• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python feature.local_binary_pattern函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中skimage.feature.local_binary_pattern函数的典型用法代码示例。如果您正苦于以下问题:Python local_binary_pattern函数的具体用法?Python local_binary_pattern怎么用?Python local_binary_pattern使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了local_binary_pattern函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: logistic_lbp_diff

def logistic_lbp_diff(image1, image2, gamma=1e-3, points=4, radius=2):
	"""
	Generate local binary patterns (LBP) for each of the images by taking the 
	average across the color components (assumed to be axis = 0), and then
	generating a LBP using a given number of points and comparing at a given
	radius away from the center of the image.  The distance between the LBPs
	is regressed.  gamma, points, and radius defaults chosen purely
	hearuistically to provide decent dynamic range as seen in
	image_handling_tb.ipynb, figure 14.
	"""
	return logistic_vector_dist(
		local_binary_pattern(np.average(image1, axis=0), points, radius),
		local_binary_pattern(np.average(image2, axis=0), points, radius),
		gamma)
开发者ID:likojack,项目名称:DepthPrediction,代码行数:14,代码来源:image_handling_with_xy.py


示例2: fit

    def fit(self, modality, ground_truth=None, cat=None):
        """Compute the LBP images in the three-ortogonal planes.

        Parameters
        ----------
        modality : object of type TemporalModality
            The modality object of interest.

        ground-truth : object of type GTModality or None
            The ground-truth of GTModality. If None, the whole data will be
            considered.

        cat : str or None
            String corresponding at the ground-truth of interest. Cannot be
            None if ground-truth is not None.

        Return
        ------
        self : object
             Return self.

        """
        super(LBPExtraction, self).fit(modality=modality,
                                       ground_truth=ground_truth,
                                       cat=cat)

        # Fix the z axis
        lbp_z = np.zeros(modality.data_.shape)
        for z in range(modality.data_.shape[2]):
            lbp_z[:, :, z] = local_binary_pattern(modality.data_[:, :, z],
                                                  self.p, self.r,
                                                  method=self.kind)
        # Fix the x axis
        lbp_x = np.zeros(modality.data_.shape)
        for x in range(modality.data_.shape[1]):
            lbp_x[:, x, :] = local_binary_pattern(modality.data_[:, x, :],
                                                  self.p, self.r,
                                                  method=self.kind)

        # Fix the y axis
        lbp_y = np.zeros(modality.data_.shape)
        for y in range(modality.data_.shape[0]):
            lbp_y[y, :, :] = local_binary_pattern(modality.data_[y, :, :],
                                                  self.p, self.r,
                                                  method=self.kind)

        self.data_ = np.array((lbp_z, lbp_x, lbp_y))

        return self
开发者ID:glemaitre,项目名称:protoclass,代码行数:49,代码来源:lbp_extraction.py


示例3: lbp

    def lbp(self, image, label_bboxes, axes, mins, maxs):
        rawbbox = image
        ccbboxobject, passed, ccbboxexcl = label_bboxes

        #FIXME: there is a mess about which of the lbp features are computed (obj, excl or incl)
        import skimage.feature as ft
        P=8
        R=1
        lbp_total = np.zeros(passed.shape)
        for iz in range(maxs.z - mins.z):
            #an lbp image
            bboxkey = [slice(None)] * 3
            bboxkey[axes.z] = iz
            bboxkey = tuple(bboxkey)
            lbp_total[bboxkey] = ft.local_binary_pattern(rawbbox[bboxkey], P, R, "uniform")
        #extract relevant parts
        lbp_incl = lbp_total[passed]
        lbp_excl = lbp_total[ccbboxexcl.astype(bool)]
        lbp_obj = lbp_total[ccbboxobject.astype(bool)]
        lbp_hist_incl, _ = np.histogram(lbp_incl, normed=True, bins=(P + 2), range=(0, P + 2))
        lbp_hist_excl, _ = np.histogram(lbp_excl, normed=True, bins=(P + 2), range=(0, P + 2))
        lbp_hist_obj, _ = np.histogram(lbp_obj, normed=True, bins=(P + 2), range=(0, P + 2))

        result = {}
        result["lbp_incl"] = lbp_hist_incl
        result["lbp_excl"] = lbp_hist_excl
        result["lbp"] = lbp_hist_obj
        return result
开发者ID:fblumenthal,项目名称:ilastik,代码行数:28,代码来源:anna_objfeats.py


