本文整理汇总了Python中scipy.average函数的典型用法代码示例。如果您正苦于以下问题:Python average函数的具体用法?Python average怎么用?Python average使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了average函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: get_cluster_distribution
def get_cluster_distribution(g, method = 'average'):
"""
The clustering coefficient distribution grouped by degree. Similar to the histogram shows the possible degree k,
and average/median clustering coefficient of nodes with degree k in graph g.
Parameters:
-----------
g: NetworkX Graph
method: str, ('average', 'median'), (default = 'average')
Returns:
--------
xdata, ydata, a 2-tuple of array, (k, avg_cc(V_k)), where V_k are the nodes with degree k
"""
g = to_undirected(g)
k = nx.clustering(g)
d = g.degree()
ck = defaultdict(list)
for n in g.nodes_iter():
ck[d[n]].append(k[n])
xdata, ydata = list(), list()
if method == 'average':
for x, y in ifilter(lambda x: x[0] > 1 and average(x[1]) > 0, ck.iteritems()):
xdata.append(x)
ydata.append(average(y))
elif method == 'median':
for x, y in ifilter(lambda x: x[0] > 1 and median(x[1]) > 0, ck.iteritems()):
xdata.append(x)
ydata.append(median(y))
else:
raise NameError("method should be 'average' or 'mean'")
xdata = array(xdata)
ydata = array(ydata)
return(xdata, ydata)
开发者ID:kaeaura,项目名称:churn_prediction_proj,代码行数:34,代码来源:featureExtractor.py
示例2: find_homog_trans
def find_homog_trans(points_a, points_b, err_threshold=0, rot_0=None):
"""Finds a homogeneous transformation matrix that, when applied to
the points in points_a, minimizes the squared Euclidean distance
between the transformed points and the corresponding points in
points_b. Both points_a and points_b are (n, 3) arrays.
"""
#Align the centroids of the two point clouds
cent_a = sp.average(points_a, axis=0)
cent_b = sp.average(points_b, axis=0)
points_a = points_a - cent_a
points_b = points_b - cent_b
#Define the error as a function of a rotation vector in R^3
rot_cost = lambda rot: (sp.dot(vec_to_rot(rot), points_a.T).T
- points_b).flatten()**2
#Run the optimization
if rot_0 == None:
rot_0 = sp.zeros(3)
rot = opt.leastsq(rot_cost, rot_0)[0]
#Compute the final homogeneous transformation matrix
homog_1 = sp.eye(4)
homog_1[0:3, 3] = -cent_a
homog_2 = sp.eye(4)
homog_2[0:3,0:3] = vec_to_rot(rot)
homog_3 = sp.eye(4)
homog_3[0:3,3] = cent_b
homog = sp.dot(homog_3, sp.dot(homog_2, homog_1))
return homog, rot
开发者ID:abestick,项目名称:kinmodel,代码行数:30,代码来源:load_mocap.py
示例3: calc_velocity
def calc_velocity(vol_flow, side):
r"""Calculates the velocity field for a rate BC"""
#
x_vel = 0.0
z_vel = 0.0
avg_fact = namespace.sim_params['avg_fact']
#
if side == 'top':
avg_b = sp.average(map_data_field.data_map[-1, :])
axis_len = avg_fact * len(map_data_field.data_map[-1, :])
z_vel = vol_flow/(avg_b * axis_len)
elif side == 'bottom':
vol_flow = -vol_flow
avg_b = sp.average(map_data_field.data_map[0, :])
axis_len = avg_fact * len(map_data_field.data_map[0, :])
z_vel = vol_flow/(avg_b * axis_len)
elif side == 'left':
vol_flow = -vol_flow
avg_b = sp.average(map_data_field.data_map[:, 0])
axis_len = avg_fact * len(map_data_field.data_map[:, 0])
x_vel = vol_flow/(avg_b * axis_len)
elif side == 'right':
avg_b = sp.average(map_data_field.data_map[:, -1])
axis_len = avg_fact * len(map_data_field.data_map[:, -1])
x_vel = vol_flow/(avg_b * axis_len)
else:
raise ValueError('Invalid side given: '+side)
#
return 'uniform ({} 0.0 {})'.format(x_vel, z_vel)
开发者ID:stadelmanma,项目名称:netl-AP_MAP_FLOW,代码行数:29,代码来源:apm_open_foam_export.py
示例4: standardize_vacuum_quadratures
def standardize_vacuum_quadratures(args, h5):
vacuum_quadratures = h5["vacuum_quadratures"][:]
corrected_vacuum = correct_intrastep_drift(vacuum_quadratures)
create_dataset(args, h5,
"corrected_vacuum_quadratures", data=corrected_vacuum)
mean = average(corrected_vacuum, axis=1)
centered_vacuum = corrected_vacuum - mean[:, None]
create_dataset(args, h5,
"centered_vacuum_quadratures", data=centered_vacuum)
return average(std(centered_vacuum, axis=1))
开发者ID:tomohowk,项目名称:tomohowk,代码行数:10,代码来源:standardize_raw_quadratures.py
示例5: update
def update(self):
""" former set image data."""
