本文整理汇总了Python中skimage.restoration.denoise_bilateral函数的典型用法代码示例。如果您正苦于以下问题:Python denoise_bilateral函数的具体用法?Python denoise_bilateral怎么用?Python denoise_bilateral使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了denoise_bilateral函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_denoise_bilateral_multidimensional
def test_denoise_bilateral_multidimensional():
img = np.ones((10, 10, 10, 10))
with pytest.raises(ValueError):
restoration.denoise_bilateral(img, multichannel=False)
with pytest.raises(ValueError):
restoration.denoise_bilateral(
img, multichannel=True)
开发者ID:andreydung,项目名称:scikit-image,代码行数:7,代码来源:test_denoise.py
示例2: denoising
def denoising(astro):
noisy = astro + 0.6 * astro.std() * np.random.random(astro.shape)
noisy = np.clip(noisy, 0, 1)
fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(8, 5), sharex=True,
sharey=True, subplot_kw={'adjustable': 'box-forced'})
plt.gray()
ax[0, 0].imshow(noisy)
ax[0, 0].axis('off')
ax[0, 0].set_title('noisy')
ax[0, 1].imshow(denoise_tv_chambolle(noisy, weight=0.1, multichannel=True))
ax[0, 1].axis('off')
ax[0, 1].set_title('TV')
ax[0, 2].imshow(denoise_bilateral(noisy, sigma_range=0.05, sigma_spatial=15))
ax[0, 2].axis('off')
ax[0, 2].set_title('Bilateral')
ax[1, 0].imshow(denoise_tv_chambolle(noisy, weight=0.2, multichannel=True))
ax[1, 0].axis('off')
ax[1, 0].set_title('(more) TV')
ax[1, 1].imshow(denoise_bilateral(noisy, sigma_range=0.1, sigma_spatial=15))
ax[1, 1].axis('off')
ax[1, 1].set_title('(more) Bilateral')
ax[1, 2].imshow(astro)
ax[1, 2].axis('off')
ax[1, 2].set_title('original')
fig.tight_layout()
plt.show()
开发者ID:omidi,项目名称:CellLineageTracking,代码行数:31,代码来源:slic.py
示例3: getSubImages
def getSubImages(img, pixels, size):
subImages = []
originals = []
for i in range(len(img)):
subImageRow = []
originalRow = []
for j in range(len(img[i])):
if i % pixels == 0 and j % pixels == 0 and i+size-1 < len(img) and j+size-1 < len(img[i]):
subImage = []
for k in range(i, i+size, int(size/20)):
line = []
for l in range(j, j+size, int(size/20)):
line.append(img[k][l])
subImage.append(line)
originalRow.append(subImage)
if preprocess == preprocessing.SOBEL:
subImage = denoise_bilateral(subImage, sigma_range=0.1, sigma_spatial=15)
subImage = sobel(subImage)
elif preprocess == preprocessing.HOG:
subImage = useHoG(subImage)
else:
subImage = denoise_bilateral(subImage, sigma_range=0.1, sigma_spatial=15)
subImage = sobel(subImage)
subImage = useHoG(subImage)
subImageRow.append(subImage)
if len(subImageRow) > 0:
subImages.append(subImageRow)
originals.append(originalRow)
return subImages, originals
开发者ID:morteano,项目名称:TDT4173,代码行数:29,代码来源:OCR.py
示例4: test_denoise_bilateral_color
def test_denoise_bilateral_color():
img = checkerboard.copy()
# add some random noise
img += 0.5 * img.std() * np.random.rand(*img.shape)
img = np.clip(img, 0, 1)
out1 = restoration.denoise_bilateral(img, sigma_range=0.1, sigma_spatial=20)
out2 = restoration.denoise_bilateral(img, sigma_range=0.2, sigma_spatial=30)
# make sure noise is reduced in the checkerboard cells
assert img[30:45, 5:15].std() > out1[30:45, 5:15].std()
assert out1[30:45, 5:15].std() > out2[30:45, 5:15].std()
开发者ID:AceHao,项目名称:scikit-image,代码行数:12,代码来源:test_denoise.py
示例5: test_denoise_sigma_range_and_sigma_color
def test_denoise_sigma_range_and_sigma_color():
img = checkerboard_gray.copy()[:50,:50]
# add some random noise
img += 0.5 * img.std() * np.random.rand(*img.shape)
img = np.clip(img, 0, 1)
out1 = restoration.denoise_bilateral(img, sigma_color=0.1,
sigma_spatial=10, multichannel=False)
with expected_warnings('`sigma_range` has been deprecated in favor of `sigma_color`. '
'The `sigma_range` keyword argument will be removed in v0.14'):
out2 = restoration.denoise_bilateral(img, sigma_color=0.2, sigma_range=0.1,
sigma_spatial=10, multichannel=False)
assert_equal(out1, out2)
开发者ID:dfcollin,项目名称:scikit-image,代码行数:12,代码来源:test_denoise.py
示例6: test_denoise_bilateral_3d
def test_denoise_bilateral_3d():
img = lena
# add some random noise
img += 0.5 * img.std() * np.random.random(img.shape)
img = np.clip(img, 0, 1)
out1 = restoration.denoise_bilateral(img, sigma_range=0.1, sigma_spatial=20)
out2 = restoration.denoise_bilateral(img, sigma_range=0.2, sigma_spatial=30)
# make sure noise is reduced
assert img.std() > out1.std()
assert out1.std() > out2.std()
开发者ID:jehturner,项目名称:scikit-image,代码行数:12,代码来源:test_denoise.py
示例7: test_denoise_bilateral_color
def test_denoise_bilateral_color():
img = checkerboard.copy()[:50, :50]
# add some random noise
img += 0.5 * img.std() * np.random.rand(*img.shape)
img = np.clip(img, 0, 1)
out1 = restoration.denoise_bilateral(img, sigma_color=0.1,
sigma_spatial=10, multichannel=True)
out2 = restoration.denoise_bilateral(img, sigma_color=0.2,
sigma_spatial=20, multichannel=True)
# make sure noise is reduced in the checkerboard cells
assert_(img[30:45, 5:15].std() > out1[30:45, 5:15].std())
assert_(out1[30:45, 5:15].std() > out2[30:45, 5:15].std())
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:14,代码来源:test_denoise.py
示例8: blur_predict
def blur_predict(model, X, type="median", filter_size=3, sigma=1.0):
if type == "median":
blured_X = np.array(list(map(lambda x: ndimage.median_filter(x, filter_size),
X)))
elif type == "gaussian":
blured_X = np.array(list(map(lambda x: ndimage.gaussian_filter(x, filter_size),
X)))
elif type == "f_gaussian":
blured_X = np.array(list(map(lambda x: filters.gaussian_filter(x.reshape((28, 28)), sigma=sigma).reshape(784),
X)))
elif type == "tv_chambolle":
blured_X = np.array(list(map(lambda x: restoration.denoise_tv_chambolle(x.reshape((28, 28)), weight=0.2).reshape(784),
X)))
elif type == "tv_bregman":
blured_X = np.array(list(map(lambda x: restoration.denoise_tv_bregman(x.reshape((28, 28)), weight=5.0).reshape(784),
X)))
elif type == "bilateral":
blured_X = np.array(list(map(lambda x: restoration.denoise_bilateral(np.abs(x).reshape((28, 28))).reshape(784),
X)))
elif type == "nl_means":
blured_X = np.array(list(map(lambda x: restoration.nl_means_denoising(x.reshape((28, 28))).reshape(784),
X)))
elif type == "none":
blured_X = X
else:
raise ValueError("unsupported filter type", type)
return predict(model, blured_X)
开发者ID:PetraVidnerova,项目名称:pyGAAdversary,代码行数:31,代码来源:blur_errors.py
示例9: denoise_image
def denoise_image(data, type=None):
from skimage.restoration import denoise_tv_chambolle, denoise_bilateral
if type == "tv":
return denoise_tv_chambolle(data, weight=0.2, multichannel=True)
return denoise_bilateral(data, sigma_range=0.1, sigma_spatial=15)
开发者ID:121onto,项目名称:noaa,代码行数:7,代码来源:facial_alignment.py
示例10: test_denoise_bilateral_nan
def test_denoise_bilateral_nan():
img = np.full((50, 50), np.NaN)
# This is in fact an optional warning for our test suite.
# Python 3.5 will not trigger a warning.
with expected_warnings([r'invalid|\A\Z']):
out = restoration.denoise_bilateral(img, multichannel=False)
assert_equal(img, out)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:7,代码来源:test_denoise.py
示例11: crop_resize_other
def crop_resize_other(img, pixelspacing ):
print("image shape {}".format(np.array(img).shape))
xmeanspacing = float(1.25826490244)
ymeanspacing = float(1.25826490244)
xscale = float(pixelspacing) / xmeanspacing
yscale = float(pixelspacing) / ymeanspacing
xnewdim = round( xscale * np.array(img).shape[0])
ynewdim = round( yscale * np.array(img).shape[1])
img = transform.resize(img, (xnewdim, ynewdim))
#img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX)
#img = auto_canny(img)
img = denoise_bilateral(img, sigma_range=0.05, sigma_spatial=15)
#im = cv2.normalize(im, None, 0, 255, cv2.NORM_MINMAX)
#img = img.Canny(im,128,128)
"""crop center and resize"""
if img.shape[0] < img.shape[1]:
img = img.T
# we crop image from center
short_egde = min(img.shape[:2])
yy = int((img.shape[0] - short_egde) / 2)
xx = int((img.shape[1] - short_egde) / 2)
crop_img = img[yy : yy + short_egde, xx : xx + short_egde]
crop_img *= 255
return crop_img.astype("uint8")
开发者ID:zhengzhang828,项目名称:GithubVS2013,代码行数:28,代码来源:GithubTesting04172016.py
示例12: test_denoise_bilateral_types
def test_denoise_bilateral_types(dtype):
img = checkerboard_gray.copy()[:50, :50]
# add some random noise
img += 0.5 * img.std() * np.random.rand(*img.shape)
img = np.clip(img, 0, 1)
# check that we can process multiple float types
out = restoration.denoise_bilateral(img, sigma_color=0.1,
sigma_spatial=10, multichannel=False)
开发者ID:jarrodmillman,项目名称:scikit-image,代码行数:9,代码来源:test_denoise.py
示例13: test_denoise_bilateral_3d_multichannel
def test_denoise_bilateral_3d_multichannel():
img = np.ones((50, 50, 50))
with expected_warnings(["grayscale"]):
result = restoration.denoise_bilateral(img)
expected = np.empty_like(img)
expected.fill(np.nan)
assert_equal(result, expected)
开发者ID:AceHao,项目名称:scikit-image,代码行数:9,代码来源:test_denoise.py
示例14: image_features_hog3
def image_features_hog3(img, num_features,orientation,maxcell,maxPixel):
image=denoise_bilateral(img, win_size=5, sigma_range=None, sigma_spatial=1, bins=10000, mode='constant', cval=0)
thresh = threshold_otsu(image)
binary = image > thresh
im = resize(binary, (maxPixel, maxPixel))
##hog scikit transform
fd= hog(im, orientations=orientation, pixels_per_cell=(maxcell, maxcell),
cells_per_block=(1, 1), visualise=False,normalise=True)
return fd
开发者ID:kailex,项目名称:Bowl,代码行数:11,代码来源:Prepare_Features.py
示例15: denoiseBilateral
def denoiseBilateral(imagen,multichannel):
"""
-Reemplaza el valor de cada pixel en funcion de la proximidad espacial y radiometrica
medida por la funcion Gaussiana de la distancia euclidiana entre dos pixels y con
cierta desviacion estandar.
-False si la imagen es una escala de grises, sino True
"""
noisy = img_as_float(imagen)
denoise = denoise_bilateral(noisy, 7, 9, 0.08,multichannel)
return denoise
开发者ID:gastonzarate,项目名称:ReconocedorPlexoBraquialUltrasonido,代码行数:12,代码来源:ReducirRuido.py
示例16: image_features_resize_thres
def image_features_resize_thres(img, maxPixel, num_features,imageSize):
# X is the feature vector with one row of features per image
# consisting of the pixel values a, num_featuresnd our metric
X=np.zeros(num_features, dtype=float)
image=denoise_bilateral(img, win_size=5, sigma_range=None, sigma_spatial=1, bins=10000, mode='constant', cval=0)
thresh = threshold_otsu(image)
binary = image > thresh
im = resize(binary, (maxPixel, maxPixel))
# Store the rescaled image pixels
X[0:imageSize] = np.reshape(im,(1, imageSize))
return X
开发者ID:kailex,项目名称:Bowl,代码行数:14,代码来源:Prepare_Features.py
示例17: watershed
def watershed(image):
""" the watershed algorithm """
if len(image.shape) != 2:
raise TypeError("The input image must be gray-scale ")
h, w = image.shape
image = cv2.equalizeHist(image)
image = denoise_bilateral(image, sigma_range=0.1, sigma_spatial=10)
image = rescale_intensity(image)
image = img_as_ubyte(image)
image = rescale_intensity(image)
# com.debug_im(image)
_, thres = cv2.threshold(image, 80, 255, cv2.THRESH_BINARY_INV)
distance = ndi.distance_transform_edt(thres)
local_maxi = peak_local_max(distance, indices=False,
labels=thres,
min_distance=5)
# com.debug_im(thres)
# implt = plt.imshow(-distance, cmap=plt.cm.jet, interpolation='nearest')
# plt.show()
markers = ndi.label(local_maxi, np.ones((3, 3)))[0]
labels = ws(-distance, markers, mask=thres)
labels = np.uint8(labels)
# result = np.round(255.0 / np.amax(labels) * labels).astype(np.uint8)
# com.debug_im(result)
segments = []
for idx in range(1, np.amax(labels) + 1):
indices = np.where(labels == idx)
left = np.amin(indices[1])
right = np.amax(indices[1])
top = np.amin(indices[0])
down = np.amax(indices[0])
# region = labels[top:down, left:right]
# m = (region > 0) & (region != idx)
# region[m] = 0
# region[region >= 1] = 1
region = image[top:down, left:right]
cont = Contour(mask=region)
cont.lt = [left, top]
cont.rb = [right, down]
segments.append(cont)
return segments
开发者ID:dangkhoasdc,项目名称:CellCounter,代码行数:50,代码来源:watershed.py
示例18: get_regions
def get_regions(img):
denoised=restoration.denoise_bilateral(img.astype('uint16'),
# sigma_range=0.01,
sigma_spatial=15,
multichannel=False)
smoothened = filters.median(denoised,np.ones((4,4)))
markers = np.zeros(smoothened.shape, dtype=np.uint)
# otsu works only for only for multi-channel images
# markers[smoothened < filters.threshold_otsu(smoothened)] = 1
# markers[smoothened > filters.threshold_otsu(smoothened)] = 2
markers[smoothened < filters.median(smoothened)] = 1
markers[smoothened > filters.median(smoothened)] = 2
labels = random_walker(smoothened, markers, beta=10, mode='bf')
regions= measure.label(labels)
return regions, denoised, smoothened,markers
开发者ID:rraadd88,项目名称:htsimaging,代码行数:16,代码来源:utils.py
示例19: localToneMap
def localToneMap(img,dR=4,filt="bilateral",sigma=6, sr=0.05, ss=15):
r = img[:,:,0]
g = img[:,:,1]
b = img[:,:,2]
pixList = [r,g,b]
(width,height,_) = img.shape
# Intensity -- consider using weighted average??
I = np.mean(pixList, axis=0)
# Chrominance Channels
chromeChannels = map(lambda x:x/I, pixList)
# Log Intensity
L = np.log2(I)
# bilateral filter
if filt == "gaussian":
B = ndimage.filters.gaussian_filter(L,sigma)
else:
B = denoise_bilateral(L,sigma_range=sr, sigma_spatial=ss)
# Compute the detail layer:
D = L - B
offset = np.amax(B)
scale = dR / (offset - np.amin(B))
B_Prime = (B - offset*np.ones((width,height))) * scale
# Reconstruct the log intensity: O = 2^(B' + D)
reconLogIntens = map(lambda x: 2**x, B_Prime + D)
# New Colors R',G',B' = O * (R/I, G/I, B/I)
newColors = map(lambda x: x * reconLogIntens, chromeChannels)
# Gamma Compression/correction
newColors = map(gammaCorrect, newColors)
img[:,:,0] = newColors[0]
img[:,:,1] = newColors[1]
img[:,:,2] = newColors[2]
return img
开发者ID:zrathustra,项目名称:project5,代码行数:47,代码来源:hdr.py
示例20: _get_processed_image
def _get_processed_image(self):
# read image
image = mpimg.imread(self.image_path)
mask = image[:,:,1] > 150.
image[mask] = 255.
#plt.imshow(image)
#plt.show()
# convert to grayscale
image = self.rgb2gray(image)
# crop image
image = image[100:1000,200:1100]
mask = mask[100:1000,200:1100]
image = image - np.min(image)
image[mask] *= 255. / np.max(image[mask])
if self.filter == True:
image = denoise_bilateral(image, sigma_spatial=self.denoise_spatial)
if self.denoise == True:
image = threshold_adaptive(image, self.block_size, offset=self.offset)
return image, mask
开发者ID:rostar,项目名称:rostar,代码行数:19,代码来源:image_processing_lab.py
注:本文中的skimage.restoration.denoise_bilateral函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论