• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python feature.match_template函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中skimage.feature.match_template函数的典型用法代码示例。如果您正苦于以下问题:Python match_template函数的具体用法?Python match_template怎么用?Python match_template使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了match_template函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: matchSections

def matchSections():
    pitches = cPickle.load(open('AmuInstPitches.pkl'))
    sections = cPickle.load(open('AmuInstSections.pkl'))
    filenames = cPickle.load(open('AmuFilenames.pkl'))
    keys = cPickle.load(open('AmuKeys.pkl'))
    for i in range(len(pitches)/2):
        pyplot.figure(i,(16,9))
        newp = []
        for vector in pitches[2*i]:
            deq = deque(vector)
            deq.rotate(keys[2*i+1]-keys[2*i])
            l = list(deq)
            newp.append(l)
        pitches[2*i] = newp
        image = numpy.array(pitches[2*i])
        template = numpy.array(pitches[2*i+1][sections[2*i+1][0]:sections[2*i+1][1]])
        im = feature.match_template(image,template,pad_input=True)
        pyplot.vlines(12,0,im.shape[0],'b')
        for j in range(len(sections[2*i+1])-2):    
            template = numpy.array(pitches[2*i+1][sections[2*i+1][j+1]:sections[2*i+1][j+2]])
            temp = feature.match_template(image,template,pad_input=True)
            im = numpy.concatenate((im,temp),axis = 1)
            pyplot.vlines(12*j+12,0,im.shape[0],'b')
        ij = numpy.unravel_index(numpy.argmax(im), im.shape)
        x, y = ij[::-1]
        pyplot.imshow(im, cmap = pyplot.get_cmap('gray'), aspect = 'auto', origin = 'lower')
        pyplot.ylabel(os.path.basename(filenames[2*i]) + " (in beats)")
        pyplot.xlabel(os.path.basename(filenames[2*i+1]) + " (12 Chroma Values Each)")
        pyplot.title('Section Similarity')
        pyplot.plot(x,y,'o',markeredgecolor='r',markerfacecolor='none',markersize=10)
        pyplot.xlim(0,im.shape[1]-1)
        pyplot.ylim(0,im.shape[0])
    pyplot.show()
    sys.exit()
开发者ID:JordanHawkins,项目名称:AutomaticDJ,代码行数:34,代码来源:AutoMashUp.py


示例2: match_digit

def match_digit(image,templates,min_w=24,is_two_digits=True,debug=False):
    h,w = image.shape
    
    if is_two_digits:
        #first digit should be: 1,2,3,4,5
        ret = []
        
        wlimit = max(w/2,min_w)
        for digit in [1,2,3,4,5]:
            result = match_template(image[:,:wlimit], templates[digit])
            max_correl = np.max(result)
            ret += [(max_correl,digit)]
            if debug: print "digit1:",digit,max_correl
        #second digit should be any except if first digit is 5. That case options are 0,1,2,3,4
        if len(ret) > 0:
            ret.sort()
            #best digit is the last
            correl1,digit1 = ret[-1]
        else:
            return None,None

        digits = range(0,10) if digit1 != 5 else [0,1,2,3,4]
        ret = []
        for digit in digits:
            result = match_template(image[:,w - wlimit:], templates[digit])
            max_correl = np.max(result)
            ret += [(max_correl,digit)]
            if debug: print "digit2:",digit,max_correl
        if len(ret) > 0:
            ret.sort()
            #best digit is the last
            correl2,digit2 = ret[-1]
        else:
            return None,None
            
        return (correl1,digit1),(correl2,digit2)

    else:
        #assert h >= 20, "problem with w {0}:{1}".format(h,20)
        #assert w >= 18, "problem with h {0}:{1}".format(w,18)
        
        ret = []
        #one digit: 6,7,8,9
        for digit in [6,7,8,9]:
            result = match_template(image, templates[digit])
            max_correl = np.max(result)
            if debug: print "digit1:",digit,max_correl
            ret += [(max_correl,digit)]
        
        if len(ret) > 0:
            ret.sort()
            #best digit is the last
            return ret[-1],None
开发者ID:exepulveda,项目名称:roots,代码行数:53,代码来源:bound.py


示例3: find_bulb

def find_bulb(image, templ):
    """finds the terminal bulb in an image using template correlation.

