本文整理汇总了Python中scipy.atleast_2d函数的典型用法代码示例。如果您正苦于以下问题:Python atleast_2d函数的具体用法?Python atleast_2d怎么用?Python atleast_2d使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了atleast_2d函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: intercept
def intercept(self, ray):
"""Solves for intersection point of surface and a ray or Beam
Args:
ray: Ray or Beam object
It must be in the same coordinate space as the surface object.
Returns:
s: value of s [meters] which intercepts along norm, otherwise an
empty tuple (for no intersection).
Examples:
Accepts all point and point-derived object inputs, though all data
is stored as a python object.
Generate an y direction Ray in cartesian coords using a Vec from (0,0,1)::
cen = geometry.Center(flag=True)
ydir = geometry.Vecx((0,1,0))
zpt = geometry.Point((0,0,1),cen)
"""
# Proceedure will be to generate
if self._origin is ray._origin:
try:
rcopy = ray.copy()
rcopy.redefine(self)
intersect = _beam.interceptCyl(scipy.atleast_2d(rcopy.x()[:,-1]),
scipy.atleast_2d(rcopy.norm.unit),
scipy.array([self.sagi.s,self.sagi.s]),
scipy.array([-self.norm.s,self.norm.s])) + rcopy.norm.s[-1]
if not scipy.isfinite(intersect):
#relies on r1 using arctan2 so that it sets the branch cut properly (-pi,pi]
return None
elif self.edgetest(intersect, (rcopy(intersect)).r1()):
return intersect
else:
rcopy.norm.s[-1] = intersect
intersect = _beam.interceptCyl(scipy.atleast_2d(rcopy.x()[:,-1]),
scipy.atleast_2d(rcopy.norm.unit),
scipy.array([self.sagi.s,self.sagi.s]),
scipy.array([-self.norm.s,self.norm.s])) + rcopy.norm.s[-1]
if not scipy.isfinite(intersect):
#relies on r1 using arctan2 so that it sets the branch cut properly (-pi,pi]
return None
elif self.edgetest(intersect, (rcopy(intersect)).r1()):
return None
else:
return None
except AttributeError:
raise ValueError('not a surface object')
else:
raise ValueError('not in same coordinate system, use redefine and try again')
开发者ID:icfaust,项目名称:TRIPPy,代码行数:58,代码来源:surface.py
示例2: __call__
def __call__(self, X, n):
n = scipy.atleast_2d(scipy.asarray(n, dtype=int))
X = scipy.atleast_2d(scipy.asarray(X))
n_unique = unique_rows(n)
mu = scipy.zeros(X.shape[0])
for nn in n_unique:
idxs = (n == nn).all(axis=1)
mu[idxs] = self.fun(X[idxs, :], nn, *self.params)
return mu
开发者ID:leconteur,项目名称:gptools,代码行数:10,代码来源:mean.py
示例3: topterms
def topterms(self,n_terms=10):
""" This function is given. """
vec = sp.atleast_2d(sp.arange(0,self.n_words))
topics = []
for k in xrange(self.n_topics):
probs = sp.atleast_2d(self._phi[k,:])
mat = sp.append(probs,vec,0)
sind = sp.array([mat[:,i] for i in sp.argsort(mat[0])]).T
topics.append([self.vocab[int(sind[1,self.n_words - 1 - i])] for i in xrange(n_terms)])
return topics
开发者ID:KathleenF,项目名称:numerical_computing,代码行数:10,代码来源:studentlda.py
示例4: worker_quality
def worker_quality(predictions, num_classes):
predictions = sp.atleast_2d(predictions)
num_workers, num_objects = predictions.shape
error_rates = sp.zeros((num_workers, num_classes, num_classes))
diy, diz = sp.diag_indices(num_classes)
error_rates[:, diy, diz] = 1
while True:
# E step
new_predictions = sp.zeros((num_objects, num_classes))
for i in xrange(num_objects):
individual_predictions = predictions[:, i]
individual_error_rates = error_rates[range(num_workers), individual_predictions, individual_predictions]
new_predictions[i, :] = sp.bincount(individual_predictions, individual_error_rates, minlength=num_classes)
correct_labels = sp.argmax(new_predictions, axis=1)
count_per_label = sp.bincount(correct_labels)
# M step
new_error_rates = sp.zeros((num_workers, num_classes, num_classes))
for i, label in enumerate(correct_labels):
new_error_rates[range(num_workers), label, predictions[:, i]] += 1
for i in xrange(num_classes):
new_error_rates[:, :, i] /= count_per_label
diff_error_rates = sp.absolute(new_error_rates - error_rates)
error_rates = new_error_rates
if sp.amax(diff_error_rates) < 0.001:
break
# calculate the cost of each worker
class_priors = sp.bincount(correct_labels, minlength=num_classes) / float(num_objects)
costs = []
for k in xrange(num_workers):
worker_class_priors = sp.dot(sp.atleast_2d(class_priors), error_rates[k])[0] + 0.0000001
cost = 0
for j in xrange(num_classes):
soft_label = error_rates[k, :, j] * class_priors / worker_class_priors[j]
soft_label_cost = 0.0
for i in xrange(num_classes):
soft_label_cost += sp.sum(soft_label[i] * soft_label)
soft_label_cost -= sp.sum(soft_label ** 2) # subtract the diagonal entries (those costs = 0)
cost += soft_label_cost * worker_class_priors[j]
costs.append(cost)
return error_rates, correct_labels, costs
开发者ID:woohp,项目名称:ai_tidbits,代码行数:53,代码来源:worker_quality_estimate.py
示例5: vec2ten
def vec2ten(data, nchan=4):
"""converts from templates/spikes that are concatenated across the
channels to tensors that have an extra dim for the channels
:type data: ndarray
:param data: input array [templates][vars * channels]
:type nchan: int
:param nchan: count of channels
Default=4
:returns: ndarray - data converted to tensor [templates][vars][channels]
"""
if data.ndim == 1:
data = sp.atleast_2d(data)
n, dim = data.shape
if dim % nchan != 0:
raise ValueError(
'dim %s nchan != 0 !! dim=%s, nchan=%s' % (dim, nchan))
tf = dim / nchan
rval = sp.zeros((n, tf, nchan), data.dtype)
for i in xrange(n):
for c in xrange(nchan):
rval[i, :, c] = data[i, c * tf:(c + 1) * tf]
return rval
开发者ID:pmeier82,项目名称:BOTMpy,代码行数:27,代码来源:funcs_general.py
示例6: nullspace
def nullspace(A, atol=1e-13, rtol=0):
'''Compute an approximate basis for the nullspace of A.
The algorithm used by this function is based on the singular value
decomposition of `A`. This implementation was copied
from the scipy cookbook: http://www.scipy.org/Cookbook/RankNullspace
@param A: ndarray
A should be at most 2-D. A 1-D array with length k will be treated
as a 2-D with shape (1, k)
@param atol : float
The absolute tolerance for a zero singular value. Singular values
smaller than `atol` are considered to be zero.
@param rtol : float
The relative tolerance. Singular values less than rtol*smax are
considered to be zero, where smax is the largest singular value.
@note: If both `atol` and `rtol` are positive, the combined tolerance is the
maximum of the two; that is::
tol = max(atol, rtol * smax)
Singular values smaller than `tol` are considered to be zero.
@return: ns ndarray
If `A` is an array with shape (m, k), then `ns` will be an array
with shape (k, n), where n is the estimated dimension of the
nullspace of `A`. The columns of `ns` are a basis for the
nullspace; each element in numpy.dot(A, ns) will be approximately
zero.
'''
A = sp.atleast_2d(A)
_u, s, vh = LA.svd(A)
tol = max(atol, rtol * s[0])
nnz = (s >= tol).sum()
ns = vh[nnz:].conj().T
return ns
开发者ID:svohara,项目名称:svo_util,代码行数:35,代码来源:linearalg.py
示例7: sinc_interp1d
def sinc_interp1d(x, s, r):
"""Interpolates `x`, sampled at times `s`
Output `y` is sampled at times `r`
inspired from from Matlab:
http://phaseportrait.blogspot.com/2008/06/sinc-interpolation-in-matlab.html
:param ndarray x: input data time series
:param ndarray s: input sampling time series (regular sample interval)
:param ndarray r: output sampling time series
:return ndarray: output data time series (regular sample interval)
"""
# init
s = sp.asarray(s)
r = sp.asarray(r)
x = sp.asarray(x)
if x.ndim == 1:
x = sp.atleast_2d(x)
else:
if x.shape[0] == len(s):
x = x.T
else:
if x.shape[1] != s.shape[0]:
raise ValueError('x and s must be same temporal extend')
if sp.allclose(s, r):
return x.T
T = s[1] - s[0]
# resample
sincM = sp.tile(r, (len(s), 1)) - sp.tile(s[:, sp.newaxis], (1, len(r)))
return sp.vstack([sp.dot(xx, sp.sinc(sincM / T)) for xx in x]).T
开发者ID:pmeier82,项目名称:BOTMpy,代码行数:32,代码来源:spike_alignment.py
示例8: reconstruct
def reconstruct(self, X):
n_features = sp.atleast_2d(X).shape[1]
latent = sp.dot(self.inv_M, sp.dot(self.weight.T, (X - self.predict_mean).T))
eps = sprd.multivariate_normal(sp.zeros(n_features), self.sigma2 * sp.eye(n_features))
recons = sp.dot(self.weight, latent) + self.predict_mean + eps
return recons
开发者ID:Yevgnen,项目名称:prml,代码行数:7,代码来源:pca.py
示例9: phigprov
def phigprov(self, Pp, Pg, theta):
""" Calculate transition probabilities
Parameters
------------
Pp : ndarray, shape (n, k)
Conditional choice probabilities for provinces
Pg : ndarray, shape (n, 2 k)
Conditional choice probabilities for the government
theta : ndarray, shape (5, )
Parameters
Returns
---------
V : ndarray
Observable state values
Notes
-----------
Takes conditional choice probabilities :math:`P` and :math:`\theta`
as an input and returns values :math:`V^P`.
This is the mapping :math:`\Phi` in part (b) of the assignment.
This is a wrapper for the matlab function **Phigprov**.
"""
theta = sp.atleast_2d(theta)
return pytave.feval(1, "Phigprov", Pp, Pg, theta, self.model())[0]
开发者ID:jrnold,项目名称:psc585,代码行数:29,代码来源:ps4.py
示例10: plot_filter_set
def plot_filter_set(self, ph=None, show=False):
"""plot the filter set in a waveform plot"""
# get plotting tools
try:
from spikeplot import waveforms
except ImportError:
return None
# checks
if self.nf == 0:
warnings.warn("skipping plot, no active units!")
return None
# init
units = {}
for k in self._idx_active_set:
units[k] = sp.atleast_2d(self.bank[k].f_conc)
return waveforms(
units,
tf=self._tf,
plot_separate=True,
plot_mean=False,
plot_single_waveforms=False,
plot_handle=ph,
show=show,
)
开发者ID:rproepp,项目名称:BOTMpy,代码行数:28,代码来源:filter_bank.py
示例11: new_p
def new_p(self, Pp, Pg, theta):
""" Calculate transition probabilities
Parameters
--------------
Pp : ndarray, shape (n, k)
Conditional choice probabilities for provinces
Pg : ndarray, shape (n, 2 k)
Conditional choice probabilities for the government
theta : ndarray, shape (5, )
Parameters
Returns
---------
Pp : ndarray, shape (n, k)
New conditional choice probabilities for provinces
Pg : ndarray, shape (n, 2 k)
New conditional choice probabilities for the government
Notes
-----------
Takes conditional choice probabilities :math:`P` and :math:`\theta`
as an input and returns new conditional choice values.
This is the mapping :math:`\Psi` in part (c) of the assignment.
This is a wrapper for the matlab function **NewP**.
"""
theta = sp.atleast_2d(theta)
return pytave.feval(2, "NewP", Pp, Pg, theta, self.model())
开发者ID:jrnold,项目名称:psc585,代码行数:32,代码来源:ps4.py
示例12: chunk_data
def chunk_data(data, epochs=None, invert=False):
"""returns a generator of chunks from data given epochs
:type data: ndarray
:param data: signal data [[samples, channels]]
:type epochs: ndarray
:param epochs: epoch set, positive mask
:type invert: bool
:param invert: invert epochs, negative mask instead of positive mask
:returns: generator - data chunks as per :epochs:
"""
# checks
data = sp.asarray(data)
if data.ndim != 2:
data = sp.atleast_2d(data).T
if epochs is not None:
if epochs.ndim != 2:
raise ValueError("epochs has to be ndim=2 like [[start,end]]")
if invert is True and epochs is not None:
epochs = invert_epochs(epochs, end=data.shape[0])
if epochs is None or len(epochs) == 0:
epochs = [[0, data.shape[0]]]
# yield data chunks
for ep in epochs:
yield data[ep[0] : ep[1], :], list(ep)
开发者ID:rproepp,项目名称:BOTMpy,代码行数:27,代码来源:funcs_spike.py
示例13: summed_dist_matrix
def summed_dist_matrix(self, vectors, presorted=False):
""" Calculates the sum of all element pair distances for each
pair of vectors.
If :math:`(a_1, \\dots, a_n)` and :math:`(b_1, \\dots, b_m)` are the
:math:`u`-th and :math:`v`-th vector from `vectors` and :math:`K` the
kernel, the resulting entry in the 2D array will be :math:`D_{uv}
= \\sum_{i=1}^{n} \\sum_{j=1}^{m} K(a_i - b_j)`.
:param sequence vectors: A sequence of Quantity 1D to calculate the
summed distances for each pair. The required units depend on the
kernel. Usually it will be the inverse unit of the kernel size.
:param bool presorted: Some optimized specializations of this function
may need sorted vectors. Set `presorted` to `True` if you know that
the passed vectors are already sorted to skip the sorting and thus
increase performance.
:rtype: Quantity 2D
"""
D = sp.empty((len(vectors), len(vectors)))
if len(vectors) > 0:
might_have_units = self(vectors[0])
if hasattr(might_have_units, 'units'):
D = D * might_have_units.units
else:
D = D * pq.dimensionless
for i, j in sp.ndindex(len(vectors), len(vectors)):
D[i, j] = sp.sum(self(
(vectors[i] - sp.atleast_2d(vectors[j]).T).flatten()))
return D
开发者ID:NeuroArchive,项目名称:spykeutils,代码行数:31,代码来源:signal_processing.py
示例14: signal
def signal(signal, events=None, epochs=None, spike_trains=None,
spike_waveforms=None):
""" Create a plot from an AnalogSignal.
:param AnalogSignal signal: The signal to plot.
:param sequence events: A list of Event objects to be included in the
plot.
:param sequence epochs: A list of Epoch objects to be included in the
plot.
:param dict spike_trains: A dictionary of SpikeTrain objects to be
included in the plot. Spikes are plotted as vertical lines.
Indices of the dictionary (typically Unit objects) are used
for color and legend entries.
:param sequence spike_waveforms: A dictionary of lists of Spike objects
to be included in the plot. Waveforms of spikes are overlaid on
the signal. Indices of the dictionary (typically Unit objects) are
used for color and legend entries.
"""
# Plot title
win_title = 'Analog Signal'
if signal.recordingchannel:
win_title += ' | Recording Channel: %s' % \
signal.recordingchannel.name
if signal.segment:
win_title += ' | Segment: %s' % signal.segment.name
win = PlotDialog(toolbar=True, wintitle=win_title)
signalarray = neo.AnalogSignalArray(sp.atleast_2d(sp.asarray(signal)).T,
units=signal.units, sampling_rate=signal.sampling_rate)
_plot_signal_array_on_window(win, signalarray, events, epochs,
spike_trains, spike_waveforms, False)
开发者ID:neurodebian,项目名称:spykeutils,代码行数:32,代码来源:analog_signals.py
示例15: _stop_training
def _stop_training(self, *args, **kwargs):
# produce data in one piece
self.data = sp.vstack(self.data)
# calculate energy
self.energy = self._energy_func(self.data)
if self.energy.ndim == 1:
self.energy = sp.atleast_2d(self.energy).T
self.size, self.nchan = self.energy.shape
开发者ID:rproepp,项目名称:BOTMpy,代码行数:8,代码来源:spike_detection.py
示例16: genCylGrid
def genCylGrid(x0,x1,x2,edges=False):
if edges:
for i in (x0,x1,x2):
i = scipy.insert(i,0,2*i[1]-i[2])
i = scipy.append(i,2*i[-1]-i[-2])
i = (i[1:]+i[:-1])/2
pnts = scipy.empty((x0.size, x1.size, x2.size,3))
xin = scipy.dot(scipy.atleast_2d(x0).T, scipy.atleast_2d(scipy.cos(x1)))
yin = scipy.dot(scipy.atleast_2d(x0).T, scipy.atleast_2d(scipy.sin(x1)))
zee = scipy.ones(yin.shape)
for i in range(x2.size):
pnts[:,:,i,0] = xin
pnts[:,:,i,1] = yin
pnts[:,:,i,2] = x2[i]*zee
return pnts
开发者ID:icfaust,项目名称:TRIPPy,代码行数:17,代码来源:mayaplot.py
示例17: _multi_norm
def _multi_norm(x, mean):
""" Evaluate pdf of multivariate normal distribution with a mean
at rows of x with high precision.
"""
d = x.shape[1]
fac = (2 * sp.pi) ** (-d / 2.0)
y = cdist(x, sp.atleast_2d(mean), "sqeuclidean") * -0.5
return fac * sp.exp(sp.longdouble(y))
开发者ID:amchagas,项目名称:spykeutils,代码行数:8,代码来源:sorting_quality_assesment.py
示例18: get_all_forces
def get_all_forces(atoms, mlmodel, grid_spacing, extfield=None, mixing=[1.,0.,0.], lammpsdata=None, do_update=False):
# get actual forces and potential energy of configuration
pot_energy, forces = calc_lammps(atoms, preloaded_data=lammpsdata)
forces = [forces]
### ML IS HERE ###
if not (mlmodel is None or (mixing[1] == 0 and not do_update)):
# Accumulate the new observation in the dataset
coarse_colvars = round_vector(atoms.colvars(), precision=grid_spacing)
distance_from_data = sp_dist.cdist(
sp.atleast_2d(coarse_colvars), mlmodel.X_fit_).ravel()
# check if configuration has already occurred
if distance_from_data.min() == 0.0:
index = list(distance_from_data).index(0.0)
# Learn E_min: uncomment this
if pot_energy < mlmodel.y[index]:
mlmodel.y[index] = pot_energy
else:
do_update = False
# # Learn free energy: uncomment this
# beta = 1 / self.temp
# mlmodel.y[index] += - 1 / beta * sp.log(
# 1 + sp.exp(- beta * (pot_energy - mlmodel.y[index])))
# pot_energy = mlmodel.y[index]
else:
mlmodel.accumulate_data(coarse_colvars, pot_energy)
if do_update:
# update ML potential with all the data contained in it.
mlmodel.update_fit()
# Get ML constraint forces if the model is fitted
if hasattr(mlmodel, 'dual_coef_') and pot_energy < 0:
ml_forces = get_constraint_forces(atoms, mlmodel)
# ml_forces /= sp.mean(map(LA.norm, ml_forces))
# ml_forces *= 1 * sp.mean(map(LA.norm, forces[0]))
forces.append(ml_forces)
else:
forces.append(sp.zeros(forces[0].shape))
# X_near = Xplotgrid([atoms.phi() - 0.2, atoms.psi() - 0.2], [atoms.phi() - 0.2, atoms.psi() - 0.2], 2, 10)
# y_near_mean = mlmodel.predict(X_near).mean()
# if pot_energy < y_near_mean:
# mix = 1.2
# else:
# mix = 0.8
# EXTERNAL FIELD IS HERE
if not (extfield is None or mixing[2] == 0):
colvars = round_vector(atoms.colvars(), precision=grid_spacing)
extfield.update_cost(colvars, pot_energy)
extfield_forces = get_extfield_forces(atoms, extfield)
extfield_forces /= sp.mean(map(LA.norm, extfield_forces))
extfield_forces *= sp.mean(map(LA.norm, forces[0]))
forces.append(extfield_forces)
# Compose the actual and the ML forces together by mixing them accordingly
# a [1,-1,0] mixing would result, in the perfect fitting limit, to a zero
# mean field motion.
forces = [m_i * f_i for m_i, f_i in zip(mixing[:len(forces)], forces)]
f = sp.sum(forces, axis=0)
return f, pot_energy, forces
开发者ID:marcocaccin,项目名称:LearningMetaDynamics,代码行数:58,代码来源:test_mlsample.py
示例19: regular_cube_innerproduct
def regular_cube_innerproduct(rcc,k):
"""
For a given regular_cube_complex, compute a matrix
representing the k-form innerproduct.
These elements are similar to Whitney forms,
except using standard linear (bilinear,trilinear,..)
elements for 0-forms.
"""
N = rcc.complex_dimension()
#standard cube is [0,0,..,0] [0,1,...,N]
standard_cube = atleast_2d(array([0]*N + range(N),dtype='i'))
standard_k_faces = standard_cube
for i in range(N,k,-1):
standard_k_faces = cube_array_boundary(standard_k_faces,i)[0]
k_faces_per_cube = standard_k_faces.shape[0]
K = zeros((k_faces_per_cube,k_faces_per_cube)) #local stiffness matrix
h = 1
V = h**N #cube volume
scale = V * (1/h)**2 * (1/3.0)**(N-k)
for i,row_i in enumerate(standard_k_faces):
for j,row_j in enumerate(standard_k_faces):
if all(row_i[N:] == row_j[N:]):
differences = (row_i[:N] != row_j[:N])
differences[row_i[N:]] = 0
K[i,j] = scale * (1.0/2.0)**sum(differences)
else:
K[i,j] = 0
CA = rcc[-1].cube_array[:,:N]
num_cubes = CA.shape[0]
k_faces = tile(hstack((CA,zeros((CA.shape[0],k),dtype=CA.dtype))),(1,k_faces_per_cube)).reshape((-1,N+k))
k_faces += tile(standard_k_faces,(num_cubes,1))
k_face_array = rcc[k].cube_array
face_indices = cube_array_search(k_face_array,k_faces)
rows = face_indices.repeat(k_faces_per_cube)
cols = face_indices.reshape((-1,k_faces_per_cube)).repeat(k_faces_per_cube,axis=0).reshape((-1,))
data = K.reshape((1,-1)).repeat(num_cubes,axis=0).reshape((-1,))
# temporary memory cost solution - eliminate zeros from COO representation
nz_mask = data != 0.0
rows = rows[nz_mask]
cols = cols[nz_mask]
data = data[nz_mask]
shape = (len(k_face_array),len(k_face_array))
return coo_matrix( (data,(rows,cols)), shape).tocsr()
开发者ID:DongliangGao,项目名称:pydec,代码行数:58,代码来源:innerproduct.py
示例20: detect_skew
def detect_skew(img, min_angle=-20, max_angle=20, quality='low'):
img = sp.atleast_2d(img)
rows, cols = img.shape
min_min_angle = min_angle
max_max_angle = max_angle
if quality == 'low':
resolution = sp.arctan2(2.0, cols) * 180.0 / sp.pi
min_target_size = 100
resize_order = 1
elif quality == 'high':
resolution = sp.arctan2(1.0, cols) * 180.0 / sp.pi
min_target_size = 300
resize_order = 3
else:
resolution = sp.arctan2(1.0, cols) * 180.0 / sp.pi
min_target_size = 200
resize_order = 2
# resize the image so it's faster to work with
min_size = min(rows, cols)
target_size = min_target_size if min_size > min_target_size else min_size
resize_ratio = float(target_size) / min_size
img = imresize(img, resize_ratio)
rows, cols = img.shape
# pad the image and invert the colors
img *= -1
img += 255
padded_img = sp.zeros((rows*2, cols*2))
padded_img[rows//2:rows//2+rows, cols//2:cols//2+cols] = img
img = padded_img
# keep dividing the interval in half to achieve O(log(n))
while True:
current_resolution = (max_angle - min_angle) / 30.0
best_angle = None
best_variance = 0.0
# rotate the image, sum the pixel values in each row for each rotation
# then find the variance of all the sums, pick the highest variance
for i in xrange(31):
angle = min_angle + i * current_resolution
rotated_img = rotate(img, angle, reshape=False, order=resize_order)
num_black_pixels = sp.sum(rotated_img, axis=1)
variance = sp.var(num_black_pixels)
if variance > best_variance:
best_angle = angle
best_variance = variance
if current_resolution < resolution:
break
# update the angle range
min_angle = max(best_angle - current_resolution, min_min_angle)
max_angle = min(best_angle + current_resolution, max_max_angle)
return best_angle
开发者ID:sunnyrjuneja,项目名称:ai_tidbits,代码行数:58,代码来源:detect_skew1.py
注:本文中的scipy.atleast_2d函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论