本文整理汇总了Python中numpy.ma.getmaskarray函数的典型用法代码示例。如果您正苦于以下问题:Python getmaskarray函数的具体用法?Python getmaskarray怎么用?Python getmaskarray使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了getmaskarray函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: assertArraysEqual
def assertArraysEqual(self, arr1, arr2):
"""
Ensure that two numpy / numpy.ma arrays are equivalent in both their
mask and their data.
"""
if (arr1.shape != arr2.shape):
msg = "Shapes differ:\n" + \
str(arr1.shape) + " != " + str(arr2.shape)
raise AssertionError(msg)
mask1 = ma.getmaskarray(arr1)
mask2 = ma.getmaskarray(arr2)
masks_equal = np.array_equal(mask1, mask2)
if (not masks_equal):
msg = "Masks differ:\n" + \
str(mask1) + " != " + str(mask2) + "\n" + \
"Arrays are: \n" + \
str(arr1) + "\n" + \
str(arr2)
raise AssertionError(msg)
vals_equal = ma.allequal(arr1, arr2)
if (not vals_equal):
msg = "Values differ:\n" + \
str(arr1) + " != " + str(arr2)
raise AssertionError(msg)
开发者ID:NCAR,项目名称:cprnc_python,代码行数:27,代码来源:custom_assertions.py
示例2: _sanitise_geometry
def _sanitise_geometry(self, lons, lats):
"""
Sanitise geometry by removing any masked points.
:param lons:
:param lats:
:return: A tuple containing arrays of (lon, lat)
"""
# Align the arrays
lons, lats = self.__align_lons_lats(lons, lats)
# Get masks
lon_mask = ma.getmaskarray(lons)
lat_mask = ma.getmaskarray(lats)
# Filter the arrays
# kltsa 19/07/2016 Change for issue 23330: Some filters
# were excluded in order to allow values
# up to 90 to be included.
self.longitudes = lons[
(lons >= -180) &
(lons <= 180) &
#(lats >= 90) &
#(lats <= 90) &
(lon_mask == False)# &
#(lat_mask == False)
]
self.latitudes = lats[
#(lons >= -180) &
#(lons <= 180) &
(lats >= -90) &
(lats <= 90) &
#(lon_mask == False) &
(lat_mask == False)
]
开发者ID:cedadev,项目名称:ceda-fbs,代码行数:35,代码来源:geojson.py
示例3: _sanitise_geometry
def _sanitise_geometry(self, lons, lats):
"""
Sanitise geometry by removing any masked points.
:param lons:
:param lats:
:return: A tuple containing arrays of (lon, lat)
"""
# Align the arrays
lons, lats = self.__align_lons_lats(lons, lats)
# Get masks
lon_mask = ma.getmaskarray(lons)
lat_mask = ma.getmaskarray(lats)
# Filter the arrays
self.longitudes = lons[
(lons >= -180) &
(lons <= 180) &
(lats >= -90) &
(lats <= 90) &
(lon_mask == False) &
(lat_mask == False)
]
self.latitudes = lats[
(lons >= -180) &
(lons <= 180) &
(lats >= -90) &
(lats <= 90) &
(lon_mask == False) &
(lat_mask == False)
]
开发者ID:cedadev,项目名称:ceda-di,代码行数:32,代码来源:product.py
示例4: _tabulate_time_series
def _tabulate_time_series(a):
"""
Private function called by tabulate for flexible-dtype TimeSeries.
"""
basedtype = a.dtype
basenames = basedtype.names
if basenames is None:
_varshape = a._varshape
if _varshape != ():
pseudodtype = [('_dates', int),
('_data',(basedtype, _varshape)),
('_mask',(bool,_varshape))]
else:
pseudodtype = [('_dates', int),
('_data', basedtype),
('_mask', bool)]
pseudo = itertools.izip(a._dates, a.filled(), ma.getmaskarray(a),)
else:
pseudodtype = [('_dates', int)]
pseudodtype.extend([(fname,[('_data',ftype), ('_mask',bool)])
for (fname,ftype) in basedtype.descr])
fields = [a[f] for f in basenames]
pseudo = itertools.izip(a._dates,
*[zip(f.filled().flat, ma.getmaskarray(f).flat)
for f in fields])
return np.fromiter(pseudo, dtype=pseudodtype)
开发者ID:B-Rich,项目名称:scikits.timeseries-sandbox,代码行数:26,代码来源:tstables.py
示例5: _assertMaskedArray
def _assertMaskedArray(self, assertion, a, b, strict, **kwargs):
# Define helper function to extract unmasked values as a 1d
# array.
def unmasked_data_as_1d_array(array):
array = ma.asarray(array)
if array.ndim == 0:
if array.mask:
data = np.array([])
else:
data = np.array([array.data])
else:
data = array.data[~ma.getmaskarray(array)]
return data
# Compare masks. This will also check that the array shapes
# match, which is not tested when comparing unmasked values if
# strict is False.
a_mask, b_mask = ma.getmaskarray(a), ma.getmaskarray(b)
np.testing.assert_array_equal(a_mask, b_mask)
if strict:
assertion(a.data, b.data, **kwargs)
else:
assertion(unmasked_data_as_1d_array(a),
unmasked_data_as_1d_array(b),
**kwargs)
开发者ID:marqh,项目名称:iris,代码行数:26,代码来源:__init__.py
示例6: errorbar
def errorbar(ax, x, y, xerr=True, yerr=True, fmt='-', ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, **kwargs):
"""Plots two Dvects against each other. Requires matplotlib.
See matplotlib.axes.Axes.errorbar for an explanation of most fields. The only differences are:
ax -- the Axes you are plotting in, needed to allow a call of the form ax.errorbar(...) to the
standard matplotlib errorbar plotter
x -- x Dvect
y -- y Dvect
Quite often you may want to set fmt=.' to get points. The lines are for compatibility with
the matplotlib errorbar routine.
"""
import warnings
try:
import matplotlib.pyplot as plt
except ImportError:
raise DvectError("dvect.errorbar: matplotlib needed for plotting")
# Identify joint OK part
ok = ~(getmaskarray(x) | getmaskarray(y))
# Catch xerr and yerr which are re-defined cf maplotlib errorbar since
# Dvects carry their own errors
xerr = x.err.data[ok] if xerr and x.err is not None and isinstance(x,Dvect) else None
yerr = y.err.data[ok] if yerr and y.err is not None and isinstance(y,Dvect) else None
with warnings.catch_warnings():
warnings.simplefilter("ignore")
ax.errorbar(x.data[ok], y.data[ok], xerr=xerr, yerr=yerr, fmt=fmt, ecolor=ecolor, elinewidth=elinewidth, capsize=capsize,
barsabove=barsabove, lolims=lolims, uplims=uplims, xlolims=xlolims, xuplims=xuplims, **kwargs)
开发者ID:StuartLittlefair,项目名称:trm-subs,代码行数:33,代码来源:dvect.py
示例7: _compute_masks_differ
def _compute_masks_differ(self, var1, var2):
if (np.array_equal(
ma.getmaskarray(var1),
ma.getmaskarray(var2))):
return False
else:
return True
开发者ID:mfdeakin-sandia,项目名称:cprnc_python,代码行数:7,代码来源:vardiffs.py
示例8: __setslice__
def __setslice__(self, i, j, value):
"Sets the slice described by [i,j] to `value`."
_localdict = self.__dict__
d = self._data
m = _localdict['_fieldmask']
names = self.dtype.names
if value is masked:
for n in names:
m[i:j][n] = True
elif not self._hardmask:
fval = filled(value)
mval = getmaskarray(value)
for n in names:
d[n][i:j] = fval
m[n][i:j] = mval
else:
mindx = getmaskarray(self)[i:j]
dval = np.asarray(value)
valmask = getmask(value)
if valmask is nomask:
for n in names:
mval = mask_or(m[n][i:j], valmask)
d[n][i:j][~mval] = value
elif valmask.size > 1:
for n in names:
mval = mask_or(m[n][i:j], valmask)
d[n][i:j][~mval] = dval[~mval]
m[n][i:j] = mask_or(m[n][i:j], mval)
self._fieldmask = m
开发者ID:mbentz80,项目名称:jzigbeercp,代码行数:29,代码来源:mrecords.py
示例9: self_training
def self_training(X, y, X_unLabeled, clf, th):
clf.fit(X=X, y=y)
index_unlabeled = ma.arange(0, len(X_unLabeled), 1)
y_unlabeled = np.zeros(len(X_unLabeled))
train_is_failed = False
while True:
probs = clf.predict_proba(X=X_unLabeled[~ma.getmaskarray(index_unlabeled)])
index_greater_equal = np.greater_equal([max(d) for d in probs], [th]*len(probs))
index_labelable = index_unlabeled.data[~ma.getmaskarray(index_unlabeled)][index_greater_equal]
if not len(index_labelable) > 0:
if not len(index_unlabeled.data[ma.getmaskarray(index_unlabeled)]) > 0:
train_is_failed = True
break
index_unlabeled[index_labelable] = ma.masked
if index_unlabeled.all() is ma.masked:
break
y_unlabeled[index_labelable] = [np.argmax(p) for p in probs[index_greater_equal]]
X_labelable = X_unLabeled[index_unlabeled.mask]
y_labelable = y_unlabeled[index_unlabeled.mask]
clf.fit(X=np.append(X, X_labelable, axis=0),
y=np.append(y, y_labelable))
if train_is_failed:
y_unlabeled = []
else:
y_unlabeled = ma.array(data=y_unlabeled, mask=index_unlabeled.mask)
return clf, y_unlabeled
开发者ID:TatsuyukiIju,项目名称:data_projection,代码行数:35,代码来源:test.py
示例10: woa_profile_from_dap
def woa_profile_from_dap(var, d, lat, lon, depth, cfg):
"""
Monthly Climatologic Mean and Standard Deviation from WOA,
used either for temperature or salinity.
INPUTS
time: [day of the year]
lat: [-90<lat<90]
lon: [-180<lon<180]
depth: [meters]
Reads the WOA Monthly Climatology NetCDF file and
returns the corresponding WOA values of salinity or temperature mean and
standard deviation for the given time, lat, lon, depth.
"""
if lon < 0:
lon = lon+360
url = cfg['url']
doy = int(d.strftime('%j'))
dataset = open_url(url)
dn = (np.abs(doy-dataset['time'][:])).argmin()
xn = (np.abs(lon-dataset['lon'][:])).argmin()
yn = (np.abs(lat-dataset['lat'][:])).argmin()
if re.match("temperature\d?$", var):
mn = ma.masked_values(dataset.t_mn.t_mn[dn, :, yn, xn].reshape(
dataset['depth'].shape[0]), dataset.t_mn.attributes['_FillValue'])
sd = ma.masked_values(dataset.t_sd.t_sd[dn, :, yn, xn].reshape(
dataset['depth'].shape[0]), dataset.t_sd.attributes['_FillValue'])
# se = ma.masked_values(dataset.t_se.t_se[dn, :, yn, xn].reshape(
# dataset['depth'].shape[0]), dataset.t_se.attributes['_FillValue'])
# Use this in the future. A minimum # of samples
# dd = ma.masked_values(dataset.t_dd.t_dd[dn, :, yn, xn].reshape(
# dataset['depth'].shape[0]), dataset.t_dd.attributes['_FillValue'])
elif re.match("salinity\d?$", var):
mn = ma.masked_values(dataset.s_mn.s_mn[dn, :, yn, xn].reshape(
dataset['depth'].shape[0]), dataset.s_mn.attributes['_FillValue'])
sd = ma.masked_values(dataset.s_sd.s_sd[dn, :, yn, xn].reshape(
dataset['depth'].shape[0]), dataset.s_sd.attributes['_FillValue'])
# dd = ma.masked_values(dataset.s_dd.s_dd[dn, :, yn, xn].reshape(
# dataset['depth'].shape[0]), dataset.s_dd.attributes['_FillValue'])
zwoa = ma.array(dataset.depth[:])
ind = (depth <= zwoa.max()) & (depth >= zwoa.min())
# Mean value profile
f = interp1d(zwoa[~ma.getmaskarray(mn)].compressed(), mn.compressed())
mn_interp = ma.masked_all(depth.shape)
mn_interp[ind] = f(depth[ind])
# The stdev profile
f = interp1d(zwoa[~ma.getmaskarray(sd)].compressed(), sd.compressed())
sd_interp = ma.masked_all(depth.shape)
sd_interp[ind] = f(depth[ind])
output = {'woa_an': mn_interp, 'woa_sd': sd_interp}
return output
开发者ID:castelao,项目名称:oceansdb,代码行数:59,代码来源:woa.py
示例11: test_no_data_available
def test_no_data_available():
""" This is a position without valid data """
db = WOA()
out = db['TEMP'].extract(doy=155, lat=48.1953, lon=-69.5855,
depth=[2.0, 5.0, 6.0, 21.0, 44.0, 79.0, 5000])
assert sorted(out.keys()) == [u't_dd', u't_mn', u't_sd', u't_se']
for v in out:
ma.getmaskarray(out[v]).all()
开发者ID:castelao,项目名称:pyWOA,代码行数:9,代码来源:test_WOA_from_nc.py
示例12: test_set_fields
def test_set_fields(self):
# Tests setting fields.
base = self.base.copy()
mbase = base.view(mrecarray)
mbase = mbase.copy()
mbase.fill_value = (999999, 1e20, 'N/A')
# Change the data, the mask should be conserved
mbase.a._data[:] = 5
assert_equal(mbase['a']._data, [5, 5, 5, 5, 5])
assert_equal(mbase['a']._mask, [0, 1, 0, 0, 1])
# Change the elements, and the mask will follow
mbase.a = 1
assert_equal(mbase['a']._data, [1]*5)
assert_equal(ma.getmaskarray(mbase['a']), [0]*5)
# Use to be _mask, now it's recordmask
assert_equal(mbase.recordmask, [False]*5)
assert_equal(mbase._mask.tolist(),
np.array([(0, 0, 0),
(0, 1, 1),
(0, 0, 0),
(0, 0, 0),
(0, 1, 1)],
dtype=bool))
# Set a field to mask ........................
mbase.c = masked
# Use to be mask, and now it's still mask !
assert_equal(mbase.c.mask, [1]*5)
assert_equal(mbase.c.recordmask, [1]*5)
assert_equal(ma.getmaskarray(mbase['c']), [1]*5)
assert_equal(ma.getdata(mbase['c']), [asbytes('N/A')]*5)
assert_equal(mbase._mask.tolist(),
np.array([(0, 0, 1),
(0, 1, 1),
(0, 0, 1),
(0, 0, 1),
(0, 1, 1)],
dtype=bool))
# Set fields by slices .......................
mbase = base.view(mrecarray).copy()
mbase.a[3:] = 5
assert_equal(mbase.a, [1, 2, 3, 5, 5])
assert_equal(mbase.a._mask, [0, 1, 0, 0, 0])
mbase.b[3:] = masked
assert_equal(mbase.b, base['b'])
assert_equal(mbase.b._mask, [0, 1, 0, 1, 1])
# Set fields globally..........................
ndtype = [('alpha', '|S1'), ('num', int)]
data = ma.array([('a', 1), ('b', 2), ('c', 3)], dtype=ndtype)
rdata = data.view(MaskedRecords)
val = ma.array([10, 20, 30], mask=[1, 0, 0])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
rdata['num'] = val
assert_equal(rdata.num, val)
assert_equal(rdata.num.mask, [1, 0, 0])
开发者ID:dyao-vu,项目名称:meta-core,代码行数:56,代码来源:test_mrecords.py
示例13: test_set_mask
def test_set_mask(self):
base = self.base.copy()
mbase = base.view(mrecarray)
# Set the mask to True .......................
mbase.mask = masked
assert_equal(ma.getmaskarray(mbase["b"]), [1] * 5)
assert_equal(mbase["a"]._mask, mbase["b"]._mask)
assert_equal(mbase["a"]._mask, mbase["c"]._mask)
assert_equal(mbase._mask.tolist(), np.array([(1, 1, 1)] * 5, dtype=bool))
# Delete the mask ............................
mbase.mask = nomask
assert_equal(ma.getmaskarray(mbase["c"]), [0] * 5)
assert_equal(mbase._mask.tolist(), np.array([(0, 0, 0)] * 5, dtype=bool))
开发者ID:hitej,项目名称:meta-core,代码行数:13,代码来源:test_mrecords.py
示例14: outer
def outer (self, a, b):
"Return the function applied to the outer product of a and b."
a = _makeMaskedArg(a)
b = _makeMaskedArg(b)
ma = getmask(a)
mb = getmask(b)
if ma is nomask and mb is nomask:
m = None
else:
ma = getmaskarray(a)
mb = getmaskarray(b)
m = logical_or.outer(ma, mb)
d = numpy.maximum.outer(filled(a), filled(b))
return TransientVariable(d, mask=m)
开发者ID:NESII,项目名称:uvcdat,代码行数:14,代码来源:MV2.py
示例15: computeEdgeDistances
def computeEdgeDistances(uvframe):
"""
Create a 2D matrix @edgedists as a companion to @uvframe,
containing for each pixel a distance to the nearest edge (more precisely,
the nearest 0-valued pixel).
We compute @edgedists in a floodfill fashion spreading from zero-areas
to the middle of one-areas iteratively, with distances approximated
on the pixel grid.
We return a tuple (edgedists, edgedirs), where edgedirs contains information
about the relative offset of the nearest edge piece.
"""
# edgedists is a masked array, with only already computed values unmasked;
# at first, uvframe == 0 already are computed (as zeros)
edgedists = ma.array(numpy.zeros(uvframe.shape, dtype = numpy.float), mask = (uvframe > 0))
edgedirs = ma.array(numpy.zeros(uvframe.shape, dtype = (numpy.float, 2)), mask = [[[j,j] for j in i] for i in uvframe > 0])
#numpy.set_printoptions(threshold=numpy.nan)
#print edgedists
#print edgedirs
flood_spread = scipy.ndimage.morphology.generate_binary_structure(2, 2)
neighbor_ofs = [[-1,-1],[-1,0],[-1,1], [0,-1],[0,0],[0,1], [1,-1],[1,0],[1,1]]
s2 = math.sqrt(2)
neighbor_dist = [s2,1,s2, 1,0,1, s2,1,s2]
while ma.getmaskarray(edgedists).any():
# scan masked area for any elements that have unmasked neighbors
done_mask = numpy.invert(ma.getmaskarray(edgedists))
todo_mask = done_mask ^ scipy.ndimage.binary_dilation(done_mask, flood_spread)
#print_mask(todo_mask)
for i in numpy.transpose(numpy.nonzero(todo_mask)):
neighbor_val = ma.array([
edge_dist_if_within(edgedists, i + ofs) + dist
for ofs, dist in zip(neighbor_ofs, neighbor_dist)
])
nearestnei = ma.argmin(neighbor_val)
# We assert that this update never affects value other fields
# visited later in this iteration of floodfill
edgedists[tuple(i)] = neighbor_val[nearestnei]
nearestneicoord = i + neighbor_ofs[nearestnei]
#print "-", nearestneicoord, edgedirs[tuple(nearestneicoord)]
edgedirs[tuple(i)] = edgedirs[tuple(nearestneicoord)] + tuple(neighbor_ofs[nearestnei])
#print "+", i, edgedirs[tuple(i)]
return (edgedists.data, edgedirs.data)
开发者ID:nemaload,项目名称:sigextract,代码行数:48,代码来源:pose-extract-lf.py
示例16: test_off_map
def test_off_map(self) :
Data = self.blocks[0]
Data.calc_freq()
map = self.map
map[:,:,:] = 0.0
Data.data[:,:,:,:] = 0.0
# Rig the pointing but put one off the map.
def rigged_pointing() :
Data.ra = map.get_axis('ra')[range(10)]
Data.dec = map.get_axis('dec')[range(10)]
Data.ra[3] = Data.ra[3] - 8.0
Data.calc_pointing = rigged_pointing
smd.sub_map(Data, map)
self.assertTrue(sp.alltrue(ma.getmaskarray(Data.data[3,:,:,:])))
self.assertTrue(sp.alltrue(sp.logical_not(
ma.getmaskarray((Data.data[[0,1,2,4,5,6,7,8,9],:,:,:])))))
开发者ID:OMGitsHongyu,项目名称:analysis_IM,代码行数:16,代码来源:test_subtract_map_data.py
示例17: calculate_theta
def calculate_theta(self, Xm, p_y_given_x):
"""Estimate marginal parameters from data and expected latent labels."""
theta = []
for i in range(self.n_visible):
not_missing = np.logical_not(ma.getmaskarray(Xm)[:, i])
theta.append(self.estimate_parameters(Xm.data[not_missing, i], p_y_given_x[:, not_missing]))
return np.array(theta)
开发者ID:gregversteeg,项目名称:discrete_sieve,代码行数:7,代码来源:corex.py
示例18: test
def test(self):
self.flags = {}
try:
threshold = self.cfg['threshold']
except:
print("Deprecated cfg format. It should contain a threshold item.")
threshold = self.cfg
try:
flag_good = self.cfg['flag_good']
flag_bad = self.cfg['flag_bad']
except:
print("Deprecated cfg format. It should contain flag_good & flag_bad.")
flag_good = 1
flag_bad = 4
assert (np.size(threshold) == 1) and \
(threshold is not None) and \
(np.isfinite(threshold))
flag = np.zeros(self.data[self.varname].shape, dtype='i1')
flag[np.nonzero(self.features['bin_spike'] > threshold)] = flag_bad
flag[np.nonzero(self.features['bin_spike'] <= threshold)] = flag_good
flag[ma.getmaskarray(self.data[self.varname])] = 9
self.flags['bin_spike'] = flag
开发者ID:castelao,项目名称:CoTeDe,代码行数:25,代码来源:bin_spike.py
示例19: start
def start(self, observation):
'''
Handle the first iteration.
Keyword Arguments:
observation (int) The index of the most recent observation [0:num_states]
Returns:
next_action (int) The index of the next action to take [0:num_actions]
'''
next_state = observation
# the valid actions are at unmasked array positions, so compute the inverse
# of the mask of the relevant row
valid_action_flags = ~ma.getmaskarray(self._q_table[next_state,:])
# get the indices of the valid actions and pick one at random
next_action = random.choice(np.flatnonzero(valid_action_flags))
# store off state for the next iteration
self._last_state = next_state
self._last_action = next_action
# increment state visitation table
self.update_visitation_table(next_state, next_action)
self._epoch_num +=1
return next_action
开发者ID:RabbitNick,项目名称:extrasy,代码行数:29,代码来源:learning_agent.py
示例20: wmean_bandpass_1D_serial
def wmean_bandpass_1D_serial(data, lshorterpass, llongerpass, t=None,
method='hann', axis=0):
""" Equivalent to wmean_1D_serial, but it is a bandpass
Input:
- data: np.array or ma.maked_array, nD
- lshorterpass: The size of the highpass filter, i.e. shorter
wavelenghts are preserved. It is in the same unit of t.
- llongerpass: The size of the lowpass filter, i.e.longer
wavelenghts are preserved. It is in the same unit of t.
- t: is the scale of the choosed axis, 1D. If not
defined, it will be considered a sequence.
- method: ['hann', 'hamming', 'blackman']
Defines the weight function type
- axis: Dimension which the filter will be applied
"""
assert False, "There is a BUG here"
assert axis <= data.ndim, "Invalid axis!"
# If necessary, move the axis to be filtered for the first axis
if axis != 0:
data_smooth = wmean_bandpass_1D_serial(data.swapaxes(0, axis),
lshorterpass = lshorterpass,
llongerpass = llongerpass,
t = t,
method = method,
axis = 0)
return data_smooth.swapaxes(0, axis)
# Below here, the filter will be always applied on axis=0
# If t is not given, creates a regularly spaced t
if t is None:
print "The scale along the choosed axis weren't defined. I'll consider a constant sequence."
t = np.arange(data.shape[axis])
assert t.shape == (data.shape[axis],), "Invalid size of t."
# ----
winfunc = window_func(method)
data_smooth = ma.masked_all(data.shape)
if data.ndim==1:
(I,) = np.nonzero(~ma.getmaskarray(data))
for i in I:
# First remove the high frequency
tmp = _convolve_1D(t[i], t, llongerpass, winfunc, data)
# Then remove the low frequency
data_smooth[i] = tmp - \
_convolve_1D(t[i], t, lshorterpass, winfunc, tmp)
else:
I = data.shape[1]
for i in range(I):
data_smooth[:,i] = wmean_bandpass_1D_serial(data[:,i],
lshorterpass, llongerpass, t, method, axis)
return data_smooth
开发者ID:castelao,项目名称:maud,代码行数:60,代码来源:core1D.py
注:本文中的numpy.ma.getmaskarray函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论