    Finds the best location (shifted cross-correlation) between image and template 
    return: location (x,y) and correlation value at the maximal correlation.

    """
    image = ndimage.gaussian_filter(image, 2) #- ndimage.gaussian_filter(res, 50)
    cut = int(0.1*image.shape[1])
    
    result = match_template(image, templ)
    xm = int(result.shape[1]/2.)
    res = result[:,max(0,-cut + xm):xm+cut]
    
    
    ij = np.unravel_index(np.argmax(res), res.shape)
    x0, y0 = ij[::-1]
    # calculate half template size
    t_half = int(templ.shape[0]/2.)
    conf = res[y0,x0]
    
    result1 = match_template(image, templ[t_half:,])
    res1 = result1[:,max(0,-cut + xm):xm+cut]
    ij = np.unravel_index(np.argmax(res1), res1.shape)
    
    x1, y1 = ij[::-1]
    conf1 = res1[y1,x1]
    if conf1 > conf:
        conf = conf1
        x0,y0 = x1,y1
        res = res1
        t_half = int(templ.shape[0]/4.)
            
    result2 = match_template(image, templ[:t_half,])
    res2 = result2[:,max(0,-cut + xm):xm+cut]

    ij = np.unravel_index(np.argmax(res2), res2.shape)
    x2, y2 = ij[::-1]
    conf2 = res2[y2,x2]
    if conf2 > conf:
        conf = conf2
        x0,y0 = x2,y2
        res = res2
        t_half = int(templ.shape[0])/4.
            
    x = max(0, min(x0+templ.shape[1]/2.+cut, image.shape[1]-1))
    y = max(0,min(y0+t_half, image.shape[0]-1))
    if conf < 0.4 or conf/np.std(res) < 2.5:
        conf = 0.0 
    return y,x, conf
开发者ID:monikascholz,项目名称:pWARP,代码行数:50,代码来源:check_movie.py


示例4: test_normalization

def test_normalization():
    """Test that `match_template` gives the correct normalization.

    Normalization gives 1 for a perfect match and -1 for an inverted-match.
    This test adds positive and negative squares to a zero-array and matches
    the array with a positive template.
    """
    n = 5
    N = 20
    ipos, jpos = (2, 3)
    ineg, jneg = (12, 11)
    image = np.full((N, N), 0.5)
    image[ipos:ipos + n, jpos:jpos + n] = 1
    image[ineg:ineg + n, jneg:jneg + n] = 0

    # white square with a black border
    template = np.zeros((n + 2, n + 2))
    template[1:1 + n, 1:1 + n] = 1

    result = match_template(image, template)

    # get the max and min results.
    sorted_result = np.argsort(result.flat)
    iflat_min = sorted_result[0]
    iflat_max = sorted_result[-1]
    min_result = np.unravel_index(iflat_min, result.shape)
    max_result = np.unravel_index(iflat_max, result.shape)

    # shift result by 1 because of template border
    assert np.all((np.array(min_result) + 1) == (ineg, jneg))
    assert np.all((np.array(max_result) + 1) == (ipos, jpos))

    assert np.allclose(result.flat[iflat_min], -1)
    assert np.allclose(result.flat[iflat_max], 1)
开发者ID:TheArindham,项目名称:scikit-image,代码行数:34,代码来源:test_template.py


示例5: test_template

def test_template():
    size = 100
    # Float prefactors ensure that image range is between 0 and 1
    image = np.full((400, 400), 0.5)
    target = 0.1 * (np.tri(size) + np.tri(size)[::-1])
    target_positions = [(50, 50), (200, 200)]
    for x, y in target_positions:
        image[x:x + size, y:y + size] = target
    np.random.seed(1)
    image += 0.1 * np.random.uniform(size=(400, 400))

    result = match_template(image, target)
    delta = 5

    positions = peak_local_max(result, min_distance=delta)

    if len(positions) > 2:
        # Keep the two maximum peaks.
        intensities = result[tuple(positions.T)]
        i_maxsort = np.argsort(intensities)[::-1]
        positions = positions[i_maxsort][:2]

    # Sort so that order matches `target_positions`.
    positions = positions[np.argsort(positions[:, 0])]

    for xy_target, xy in zip(target_positions, positions):
        assert_almost_equal(xy, xy_target)
开发者ID:TheArindham,项目名称:scikit-image,代码行数:27,代码来源:test_template.py