示例4: predictImg

def predictImg(img):
	img = transform.resize(img, (100, 150))
	lbp = feature.local_binary_pattern(img, n_points, radius, METHOD)
	lbp = lbp.flatten()
	k = dt.predict(lbp)
	return tags[k[0]]
	
开发者ID:sudhinsr,项目名称:ATI-ML,代码行数:6,代码来源:ATI_ML.py


示例5: trainSys

def trainSys():
	global a
	global tags
	i = 0
	print "Starting training..."

	directory = "/home/leroy/Desktop/ATI - Mini/datasets/"
	for key, ta in tags.iteritems():
		folder = directory + ta + '/'
		for file in os.listdir(folder):
			file2 = folder + file
			img = io.imread(file2, as_grey = True)
			img = transform.resize(img, (100, 150))
			lbp = feature.local_binary_pattern(img, n_points, radius, METHOD)
			lbp = lbp.flatten()
			a[i] = lbp
			i = i + 1

	input_images_tags = numpy.ones(20)
	input_images_tags2 = numpy.empty(20)
	input_images_tags2.fill(2)
	input_images_tags3 = numpy.empty(20)
	input_images_tags3.fill(3)
	input_images_tags4 = numpy.empty(20)
	input_images_tags4.fill(4)
	
	#input_images_tags3 = numpy.concatenate([input_images_tags3, input_images_tags4])
	input_images_tags2 = numpy.concatenate([input_images_tags2, input_images_tags3])
	input_images_tags = numpy.concatenate([input_images_tags, input_images_tags2])


	
	dt.fit(a, input_images_tags)

	print "Training Successfully Completed!"
开发者ID:sudhinsr,项目名称:ATI-ML,代码行数:35,代码来源:ATI_ML.py


示例6: calculateLBP

    def calculateLBP(self):
        paramList = list()
        with open(self.paramTxt) as f:
            for line in f:
                paramList.append(int(line.strip()))
        print(paramList)
        for image in self.trainDict.iterkeys():
            print(image)
            img = cv2.imread(image)
            imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

            # radius = 3
            # noPoints = 8 * radius
            radius = paramList[0]
            noPoints = paramList[1] * radius
            print(radius)
            print(noPoints)
            lbpImage = local_binary_pattern(imgGray, noPoints, radius, method='uniform')

            # Calculate the histogram
            x = itemfreq(lbpImage.ravel())
            # normalize the histogram
            hist = x[:, 1] / sum(x[:, 1])

            # hist = cv2.calcHist(lbp, [0], None, [256], [0, 256])
            # cv2.normalize(hist,hist)
            # hist = hist.flatten()

            self.addrImg.append(image)
            self.lbpHistogram.append(hist)
            self.tagNo.append(self.trainDict.get(image))
            joblib.dump((self.addrImg, self.lbpHistogram, self.tagNo), "lbp.pkl", compress=3)
开发者ID:Elegant1016,项目名称:OpenCV,代码行数:32,代码来源:CalculateLBP.py


示例7: LBP

    def LBP(self, img, save=False, parms=None, subtract=False):
        """Get the LBP image
        (reference: http://goo.gl/aeADZd)

        @param img: image array

        Keyword arguments:
        save    -- True to save the image
        parms     -- [points, radius] (default: None)
        subtract -- True to subtract values to pts (default: False)

        """
        from skimage.feature import local_binary_pattern
        if self.is_rgb(img):
            img = self.gray(img)
        if parms is None:
            pts = int(img.shape[0]*img.shape[1]*0.0003)
            radius = min(img.shape[0], img.shape[1])*0.015
        else:
            pts = parms[0]
            radius = parms[1]
        lbp = local_binary_pattern(img, pts, radius,  method='uniform')
        if subtract:
            lbp = np.abs(lbp - pts)
        if save:
            self.pl.plot_matrix(lbp, fname='lbp_cm.png', show_text=False,
                                show_axis=False, norm=False)
        return lbp
开发者ID:tammyyang,项目名称:simdat,代码行数:28,代码来源:image.py


示例8: pca_hash

def pca_hash(fxy,pca):
    lbp = local_binary_pattern(fxy,3,24)
    #print(len(flattn(lbp)))
    #print(np.array([flattn(lbp)]).shape)
    res = pca.transform(np.array([flattn(lbp)]))
    #print(res.shape)
    return res[0]
开发者ID:d-klein,项目名称:image-hash,代码行数:7,代码来源:Lbp.py


示例9: __init__

    def __init__(self, clf):
        '''
        Classifies and scores eyes based
        on whether they are open or closed.

        INPUTS:
            clf - a classifier
            the following are defined by the clf:
                n_size - a float, the size of the LBP
                n_circ_sym - number of the LBP divisions to use
                n_splt - how many times to symmetrically
                         subdivide the image
                trim - the number of pixels to trim off the
                         the borders of the returned LBP image.
                scaler - a standard scaler
        '''
        self.clf = clf
        self._n_size = clf.n_size
        self._n_circ_sym = clf.n_circ_sym
        self._n_split = clf.n_splits
        self._trim = clf.trim
        self._resize = clf.img_size
        self.scaler = clf.scaler
        self.f_lbp = lambda x: feature.local_binary_pattern(x, 
                                    self._n_circ_sym, 
                                    self._n_size).astype(int)
开发者ID:neonopen,项目名称:aquila-python,代码行数:26,代码来源:score_eyes.py


示例10: get_features

def get_features(directory):
    features = []
    for fn in iglob("%s/*.png" % directory):
        image = color.rgb2gray(io.imread(fn))
        lbp_image = feature.local_binary_pattern(image, LBP_POINTS, LBP_RADIUS, "uniform")
        features.append(get_histogram_feature(lbp_image))
    return features
开发者ID:mls-itoc,项目名称:susanoo,代码行数:7,代码来源:get_feature.py


示例11: ExtractLBPFeatures

def ExtractLBPFeatures(img):
	# This function extracts LBP features from a given image
	radius = 3
	n_points = 8 * radius
	lbp_feature = local_binary_pattern(image,n_points,radius)

	return lbp_feature
开发者ID:jainsameer20,项目名称:LogisticProgression,代码行数:7,代码来源:FaceDetector.py


示例12: retrieve_LBP_feature_histogram

def retrieve_LBP_feature_histogram(image_path):
    try:
        # Read feature directly from file
        image_feature_path = image_path + FEATURE_EXTENSION
        if os.path.isfile(image_feature_path):
            LBP_feature_histogram = np.genfromtxt(image_feature_path, delimiter=",")
            return LBP_feature_histogram

        # Define LBP parameters
        radius = 5
        n_points = 8
        bins_num = pow(2, n_points)
        LBP_value_range = (0, pow(2, n_points) - 1)

        # Retrieve feature
        assert os.path.isfile(image_path)
        image_content_in_gray = imread(image_path, as_grey=True)
        image_content_in_gray = img_as_ubyte(image_content_in_gray)
        LBP_feature = local_binary_pattern(image_content_in_gray, n_points, radius)
        LBP_feature_histogram, _ = np.histogram(LBP_feature, bins=bins_num, range=LBP_value_range, density=True)

        # Save feature to file
        assert LBP_feature_histogram is not None
        np.savetxt(image_feature_path, LBP_feature_histogram, delimiter=",")
        return LBP_feature_histogram
    except:
        print("Unable to retrieve LBP feature histogram in %s." % (os.path.basename(image_path)))
        return None
开发者ID:nixingyang,项目名称:Kaggle-Competitions,代码行数:28,代码来源:solution.py


示例13: lbf

def lbf(infile):
    result = []
    label = []
    ix = 0

    for here, i in enumerate(open(infile).readlines()):
        ix +=1
        imgpath, l = i.split(',')
        if os.path.exists(imgpath):

            im = cv2.imread(imgpath)
            im  = cv2.resize(im, (200, 200))
            im_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
            radius = 3
            no_points = 8 * radius
            lbp = local_binary_pattern(im_gray, no_points, radius, method='uniform')
            x = itemfreq(lbp.ravel())
            hist = x[:, 1]/sum(x[:, 1])
            result.append(hist)
            if "FE" in l:
                label.append(1) 
            else:
                label.append(-1) 
                
    print len(result)
    print len(label)
开发者ID:smartyining,项目名称:IMFDB,代码行数:26,代码来源:lbf.py