"""
has to check: -is average? -is dFF? -flag to show? -only one?
average behaviour: take all that are active, average and overlay
dFF behaviour: if multiple channels are active, the dFF are over
layed and colored according to their channel
if only one channel is active:
raw is in grayscale, dFF is in glow color map
"""
### for implementation of global lut mod
# current_lut = self.LUTwidgets.currentIndex()
# work only on those that are active
for n in range(self.data.nFiles):
if self.Options.view['show_flags'][n] == False: # hide inactive
self.ImageItems[n].hide()
self.ImageItems_dFF[n].hide()
if self.Options.view['show_flags'][n] == True: # work only on those that are active
if self.Options.view['show_dFF']: # when showing dFF
if self.Options.view['show_monochrome']: # when in mono glow mode
self.ImageItems[n].show()
else:
self.ImageItems[n].hide()
if self.Options.view['show_avg']: # when showing avg
self.ImageItems_dFF[n].setImage(sp.average(self.data.dFF[:,:,:,n],axis=2))
self.ImageItems[n].setImage(sp.average(self.data.raw[:,:,:,n],axis=2))
else:
self.ImageItems_dFF[n].setImage(self.data.dFF[:,:,self.frame,n])
self.ImageItems[n].setImage(self.data.raw[:,:,self.frame,n])
self.ImageItems_dFF[n].show()
else: # when showing raw
self.ImageItems_dFF[n].hide() # no dFF
if self.Options.view['show_avg']:
self.ImageItems[n].setImage(sp.average(self.data.raw[:,:,:,n],axis=2))
else:
self.ImageItems[n].setImage(self.data.raw[:,:,self.frame,n])
self.ImageItems[n].show()
self.ImageItems[n].setLevels(self.Data_Display.LUT_Controlers.raw_levels[n])
self.ImageItems_dFF[n].setLevels(self.Data_Display.LUT_Controlers.dFF_levels[n])
pass
开发者ID:TapiokaBrown,项目名称:ILTIS,代码行数:55,代码来源:Data_Display_Widget.py
示例6: update_frame
def update_frame(self):
for ind in self.active_inds:
if self.Main.Options.view['show_avg']:
self.ImageItems_dFF[ind].setImage(sp.average(self.Main.Data.dFF[:,:,:,ind],axis=2))
self.ImageItems[ind].setImage(sp.average(self.Main.Data.raw[:,:,:,ind],axis=2))
else:
self.ImageItems_dFF[ind].setImage(self.Main.Data.dFF[:,:,self.frame,ind])
self.ImageItems[ind].setImage(self.Main.Data.raw[:,:,self.frame,ind])
self.update_levels()
pass
开发者ID:Dahaniel,项目名称:ILTIS,代码行数:11,代码来源:Frame_Visualizer_Widget.py
示例7: against_the_field
def against_the_field(self):
wins = scipy.zeros((len(self.realTeams), len(self.weekly['OP'])))
for (i, t) in enumerate(self.realTeams):
for (j, w) in enumerate(self.weekly['PTS FOR']):
for t2 in [el for el in self.realTeams if el != t]:
wins[i, j] += int(self.dataDic[t][w] > self.dataDic[t2][w]) if self.dataDic[t][w] else 0.0
wins[i, j] += .5 * int(self.dataDic[t][w] == self.dataDic[t2][w]) if self.dataDic[t][w] else 0.0
losses = 11. - wins
return scipy.average(wins, axis=1), scipy.std(wins, axis=1), scipy.average(losses, axis=1), scipy.std(losses, axis=1)
开发者ID:RZachLamberty,项目名称:FantasyFootball,代码行数:11,代码来源:statparse.py
示例8: get_network_reading
def get_network_reading(self):
# Update the readings for all nodes
self.update_all_readings()
# Get the current readings from all nodes
node_readings = []
for node_name in self.nodes:
node_readings.append(self.nodes[node_name].stable_field_prediction)
#node_readings = np.array(node_readings)
network_map = np.full((25,25), 0)
network_confidence = np.zeros((25,25))
# Go through each cell and get values from node predictions
for x_index in range(25):
for y_index in range(25):
cell_vals = []
index = (x_index, y_index)
for plane in node_readings:
# Get the value
val = plane[index]
if not np.isnan(val):
cell_vals.append(val)
#if x_index == 13 and y_index == 13:
# print cell_vals
if not np.isnan(scipy.average(np.array(cell_vals))):
network_map[index] = scipy.average(np.array(cell_vals))
network_confidence[index] = scipy.std(np.array(cell_vals))
else:
network_map[index] = 0
network_confidence[index] = 0
# Get the average
#network_avg = scipy.average(node_readings)
# Get the standard deviation
#network_std = scipy.std(node_readings)
return network_map, network_confidence
开发者ID:dquinnfrank,项目名称:CS791X_MSN,代码行数:54,代码来源:consensus_filter_field.py
示例9: react_xy
def react_xy(self, rolling_av=False, toprint=True):
if rolling_av:
weights = scipy.exp((-1.*(scipy.arange(self.rolling,0,-1.)/self.rolling)**2)/2.)
xd = scipy.average(self.xdrift[(-1*self.rolling):],weights=weights)
yd = scipy.average(self.ydrift[(-1*self.rolling):],weights=weights)
else:
xd = self.xdrift[-1]
yd = self.ydrift[-1]
if len(self.xdrift)>1:
last_slope_1_x = self.xdrift[-1] - self.xdrift[-2]
last_slope_1_y = self.ydrift[-1] - self.ydrift[-2]
integrated_diff_x = scipy.sum(self.xdrift)
integrated_diff_y = scipy.sum(self.ydrift)
move_x = xd * self.micronperpixel_x
move_y = -1*yd * self.micronperpixel_y
if not self.use_marz:
last_x = self.piezo.getPosition(1)
last_y = self.piezo.getPosition(2)
if (not self.movedLastTime[-1]) or (not self.move_every_other):
if (abs(xd) > self.xythreshold_pixels) and (not self.no_xy):
if self.use_marz:
if toprint:
print "Moving x:", move_x
self.xystage.goRelative(move_x,0)
self.movedx.append(move_x)
else:
if toprint:
print "Moving x:", move_x
self.piezo.moveTo(1, last_x+move_x, waitForConvergence=False)
self.movedx.append(move_x)
else:
self.movedx.append(0)
if (abs(yd) > self.xythreshold_pixels) and (not self.no_xy):
if self.use_marz:
if toprint:
print "Moving y:", move_y
self.xystage.goRelative(0,move_y)
self.movedy.append(move_y)
else:
if toprint:
print "Moving y:", move_y
self.piezo.moveTo(2, last_y+move_y, waitForConvergence=False)
self.movedx.append(move_y)
else:
self.movedy.append(0)
开发者ID:coder-guy22296,项目名称:Device_manager,代码行数:52,代码来源:imageBasedFocusLock.py
示例10: locate
def locate(self, P1, P2, C):
pointlist = []
for i, testfunc in enumerate(self.testfuncs):
if self.flagfuncs[i] == iszero:
for ind in range(testfunc.m):
X, V = testfunc.findzero(P1, P2, ind)
pointlist.append((X,V))
X = array(average([point[0] for point in pointlist]))
V = array(average([point[1] for point in pointlist]))
C.Corrector(X,V)
return X, V
开发者ID:BenjaminBerhault,项目名称:Python_Classes4MAD,代码行数:14,代码来源:BifPoint.py
示例11: main
def main(argv=None):
global args
parser=argparse.ArgumentParser(description="Compute various statistics related to sequences sets or individual sequences; either in the provided fasta files or for the sequences piped in")
# parser.add_argument('infile', nargs='?', type=argparse.FileType('r'), default=sys.stdin)
parser.add_argument('-p',dest="pretty",action="store_true",help="Pretty print using PrettyTable module")
parser.add_argument('-i',dest="individual",action="store_true",help="Display statistics for each individual sequences")
parser.add_argument('-d',dest="delimiter",help="Colum separator for output, default to whitespace",default=" ")
parser.add_argument('-t',dest="min_length",help="Minimun length threshold to filter fasta file",default=0,type=int)
parser.add_argument('-r',dest="reference_length",help="(Not yet implemented)Reference length used to compute corrected Nx values",default=0)
parser.add_argument('-o', nargs='?', type=argparse.FileType('w'), default=sys.stdout,dest="outfile")
parser.add_argument('FASTAFILE',action='append',nargs="+",help='List of fasta files to keep. Use "*" to keep them all')
args=parser.parse_args()
all_records=[]
FASTAFILE=args.FASTAFILE[0]
if args.pretty:
import prettytable
for f in FASTAFILE:
for record in SeqIO.parse(f, "fasta", generic_dna):
if len(record.seq)<=args.min_length:
continue
all_records.append(SequenceStat(f,record))
if args.individual:
process_individual_sequences(all_records)
return 0
# Display summary statistics per file
sequences_per_files=collections.defaultdict(list)
for s in all_records:
sequences_per_files[s.file].append(s)
if args.pretty:
table=prettytable.PrettyTable(["File","#Seqs","Avg GC","Avg Length(kb)", "Quant","Sum Length(kb)","N50(kb)","L50"])
table.align["File"] = "l"
for file,seqs in sequences_per_files.items():
lengths=[x.length for x in seqs]
table.add_row([file,len(seqs),round(scipy.average([x.gc for x in seqs]),2),\
round(scipy.average(lengths)/1000,2),mquantiles(lengths),round(sum(lengths)/1000,2),round(N50.N50(lengths)/1000,2),N50.L50(lengths)])
print >>args.outfile,table.get_string(sortby="N50(kb)")
else:
for file,seqs in sequences_per_files.items():
lengths=[x.length for x in seqs]
print >>args.outfile," ".join(map(str,[\
file,len(seqs),scipy.average([x.gc for x in seqs]),\
scipy.average(lengths),sum(lengths),N50.N50(lengths),N50.L50(lengths)
]))
开发者ID:EdwardBetts,项目名称:metaviro,代码行数:50,代码来源:fasta_statistics.py
示例12: suppressFire_callback
def suppressFire_callback(channel):
x,y = float('nan'),float('nan')
while np.isnan(x) or np.isnan(y):
FireImage = abs(average(ImQueue[-1],-1) - average(ImQueue[0],-1))
x,y = findFire(FireImage)
fo = '-'.join(map(str, datetime.now().timetuple()[:6]))
misc.imsave('fire'+fo+'.bmp',FireImage)
xdivtmp, ydivtmp = xdivs[:], ydivs[:]
bisect.insort(xdivtmp,x) # Insert the fire coordinates into the protection grid
bisect.insort(ydivtmp,y)
xzone = xdivtmp.index(x) - 1 # Find the grid coordinates
yzone = ydivtmp.index(y) - 1
del xdivtmp, ydivtmp
firePorts((xzone,yzone))
print 'Fire at (%.2f,%.2f) in zone %d,%d\nFiring ports %d & %d' % ((x,y,xzone,yzone,) + fireDict[(xzone,yzone)])
开发者ID:sputnick1124,项目名称:esi-uninozzle,代码行数:15,代码来源:RPiThreaded2.py
示例13: center_on_cos
def center_on_cos(raw_quadratures, phi0=None, omega=None, snap_omega=False):
mean = scipy.average(raw_quadratures, axis=1)
no_angles, no_pulses = raw_quadratures.shape
model = Model(cos_model)
offset, amplitude, phi0, omega = guess_initial_parameters(mean, phi0, omega)
model.set_param_hint("offset", value=offset)
model.set_param_hint("amplitude", min=0., value=amplitude)
model.set_param_hint("phi0", value=phi0)
model.set_param_hint("omega", min=0., value=omega)
model.make_params(verbose=False)
steps = scipy.arange(no_angles)
res = model.fit(mean, x=steps, verbose=False)
omega_param = res.params["omega"]
if snap_omega:
appx_omega = float(omega_param)
no_pi_intervals = int(round(pi/appx_omega))
omega = pi/no_pi_intervals
omega_param.set(omega, vary=False)
res.fit(mean, x=steps, verbose=False)
d_value, p_value_ks = kstest(res.residual, 'norm')
mean_fit = res.eval(x=steps)
offset = mean-mean_fit
aligned_quadratures = raw_quadratures - offset[:,None]
centered_quadratures = aligned_quadratures - float(res.params["offset"])
return (centered_quadratures,
float(omega_param), float(res.params["phi0"]), p_value_ks)
开发者ID:tomohowk,项目名称:tomohowk,代码行数:26,代码来源:standardize_raw_quadratures.py
示例14: print_all_stats
def print_all_stats(ctx, series):
ftime = get_ftime(series)
start = 0
end = ctx.interval
print('start-time, samples, min, avg, median, 90%, 95%, 99%, max')
while (start < ftime): # for each time interval
end = ftime if ftime < end else end
sample_arrays = [ s.get_samples(start, end) for s in series ]
samplevalue_arrays = []
for sample_array in sample_arrays:
samplevalue_arrays.append(
[ sample.value for sample in sample_array ] )
#print('samplevalue_arrays len: %d' % len(samplevalue_arrays))
#print('samplevalue_arrays elements len: ' + \
#str(map( lambda l: len(l), samplevalue_arrays)))
# collapse list of lists of sample values into list of sample values
samplevalues = reduce( array_collapser, samplevalue_arrays, [] )
#print('samplevalues: ' + str(sorted(samplevalues)))
# compute all stats and print them
myarray = scipy.fromiter(samplevalues, float)
mymin = scipy.amin(myarray)
myavg = scipy.average(myarray)
mymedian = scipy.median(myarray)
my90th = scipy.percentile(myarray, 90)
my95th = scipy.percentile(myarray, 95)
my99th = scipy.percentile(myarray, 99)
mymax = scipy.amax(myarray)
print( '%f, %d, %f, %f, %f, %f, %f, %f, %f' % (
start, len(samplevalues),
mymin, myavg, mymedian, my90th, my95th, my99th, mymax))
# advance to next interval
start += ctx.interval
end += ctx.interval
开发者ID:huyanhua,项目名称:fio,代码行数:34,代码来源:fiologparser.py
示例15: clutch_performance
def clutch_performance(self):
"""Record against the field in the playoffs only"""
playoffs = [el for el in self.weekly['OP'] if 'PLAYOFFS' in el]
wins = scipy.zeros((len(self.realTeams), len(playoffs)))
for (i, t) in enumerate(self.realTeams):
for (j, w) in enumerate(playoffs):
for t2 in [el for el in self.realTeams if el != t]:
wins[i, j] += int(self.dataDic[t][w] > self.dataDic[t2][w]) if self.dataDic[t][w] else 0.0
wins[i, j] += .5 * int(self.dataDic[t][w] == self.dataDic[t2][w]) if self.dataDic[t][w] else 0.0
losses = 11. - wins
return (scipy.average(wins, axis=1),
scipy.std(wins, axis=1),
scipy.average(losses, axis=1),
scipy.std(losses, axis=1))
开发者ID:RZachLamberty,项目名称:FantasyFootball,代码行数:16,代码来源:statparse.py
示例16: smoothMemory
def smoothMemory(ffty, degree=3):
global ffts
ffts = ffts + [ffty]
if len(ffts) <= degree:
return ffty
ffts = ffts[1:]
return scipy.average(scipy.array(ffts), 0)
开发者ID:eobropta,项目名称:bar-lighting,代码行数:7,代码来源:PyAudioTest.py
示例17: simplex_quivers
def simplex_quivers(sc,form):
"""
Sample a Whitney 1-form at simplex barycenters
"""
quiver_bases = average(sc.vertices[sc[-1].simplices],axis=1)
quiver_dirs = zeros((sc[-1].num_simplices,sc.embedding_dimension()))
s_to_i = sc[1].simplex_to_index
for n,s in enumerate(sc[-1].simplices):
verts = sorted(s)
d_lambda = barycentric_gradients(sc.vertices[verts,:])
edges = [Simplex(x) for x in combinations(s,2)]
indices = [s_to_i[x] for x in edges]
values = [form[i] for i in indices]
for e,v in zip(combinations(range(len(verts)),2),values):
quiver_dirs[n,:] += v*(d_lambda[e[1]] - d_lambda[e[0]])
quiver_dirs /= (sc.complex_dimension() + 1)
return quiver_bases,quiver_dirs
开发者ID:DongliangGao,项目名称:pydec,代码行数:26,代码来源:draw.py
示例18: show_fft
def show_fft(filename, form):
x, fs, nbits = getattr(audiolab, form + 'read')(filename)
leds = LEDs(num=8)
N = fs / 30.0
db_range = (-60.0, 0.0)
c = lambda stuff: int(map_to_range(scipy.average(stuff), db_range[0], db_range[1], 0.0, 255.0))
def do_work():
global i
lower, upper = int(i * N), int((i+1) * N)
X = scipy.fft(x[lower:upper])
Xdb = numpy.clip(20 * scipy.log10(scipy.absolute(X)), db_range[0], db_range[1])
#print Xdb
f = scipy.linspace(0, fs, N, endpoint=False)[:100]
#print Xdb[0:3]
r = c(Xdb[0:4])
g = c(Xdb[4:10])
b = c(Xdb[10:])
if i % 15 == 0: print (r, g, b)
leds[0:8] = [(r, g, b) for _ in xrange(8)]
leds.update()
i += 1
print "starting"
l = task.LoopingCall(do_work)
l.start(1.0 / 30.0)
reactor.run()
开发者ID:jmgrosen,项目名称:light-sculpture,代码行数:29,代码来源:music.py
示例19: randomly_clustering
def randomly_clustering(g, tries = 10):
"""
Comparing the average clustering coefficient of g with other graphs h
which share identical degree sequence. This function returns the comparison ratio.
Parameters:
-----------
g: NetworkX Graph, NetworkX DiGraph
tries: int, optional, (default = 10)
number of tries (compared graphs)
See also:
---------
mean_clustering
Returns:
--------
float, the ratio of avg clustering coefficient, avg_cc(g) / mean(avg_cc(h))
"""
from scipy import average
g = to_undirected(g)
d = g.degree().values()
c = mean_clustering(g, normalized = False)
p = list()
for t in xrange(tries):
ng = nx.configuration_model(d, create_using = nx.Graph())
p.append(mean_clustering(ng))
del ng
return(c / average(p))
开发者ID:kaeaura,项目名称:churn_prediction_proj,代码行数:27,代码来源:featureExtractor.py
示例20: sales_mapping
def sales_mapping():
data = read_data_from_pickle()
testData = data["test"]
trainData = data["train"]
testData["Weekly_Sales"] = None
# this loop needs to be threaded.
# for index,record in testData.iterrows():
# print(index)
# record["Weekly_Sales"] = average(trainData.loc[(trainData["Store"]==record["Store"]) & (trainData["Dept"]==record["Dept"]) & (abs(trainData["WeekNum"] - record["WeekNum"]) < 2)]["Weekly_Sales"])
newTrainData = pd.DataFrame(columns=trainData.columns.values)
newTrainData["Weekly_Sales_Averaged"] = None
for storeNum in range(1, NUM_STORES + 1):
print("Store: ", storeNum)
storeTrainData = trainData[trainData["Store"] == storeNum]
for deptNum in range(1, NUM_DEPTS + 1):
print("Dept: ", deptNum)
deptTrainData = storeTrainData[trainData["Dept"] == deptNum]
for index, record in deptTrainData.iterrows():
valuesToAverage = deptTrainData.loc[(abs(deptTrainData["WeekNum"] - record["WeekNum"]) < 2) & (deptTrainData["IsHoliday"] == record["IsHoliday"])]["Weekly_Sales"]
deptTrainData.set_value(index, "Weekly_Sales_Averaged", average(valuesToAverage))
newTrainData = newTrainData.append(deptTrainData)
trainData = newTrainData
print(testData.head())
开发者ID:durhamsm,项目名称:Walmart_Weekly_Sales_Data_Mining,代码行数:29,代码来源:sales_mapper.py
注:本文中的scipy.average函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论