示例6: processImages

def processImages():
    sims = cPickle.load(open('AmuInstSimMats.pkl'))
    for i,sim in enumerate(sims):
        pyplot.figure(0,(16,9))
        pyplot.imshow(sim, vmin = 0, vmax = 1, cmap = pyplot.get_cmap('gray'), aspect = 'auto', origin = 'lower')
        pyplot.title('Unfiltered Sim Matrix ' + str(i))
        pyplot.savefig('Unfiltered Sim Matrix ' + str(i) + '.jpg')
        pyplot.figure(1,(16,9))
        pyplot.imshow(filter.tv_denoise(numpy.array(sim,numpy.float64), weight = 1), vmin = 0, vmax = 1, cmap = pyplot.get_cmap('gray'), aspect = 'auto', origin = 'lower')
        pyplot.title('TV_Denoise ' + str(i))
        pyplot.savefig('TV_Denoise ' + str(i) + '.jpg')
        pyplot.figure(2,(16,9))
        pyplot.imshow(filter.threshold_adaptive(numpy.array(sim,numpy.float64),21), vmin = 0, vmax = 1, cmap = pyplot.get_cmap('gray'), aspect = 'auto', origin = 'lower')
        pyplot.title('Threshold_Adaptive ' + str(i))
        pyplot.savefig('Threshold_Adaptive ' + str(i) + '.jpg')
        pyplot.figure(3,(16,9))
        pyplot.imshow(ndimage.minimum_filter(numpy.array(sim,numpy.float64),size=2), vmin = 0, vmax = 1, cmap = pyplot.get_cmap('gray'), aspect = 'auto', origin = 'lower')
        pyplot.title('Local Minimum_Filter ' + str(i))
        pyplot.savefig('Local Minimum_Filter ' + str(i) + '.jpg')
        pyplot.figure(4,(16,9))
        template = numpy.array([[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1],[1,1,1,0,1,1,1,1],
                                [1,1,1,1,0,1,1,1],[1,1,1,1,1,0,1,1],[1,1,1,1,1,1,0,1],[1,1,1,1,1,1,1,0]])
        pyplot.imshow(feature.match_template(numpy.array(sim,numpy.float64),template), vmin = 0, vmax = 1, cmap = pyplot.get_cmap('gray'), aspect = 'auto', origin = 'lower')
        pyplot.title('Match_Template with my own 8x8 beat diagonal template ' + str(i))
        pyplot.savefig('Match_Template with my own 8x8 beat diagonal template ' + str(i) + '.jpg')
    sys.exit()
开发者ID:JordanHawkins,项目名称:AutomaticDJ,代码行数:26,代码来源:AutoMashUp.py


示例7: CalculateImageShift

def CalculateImageShift(imgref,img):
    imgH,imgW = imgref.shape
    result = match_template(imgref,img,pad_input=True)
    ij = np.unravel_index(np.argmax(result),result.shape)
    sx,sy = ij[::-1]
    sx,sy = imgW/2-sx,imgH/2-sy
    return sx,sy
开发者ID:shiragami,项目名称:holo,代码行数:7,代码来源:syuk.py


示例8: transform

    def transform(self, X):
        from skimage.feature import match_template
        X_out = None
        n_templates = len(self.template)
        raw = self.raw
        for i, x in enumerate(X):
            if i % 1000 == 0:
                print i

            for j, template in enumerate(self.template):
                result = match_template(x, template, pad_input=True)
                if X_out is None:
                    if raw:
                        dtype = (X.shape[0], n_templates, result.shape[0],
                                 result.shape[1])
                    else:
                        dtype = (X.shape[0], n_templates)
                    X_out = np.empty(dtype, dtype=np.float32)

                if not raw:
                    result = np.max(result)

                X_out[i, j] = result

        if raw:
            X_out = np.max(X_out, axis=1)
        return X_out
开发者ID:Sandy4321,项目名称:kaggle-marinexplore,代码行数:27,代码来源:__init__.py


示例9: test_pad_input

def test_pad_input():
    """Test `match_template` when `pad_input=True`.