示例14: extract

    def extract(self, image):
        features = np.array([])
        vec = []
        if 'raw' in self.features:
            vec = image.flatten()
        features = np.append(features, vec)
        vec = []
        if 'textons' in self.features:
            import gen_histogram as tx
            vec = np.array(tx.histogram(image, self.centers))
        features = np.append(features, vec)
        vec = []
        if 'hog' in self.features:
            vec = hog(image, cells_per_block=(3, 3))
            vec = np.append(vec, hog(image, cells_per_block=(4, 4)))
            vec = np.append(vec, hog(image, cells_per_block=(1, 1)))
            vec = np.append(vec, hog(image, cells_per_block=(2, 2)))
        features = np.append(features, vec)
        vec = []
        if 'lbp' in self.features:
            vec = local_binary_pattern(image, 24, 3).flatten()
        features = np.append(features, vec)
        vec = []
        if 'daisy' in self.features:
            vec = daisy(image).flatten()
        features = np.append(features, vec)

        return features
开发者ID:DuongHoangThuy,项目名称:iris-recognition-1,代码行数:28,代码来源:features.py


示例15: get_lbp

def get_lbp(img):
    # settings for LBP
    radius = 4
    n_points = 8 * radius
    METHOD = 'uniform'
    lbp = local_binary_pattern(color.rgb2gray(img), n_points, radius, METHOD)
    return lbp
开发者ID:fucusy,项目名称:gait-simple-cnn,代码行数:7,代码来源:lbp.py


示例16: k_means_classifier

def k_means_classifier(image):
        n_clusters = 8

        # blur and take local maxima
        blur_image = gaussian(image, sigma=8)
        blur_image = ndi.maximum_filter(blur_image, size=3)

        # get texture features
        feats = local_binary_pattern(blur_image, P=40, R=5, method="uniform")
        feats_r = feats.reshape(-1, 1)

        # cluster the texture features
        km = k_means(n_clusters=n_clusters, batch_size=500)
        clus = km.fit(feats_r)

        # copy relevant attributes
        labels = clus.labels_
        clusters = clus.cluster_centers_

        # reshape label arrays
        labels = labels.reshape(blur_image.shape[0], blur_image.shape[1])

        # segment shadow
        img = blur_image.ravel()
        shadow_seg = img.copy()
        for i in range(0, n_clusters):
            # set up array of pixel indices matching cluster
            mask = np.nonzero((labels.ravel() == i) == True)[0]
            if len(mask) > 0:
                thresh = threshold_otsu(img[mask])
                shadow_seg[mask] = shadow_seg[mask] < thresh
        shadow_seg = shadow_seg.reshape(*image.shape)

        return shadow_seg
开发者ID:charlienewey,项目名称:shadow-detection-notebook,代码行数:34,代码来源:shadow.py


示例17: testLBP

def testLBP (format, formatMask, path, output) :
    dataset = pd.read_csv(path)
    idxCls = dataset['idx']
   # cnts = dataset['Cnt']
    fnList = dataset['path']
  #  out = open(output, 'w')
    lbps = list(map(lambda x: local_binary_pattern(cv2.bitwise_and(imread(format.format(x)),imread(formatMask.format(x))), lbpP, lbpR, lbpMethod), fnList))
    histograms = list(map(lambda x:  np.histogram(x, bins=range(int(np.max(lbps)) + 1))[0], lbps))
    distances = prw.pairwise_distances(histograms, metric='l1')
    np.fill_diagonal(distances, math.inf)
    guessedClasses = np.apply_along_axis(lambda x: np.argmin(x), 1, distances)
    scores = np.apply_along_axis(lambda x: np.min(x), 1, distances)
    correct = list(map(lambda i: idxCls[guessedClasses[i]] == idxCls[i], range(0, np.alen(idxCls))))
   # out.write(str(np.average(correct)))
  #  fpr, tpr, thresholds = roc_curve(correct, scores, pos_label=1)
  #  pyplot.plot(tpr, fpr)
   # pyplot.show()
    with open(output + 'lbp_distances.csv', 'w', newline='') as fp:
        a = csv.writer(fp, delimiter=',')
        a.writerows(distances)

    with open(output + 'lbp_guessedClasses.csv', 'w', newline='') as fp:
        a = csv.writer(fp, delimiter=',')
        a.writerow(guessedClasses)

    with open(output + 'lbp_correct.csv', 'w', newline='') as fp:
        a = csv.writer(fp, delimiter=',')
        a.writerow(correct)

    with open(output + 'lbp_real.csv', 'w', newline='') as fp:
        a = csv.writer(fp, delimiter=',')
        a.writerow(idxCls)
开发者ID:mariaTatarintseva,项目名称:Diploma,代码行数:32,代码来源:LBPSpeedUp.py


示例18: limpa_imagem

def limpa_imagem(img_cinza):
    #binariza a imagem em escala de cinza
    img_bin_cinza = np.where(img_cinza < np.mean(img_cinza), 0, 255)
    
    # aplica lbp sobre a imagem em escala de cinza
    # lbp foi aplicado para evitar perda de informacao em regioes
    # proximas as regioes escuras (provaveis celulas)
    lbp_img = local_binary_pattern(img_cinza, 24, 3, method='uniform')
    
    # aplica efeito de blurring sobre a imagem resultante do lbp 
    blur_img = gaussian(lbp_img,sigma=6)    
    img_bin_blur = np.where(blur_img < np.mean(blur_img), 0, 255)
     
    # junta as duas regiões definidas pela binarizacao da imagem em escala
    # de cinza e a binarizacao do blurring    
    mascara = np.copy(img_bin_cinza)    
    for (a,b), valor in np.ndenumerate(img_bin_blur):
        if valor == 0:        
            mascara[a][b] = 0 
            
    # aplica a mascara obtida sobre a imagem original (em escala de cinza)
    # para delimitar melhor as regiões que não fornecerao informacoes (regioes
    # totalmente brancas)
    img_limpa = np.copy(img_cinza)
    for (a,b), valor in np.ndenumerate(mascara):
        if valor == 255:
            img_limpa[a][b] = 255

    return (img_limpa)
开发者ID:willianfatec,项目名称:PatchWiser,代码行数:29,代码来源:binarypattern.py


示例19: train_lbp

def train_lbp():
    train_dir = "/home/gast/ImageHashing/face_train/"
    suffix = ".png"
    size = 200

    train = []
    for fn in sorted(os.listdir(train_dir)):
        if fn.endswith(suffix):
            rgb = Image.load(train_dir + fn)
            gray = Image.rgb2gray(rgb)
            resized = Image.resize(gray,size)
            img = Image.gray2real(resized)
            lbps = local_binary_pattern(img,3,24)
            #print(flatten(lbps))
            #print(len(flatten(lbps)))
            train.append(flatten(lbps))
            #print(lbps)

    pca = PCA(n_components=100)
    #print(len(train))
    #print(len(train[0]))
    train_np = np.array(train)
    #print(train_np.shape)
    pca.fit(train_np)
    return pca
开发者ID:d-klein,项目名称:image-hash,代码行数:25,代码来源:pca.py


示例20: lbp_extract

    def lbp_extract(self, image):
        """
        利用LBP,对给定的图片提取特征向量。使用前必须先初始化特征提取器。

        Parameters
        ----------
        image : 二维numpy数组
            灰度图的二维numpy数组。

        Returns
        -------
        一维numpy数组
            图片的特征向量。
        """
        assert self.red, "self.red should be initial!"
        height, width = image.shape
        w = width // 2
        h = height // 3
        feature = np.array([])
        for i in range(2):
            for j in range(3):
                cell = image[h*j:h*(j+1), w*i:w*(i+1)]
                lbp = local_binary_pattern(cell, 8, 1)
                histogram = np.zeros(256)
                for pattern in lbp.ravel():
                    histogram[int(pattern)] += 1
                histogram = (histogram - histogram.mean()) / histogram.std()
                feature = np.hstack((feature, histogram))
        feature = self.red.transform(feature.reshape(1, -1))
        return feature.ravel()
开发者ID:HustMLTeam,项目名称:huiyou,代码行数:30,代码来源:basic.py



注:本文中的skimage.feature.local_binary_pattern函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python feature.match_template函数代码示例发布时间:2022-05-27
下一篇:
Python feature.hog函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap