_sigma.dot(
# linalg.pinv(
# obs_sigma2_pred.T.dot(obs_sigma2_pred)
# )
# )
##############################################
# equivalent to this MATLAB code
# K = (cross_sigma / obs_sigma2_pred.T) / obs_sigma2_pred
K = linalg.lstsq(obs_sigma2_pred, cross_sigma.T)[0]
K = linalg.lstsq(obs_sigma2_pred.T, K)[0]
K = K.T
# correct mu, sigma
mu_filt = mu_pred + K.dot(z - obs_mu_pred)
U = K.dot(obs_sigma2_pred)
sigma2_filt = cholupdate(sigma2_pred, U.T, -1.0)
else:
# no corrections to be made
mu_filt = mu_pred
sigma2_filt = sigma2_pred
return (mu_filt, sigma2_filt)
开发者ID:Answeror,项目名称:pykalman,代码行数:58,代码来源:unscented.py
示例16: approx
def approx (a, b, fill_value=True, rtol=1.e-5, atol=1.e-8):
"""Returns true if all components of a and b are equal subject to given tolerances.
If fill_value is True, masked values considered equal. Otherwise, masked values
are considered unequal.
The relative error rtol should be positive and << 1.0
The absolute error atol comes into play for those elements of b that are very
small or zero; it says how small a must be also.
"""
m = mask_or(getmask(a), getmask(b))
d1 = filled(a)
d2 = filled(b)
if d1.dtype.char == "O" or d2.dtype.char == "O":
return np.equal(d1,d2).ravel()
x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_)
y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_)
d = np.less_equal(umath.absolute(x-y), atol + rtol * umath.absolute(y))
return d.ravel()
开发者ID:catawbasam,项目名称:FlightDataUtilities,代码行数:18,代码来源:masked_array_testutils.py
示例17: ask_chunks
def ask_chunks(self, count, price, inplace=False):
assert 0 < count <= self.max_ask
leftover = self.leftover - count * self.min_bet
chunks = self.chunks if inplace else self.chunks.copy()
for _ in range(count):
idx = np.where(ma.getmask(chunks))[0][0]
chunks[idx] = self.chunk_value(price)
chunks.mask[idx] = False
sort_chunks(chunks)
return self._get_ret_val(leftover, chunks, inplace)
开发者ID:FlorianWilhelm,项目名称:paul,代码行数:10,代码来源:broker.py
示例18: forward_fill
def forward_fill(marr, maxgap=None):
"""
Forward fills masked values in a 1-d array when there are less ``maxgap``
consecutive masked values.
Parameters
----------
marr : MaskedArray
Series to fill
maxgap : {int}, optional
Maximum gap between consecutive masked values.
If ``maxgap`` is not specified, all masked values are forward-filled.
Examples
--------
>>> x = ma.arange(20)
>>> x[(x%5)!=0] = ma.masked
>>> print x
[0 -- -- -- -- 5 -- -- -- -- 10 -- -- -- -- 15 -- -- -- --]
>>> print forward_fill(x)
[0 0 0 0 0 5 5 5 5 5 10 10 10 10 10 15 15 15 15 15]
"""
# !!!: We should probably port that to C.
# Initialization ..................
if np.ndim(marr) > 1:
raise ValueError,"The input array should be 1D only!"
a = ma.array(marr, copy=True)
amask = getmask(a)
if amask is nomask or a.size == 0:
return a
#
adata = getdata(a)
# Get the indices of the masked values (except a[0])
idxtofill = amask[1:].nonzero()[0] + 1
currGap = 0
if maxgap is not None:
previdx = -1
for i in idxtofill:
if i != previdx + 1:
currGap = 0
currGap += 1
if currGap <= maxgap and not amask[i-1]:
adata[i] = adata[i-1]
amask[i] = False
previdx = i
else:
amask[i-maxgap:i] = True
else:
for i in idxtofill:
if not amask[i-1]:
adata[i] = adata[i-1]
amask[i] = False
return a
开发者ID:B-Rich,项目名称:scikits.timeseries-sandbox,代码行数:55,代码来源:interpolate.py
示例19: _numpy_interpolation
def _numpy_interpolation(self, point_num, eval_points):
"""
Parameters
----------
point_num: int
Index of class position in values list
eval_points: ndarray
Inputs used to evaluate class member function
Returns
-------
ndarray: output from member function
"""
is_masked = ma.is_masked(eval_points)
shape = point_num.shape
ev_shape = eval_points.shape
vals = self.values[point_num.ravel()]
eval_points = np.repeat(eval_points, shape[1], axis=0)
it = np.arange(eval_points.shape[0])
it = np.repeat(it, eval_points.shape[1], axis=0)
eval_points = eval_points.reshape(
eval_points.shape[0] * eval_points.shape[1],
eval_points.shape[-1]
)
scaled_points = eval_points.T
if is_masked:
mask = np.invert(ma.getmask(scaled_points[0]))
else:
mask = np.ones_like(scaled_points[0], dtype=bool)
it = ma.masked_array(it, mask)
scaled_points[0] = (
(scaled_points[0] - (self._bounds[0][0])) /
(self._bounds[0][1] - self._bounds[0][0])
) * (vals.shape[-2] - 1)
scaled_points[1] += (
(scaled_points[1] - (self._bounds[1][0])) /
(self._bounds[1][1] - self._bounds[1][0])
) * (vals.shape[-1] - 1)
scaled_points = np.vstack((it, scaled_points))
output = np.zeros(scaled_points.T.shape[:-1])
output[mask] = map_coordinates(vals, scaled_points.T[mask].T, order=1)
new_shape = (*shape, ev_shape[-2])
output = output.reshape(new_shape)
return ma.masked_array(output, mask=mask)
开发者ID:ParsonsRD,项目名称:ctapipe,代码行数:54,代码来源:unstructured_interpolator.py
示例20: __call__
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
if cbook.iterable(value):
vtype = 'array'
val = ma.asarray(value).astype(np.float)
else:
vtype = 'scalar'
val = ma.array([value]).astype(np.float)
self.autoscale_None(val)
vmin, vmax = self.vmin, self.vmax
vin, cin = self.vin, self.cin
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin > 0:
raise ValueError("minvalue must be less than 0")
elif vmax < 0:
raise ValueError("maxvalue must be greater than 0")
elif vmin==vmax:
result = 0.0 * val
else:
if clip:
mask = ma.getmask(val)
val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
mask=mask)
ipos = (val > vin)
ineg = (val < -vin)
izero = ~(ipos | ineg)
result = ma.empty_like(val)
result[izero] = 0.5 + cin * val[izero] / vin
result[ipos] = 0.5 + cin + (0.5 - cin) * \
(ma.log(val[ipos]) - np.log(vin)) / (np.log(vmax) - np.log(vin))
result[ineg] = 0.5 - cin - (0.5 - cin) * \
(ma.log(-val[ineg]) - np.log(vin)) / (np.log(-vmin) - np.log(vin))
result.mask = ma.getmask(val)
if vtype == 'scalar':
result = result[0]
return result
开发者ID:neishm,项目名称:pygeode,代码行数:41,代码来源:cnt_helpers.py
注:本文中的numpy.ma.getmask函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论