    This test places two full templates (one with values lower than the image
    mean, the other higher) and two half templates, which are on the edges of
    the image. The two full templates should score the top (positive and
    negative) matches and the centers of the half templates should score 2nd.
    """
    # Float prefactors ensure that image range is between 0 and 1
    template = 0.5 * diamond(2)
    image = 0.5 * np.ones((9, 19))
    mid = slice(2, 7)
    image[mid, :3] -= template[:, -3:]  # half min template centered at 0
    image[mid, 4:9] += template         # full max template centered at 6
    image[mid, -9:-4] -= template       # full min template centered at 12
    image[mid, -3:] += template[:, :3]  # half max template centered at 18

    result = match_template(image, template, pad_input=True,
                            constant_values=image.mean())

    # get the max and min results.
    sorted_result = np.argsort(result.flat)
    i, j = np.unravel_index(sorted_result[:2], result.shape)
    assert_equal(j, (12, 0))
    i, j = np.unravel_index(sorted_result[-2:], result.shape)
    assert_equal(j, (18, 6))
开发者ID:TheArindham,项目名称:scikit-image,代码行数:26,代码来源:test_template.py


示例10: detect_start_end_times

def detect_start_end_times(pattern_wav, recording_wav, sr, overlap):
    """Find matches for the start/end pattern within the recorded audio"""

    # Compute the STFT of the recordings
    specgram1 = numpy.array(stft.spectrogram(pattern_wav, overlap=overlap))
    specgram2 = numpy.array(stft.spectrogram(recording_wav, overlap=overlap))

    # Restrict the spectrum to the frequency band occupied by the start/end pattern
    pattern = abs(specgram1[7:16,:])
    recording = abs(specgram2[7:16,:])

    # Search for matches of the pattern in the input recording and return a confidence score
    # for each time position of the input recording
    confidence = match_template(recording, pattern)

    # Search for peaks in the confidence score, and choose the two highest peaks
    # Minimum distance between consecutive peaks is set to 1 second
    peaks = peakutils.indexes(confidence[0], thres=0, min_dist=seconds_to_samples(1, overlap, sr))
    peaks = sorted(peaks, key=lambda p: -confidence[0,p])[:2]

    #TODO: throw errors instead of printing, if necessary
    if len(peaks) < 1:
        print "Could not detect a starting beep!"
    elif len(peaks) < 2:
        print "Could only detect one starting beep!"
    else:
        start, end = sorted(peaks)
        print "Initial beep detected at " + "%.3f" % samples_to_seconds(start, overlap, sr) + " seconds."
        print "Final beep detected at " + "%.3f" % samples_to_seconds(end, overlap, sr) + " seconds."
    return samples_to_seconds(start, overlap, sr), samples_to_seconds(end, overlap, sr)
开发者ID:chaosct,项目名称:repoVizzRecorder,代码行数:30,代码来源:repoVizzRecorder.py


示例11: run

	def run(self, im, skin_thresh=[-1,1], n_peaks=3):
		'''
		im : color image
		'''
		im_skin = im
		self.im_skin = im_skin
		skin_match_c = match_template(im_skin, self.template, pad_input=True)*(im>0)
		self.skin_match = skin_match_c
		# cv2.matchTemplate(im_skin, self.template, cv2.cv.CV_TM_SQDIFF_NORMED)
		# imshow(cv2.matchTemplate(im_skin.astype(np.float32), self.template.astype(np.float32), cv2.cv.CV_TM_CCOEFF_NORMED))

		# Display Predictions - Color Based matching
		optima = peak_local_max(skin_match_c, min_distance=20, num_peaks=n_peaks, exclude_border=False)
		# Visualize
		if len(optima) > 0:
			optima_values = skin_match_c[optima[:,0], optima[:,1]]
			optima_thresh = np.max(optima_values) / 2
			optima = optima.tolist()

			for i,o in enumerate(optima):
				if optima_values[i] < optima_thresh:
					optima.pop(i)
					break
		self.markers = optima

		return self.markers
开发者ID:MerDane,项目名称:pyKinectTools,代码行数:26,代码来源:PoseTracking.py


示例12: findTemplateInImage

def findTemplateInImage(templatePath, imagePath, debug=False):
	"""
	Returns the position of a template in an image
	"""
# load template
	template = skimage.transform.rescale(io.imread(templatePath), 0.5)
	if debug:
		plt.imshow(template)
		plt.title("Template")
		plt.show()

# load image 
	image = io.imread(imagePath, False);
	image = skimage.transform.rescale(image, 0.5)
	if debug:
		plt.imshow(image)
		plt.title("Image")
		plt.show()

# find building position
	result = match_template(image, template)
	result = result.squeeze()
	ij = numpy.unravel_index(numpy.argmax(result), result.shape)
	x, y = ij[::-1]

# add image midpoint
	x += int(float(len(template[:]))/2)
	y += int(float(len(template))/2)

# re-rescale ;)
	return numpy.array([x*2, y*2])
开发者ID:highkite,项目名称:alphaBot,代码行数:31,代码来源:mapExtractor.py


示例13: align_converge

def align_converge(y_LR,size=64):
    """iterate until offsets converge"""
    (h,w) = y_LR.shape
    # split image
    y_L = y_LR[:,:w/2]
    y_R = y_LR[:,w/2:]
    (h,w) = y_L.shape
    s = size / 2
    # now find n offsets
    rand = RandomState(0)
    prev_dx, prev_dy = 0, 0
    series = []
    while True:
        # at a random locations in y_L
        y = rand.randint(h/4,h*3/4)
        x = rand.randint(w/4,w*3/4)
        it = y_L[y:y+s,x:x+s] # take an s x s chunk there
        tm = match_template(y_R,it) # match it against y_R
        ry, rx = maximum_position(tm) # max value is location
        series += [((y-ry), (x-rx))] # accumulatea
        print series
        n = len(series)
        if n % 2 == 0:
            # take the median
            dy, dx = np.median(np.asarray(series),axis=0).astype(int)
            if n > 100 or (abs(dy-prev_dy) == 0 and abs(dx-prev_dx) == 0):
                return dy, dx
            prev_dy, prev_dx = dy, dx
开发者ID:LouisK130,项目名称:oii,代码行数:28,代码来源:quick.py


示例14: test_bounding_values

def test_bounding_values():
    image = img_as_float(data.page())
    template = np.zeros((3, 3))
    template[1, 1] = 1
    result = match_template(img_as_float(data.page()), template)
    print(result.max())
    assert result.max() < 1 + 1e-7
    assert result.min() > -1 - 1e-7
开发者ID:TheArindham,项目名称:scikit-image,代码行数:8,代码来源:test_template.py


示例15: _template_matching_shift

 def _template_matching_shift(self, im1, im2, template):
     index = []
     for im in [im1, im2]:
         match = match_template(im, template)
         index.append(np.unravel_index(np.argmax(match), match.shape))
     index = np.array(index)
     shift = index[1] - index[0]
     return shift
开发者ID:DiamondLightSource,项目名称:Savu,代码行数:8,代码来源:projection_shift.py


示例16: test_padding_reflect

def test_padding_reflect():
    template = diamond(2)
    image = np.zeros((10, 10))
    image[2:7, :3] = template[:, -3:]

    result = match_template(image, template, pad_input=True,
                            mode='reflect')

    assert_equal(np.unravel_index(result.argmax(), result.shape), (4, 0))
开发者ID:TheArindham,项目名称:scikit-image,代码行数:9,代码来源:test_template.py


示例17: _process

    def _process(self):
        """Finds the Suns and the fiducials."""
        # Perform a coarse search for Suns
        coarse_image = self.image[::10, ::10]
        coarse_match = match_template(coarse_image, template_sun[::10, ::10], pad_input=True)
        coarse_peaks = peak_local_max(coarse_match, threshold_abs=0.9, num_peaks=3)

        fine_peaks = []
        strength = []
        fiducials = []

        for coarse_peak in coarse_peaks:
            # For each coarse detection, do a detection at the full resolution
            if coarse_peak[0] < 11 or coarse_peak[0] > 84 or coarse_peak[1] < 11 or coarse_peak[1] > 116:
                break
            sub_image = self.image[coarse_peak[0] * 10 - 110:coarse_peak[0] * 10 + 111,
                                   coarse_peak[1] * 10 - 110:coarse_peak[1] * 10 + 111]
            match = match_template(sub_image, template_sun, pad_input=True)
            peak = peak_local_max(match, threshold_abs=0.9, num_peaks=1)
            if len(peak) > 0:
                peak = peak[0]
                peak_r, peak_c = parapeak(match[peak[0] - 1:peak[0] + 2, peak[1] - 1:peak[1] + 2])
                peak += coarse_peak * 10 - 110

                fine_peaks.append((peak[0] + peak_r, peak[1] + peak_c))

                #FIXME: need a more robust estimate of the strength of each peak
                strength.append(self.image[peak[0], peak[1]])

                # Find fiducials near the center of the Sun
                match = match_template(self.image[peak[0]-60:peak[0]+61, peak[1]-60:peak[1]+61],
                                       template_fiducial, pad_input=True)
                fids = peak_local_max(match, threshold_abs=0.8)
                for fid in fids:
                    fid_r, fid_c = parapeak(match[fid[0] - 1:fid[0] + 2, fid[1] - 1:fid[1] + 2])
                    fid += peak - 60

                    fiducials.append((fid[0] + fid_r, fid[1] + fid_c))

        # Sort the peaks in order of decreasing strength
        fine_peaks = [peak for (strength, peak) in sorted(zip(strength, fine_peaks), reverse=True)]

        return fine_peaks, fiducials
开发者ID:GRIPS,项目名称:gripspy,代码行数:43,代码来源:aspect.py


示例18: detect_keypatch

def detect_keypatch(img, template):
    simg = feature.match_template(img, template, pad_input=True)
    simg = simg.clip(0, simg.max())
    rel_thr = 0.75
    peaks = feature.peak_local_max(simg, num_peaks=1, threshold_abs=rel_thr*(simg.max()-simg.min()), exclude_border=False)
    ht, wt = template.shape
    for i in range(len(peaks)):
        peaks[i] = [peaks[i][1]-wt/2, peaks[i][0]-ht/2]

    return peaks
开发者ID:democraciaconcodigos,项目名称:recon,代码行数:10,代码来源:telegrama.py


示例19: xcorr

def xcorr(h1,h2):
    #print(h1.shape)
    h1_ = flattn(h1)
    #print(h1_)
    h2_ = flattn(h2)
    val = (match_template(np.array([h1_]),np.array([h2_]))[0][0])*1000
    if val < 0 :
        return 1000 + val
    else:
        return 1000 - val
开发者ID:d-klein,项目名称:image-hash,代码行数:10,代码来源:Lbp.py


示例20: _speckleDisplacementSingleCore_method2

def _speckleDisplacementSingleCore_method2(image, image_ref, halfsubwidth,
                                           halfTemplateSize, stride, verbose):
    '''
    see http://scikit-image.org/docs/dev/auto_examples/plot_template.html
    '''

    from skimage.feature import match_template

    irange = np.arange(halfsubwidth,
                       image.shape[0] - halfsubwidth + 1,
                       stride)
    jrange = np.arange(halfsubwidth,
                       image.shape[1] - halfsubwidth + 1,
                       stride)

    pbar = tqdm(total=np.size(irange))  # progress bar

    sx = np.ones(image.shape) * NAN
    sy = np.ones(image.shape) * NAN
    error = np.ones(image.shape) * NAN

    for (i, j) in itertools.product(irange, jrange):

        interrogation_window = image_ref[i - halfTemplateSize: \
                                         i + halfTemplateSize+ 1,
                                         j - halfTemplateSize: \
                                         j + halfTemplateSize + 1]

        sub_image = image[i - halfsubwidth:i + halfsubwidth + 1,
                    j - halfsubwidth:j + halfsubwidth + 1]

        result = match_template(sub_image, interrogation_window)


        shift_y, shift_x = np.unravel_index(np.argmax(result), result.shape)

        shift_x -= halfsubwidth - halfTemplateSize
        shift_y -= halfsubwidth - halfTemplateSize
        error_ij = 1.0 - np.max(result)

        sx[i, j] = shift_x
        sy[i, j] = shift_y
        error[i, j] = error_ij

        if j == jrange[-1]: pbar.update()  # update progress bar

    print(" ")

    return (sx[halfsubwidth:-halfsubwidth:stride,
            halfsubwidth:-halfsubwidth:stride],
            sy[halfsubwidth:-halfsubwidth:stride,
            halfsubwidth:-halfsubwidth:stride],
            error[halfsubwidth:-halfsubwidth:stride,
            halfsubwidth:-halfsubwidth:stride],
            stride)
开发者ID:decarlof,项目名称:wavepy,代码行数:55,代码来源:speckletracking.py



注:本文中的skimage.feature.match_template函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python feature.peak_local_max函数代码示例发布时间:2022-05-27
下一篇:
Python feature.local_binary_pattern函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap