本文整理汇总了Python中skimage.restoration.denoise_nl_means函数的典型用法代码示例。如果您正苦于以下问题:Python denoise_nl_means函数的具体用法?Python denoise_nl_means怎么用?Python denoise_nl_means使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了denoise_nl_means函数的16个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_no_denoising_for_small_h
def test_no_denoising_for_small_h():
img = np.zeros((40, 40))
img[10:-10, 10:-10] = 1.
img += 0.3*np.random.randn(*img.shape)
# very small h should result in no averaging with other patches
denoised = restoration.denoise_nl_means(img, 7, 5, 0.01, fast_mode=True)
assert np.allclose(denoised, img)
denoised = restoration.denoise_nl_means(img, 7, 5, 0.01, fast_mode=False)
assert np.allclose(denoised, img)
开发者ID:AceHao,项目名称:scikit-image,代码行数:9,代码来源:test_denoise.py
示例2: test_nl_means_denoising_2d
def test_nl_means_denoising_2d():
img = np.zeros((40, 40))
img[10:-10, 10:-10] = 1.
img += 0.3*np.random.randn(*img.shape)
denoised = restoration.denoise_nl_means(img, 7, 5, 0.2, fast_mode=True)
# make sure noise is reduced
assert img.std() > denoised.std()
denoised = restoration.denoise_nl_means(img, 7, 5, 0.2, fast_mode=False)
# make sure noise is reduced
assert img.std() > denoised.std()
开发者ID:AceHao,项目名称:scikit-image,代码行数:10,代码来源:test_denoise.py
示例3: test_denoise_nl_means_3d
def test_denoise_nl_means_3d():
img = np.zeros((20, 20, 10))
img[5:-5, 5:-5, 3:-3] = 1.
img += 0.3*np.random.randn(*img.shape)
denoised = restoration.denoise_nl_means(img, 5, 4, 0.2, fast_mode=True,
multichannel=False)
# make sure noise is reduced
assert img.std() > denoised.std()
denoised = restoration.denoise_nl_means(img, 5, 4, 0.2, fast_mode=False,
multichannel=False)
# make sure noise is reduced
assert img.std() > denoised.std()
开发者ID:AceHao,项目名称:scikit-image,代码行数:12,代码来源:test_denoise.py
示例4: test_denoise_nl_means_2drgb
def test_denoise_nl_means_2drgb():
# reduce image size because nl means is very slow
img = np.copy(astro[:50, :50])
# add some random noise
img += 0.5 * img.std() * np.random.random(img.shape)
img = np.clip(img, 0, 1)
denoised = restoration.denoise_nl_means(img, 7, 9, 0.3, fast_mode=True)
# make sure noise is reduced
assert img.std() > denoised.std()
denoised = restoration.denoise_nl_means(img, 7, 9, 0.3, fast_mode=False)
# make sure noise is reduced
assert img.std() > denoised.std()
开发者ID:AceHao,项目名称:scikit-image,代码行数:12,代码来源:test_denoise.py
示例5: test_denoise_nl_means_multichannel
def test_denoise_nl_means_multichannel():
# for true 3D data, 3D denoising is better than denoising as 2D+channels
img = np.zeros((13, 10, 8))
img[6, 4:6, 2:-2] = 1.
sigma = 0.3
imgn = img + sigma * np.random.randn(*img.shape)
denoised_wrong_multichannel = restoration.denoise_nl_means(
imgn, 3, 4, 0.6 * sigma, fast_mode=True, multichannel=True)
denoised_ok_multichannel = restoration.denoise_nl_means(
imgn, 3, 4, 0.6 * sigma, fast_mode=True, multichannel=False)
psnr_wrong = compare_psnr(img, denoised_wrong_multichannel)
psnr_ok = compare_psnr(img, denoised_ok_multichannel)
assert_(psnr_ok > psnr_wrong)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:13,代码来源:test_denoise.py
示例6: test_denoise_nl_means_multichannel
def test_denoise_nl_means_multichannel():
img = np.zeros((21, 20, 10))
img[10, 9:11, 2:-2] = 1.
img += 0.3*np.random.randn(*img.shape)
denoised_wrong_multichannel = restoration.denoise_nl_means(img,
5, 4, 0.1, fast_mode=True, multichannel=True)
denoised_ok_multichannel = restoration.denoise_nl_means(img,
5, 4, 0.1, fast_mode=True, multichannel=False)
snr_wrong = 10 * np.log10(1. /
((denoised_wrong_multichannel - img)**2).mean())
snr_ok = 10 * np.log10(1. /
((denoised_ok_multichannel - img)**2).mean())
assert snr_ok > snr_wrong
开发者ID:AceHao,项目名称:scikit-image,代码行数:13,代码来源:test_denoise.py
示例7: test_denoise_nl_means_2d
def test_denoise_nl_means_2d():
img = np.zeros((40, 40))
img[10:-10, 10:-10] = 1.
sigma = 0.3
img += sigma * np.random.randn(*img.shape)
for s in [sigma, 0]:
denoised = restoration.denoise_nl_means(img, 7, 5, 0.2, fast_mode=True,
multichannel=True, sigma=s)
# make sure noise is reduced
assert_(img.std() > denoised.std())
denoised = restoration.denoise_nl_means(img, 7, 5, 0.2,
fast_mode=False,
multichannel=True, sigma=s)
# make sure noise is reduced
assert_(img.std() > denoised.std())
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:15,代码来源:test_denoise.py
示例8: test_denoise_nl_means_3d
def test_denoise_nl_means_3d():
img = np.zeros((12, 12, 8))
img[5:-5, 5:-5, 2:-2] = 1.
sigma = 0.3
imgn = img + sigma * np.random.randn(*img.shape)
psnr_noisy = compare_psnr(img, imgn)
for s in [sigma, 0]:
denoised = restoration.denoise_nl_means(imgn, 3, 4, h=0.75 * sigma,
fast_mode=True,
multichannel=False, sigma=s)
# make sure noise is reduced
assert_(compare_psnr(img, denoised) > psnr_noisy)
denoised = restoration.denoise_nl_means(imgn, 3, 4, h=0.75 * sigma,
fast_mode=False,
multichannel=False, sigma=s)
# make sure noise is reduced
assert_(compare_psnr(img, denoised) > psnr_noisy)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:17,代码来源:test_denoise.py
示例9: denoiseNonLocalMeans
def denoiseNonLocalMeans(imagen):
"""
Reemplaza la intensidad de cada pixel con la media de los pixels a su alrededor
"""
noisy = img_as_float(imagen)
denoise = denoise_nl_means(noisy, patch_size=4, patch_distance=7, h=0.05)
return denoise
开发者ID:gastonzarate,项目名称:ReconocedorPlexoBraquialUltrasonido,代码行数:9,代码来源:ReducirRuido.py
示例10: _correctNoise
def _correctNoise(self, image):
'''
denoise using non-local-means
with guessing best parameters
'''
from skimage.restoration import denoise_nl_means # save startup time
image[np.isnan(image)] = 0 # otherwise result =nan
out = denoise_nl_means(image,
patch_size=7,
patch_distance=11,
#h=signalStd(image) * 0.1
)
return out
开发者ID:radjkarl,项目名称:imgProcessor,代码行数:14,代码来源:CameraCalibration.py
示例11: DenoisingNLM2D
def DenoisingNLM2D(image, **kwargs):
# GOAL: denoise a 2D image and return the denoised image using NLM
# Import the function to apply nl means in 2D images
from skimage.restoration import denoise_nl_means
# Get the parameters for the denoising
min_dim = float(min(image.shape))
patch_size = kwargs.pop('patch_size', int(np.ceil(min_dim / 30.)))
patch_distance = kwargs.pop('patch_distance', int(np.ceil(min_dim / 15.)))
h = kwargs.pop('h', 0.04)
multichannel = kwargs.pop('multichannel', False)
fast_mode = kwargs.pop('fast_mode', True)
img_den = denoise_nl_means(image, patch_size=patch_size, patch_distance=patch_distance,
h=h, multichannel=multichannel, fast_mode=fast_mode)
# Perform the denoising
return img_den
开发者ID:glemaitre,项目名称:protoclass,代码行数:20,代码来源:denoising.py
示例12: test_denoise_nl_means_2d_multichannel
def test_denoise_nl_means_2d_multichannel():
# reduce image size because nl means is slow
img = np.copy(astro[:50, :50])
img = np.concatenate((img, ) * 2, ) # 6 channels
# add some random noise
sigma = 0.1
imgn = img + sigma * np.random.standard_normal(img.shape)
imgn = np.clip(imgn, 0, 1)
for fast_mode in [True, False]:
for s in [sigma, 0]:
for n_channels in [2, 3, 6]:
psnr_noisy = compare_psnr(img[..., :n_channels],
imgn[..., :n_channels])
denoised = restoration.denoise_nl_means(imgn[..., :n_channels],
3, 5, h=0.75 * sigma,
fast_mode=fast_mode,
multichannel=True,
sigma=s)
psnr_denoised = compare_psnr(denoised[..., :n_channels],
img[..., :n_channels])
# make sure noise is reduced
assert_(psnr_denoised > psnr_noisy)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:23,代码来源:test_denoise.py
示例13: test_denoise_nl_means_wrong_dimension
def test_denoise_nl_means_wrong_dimension():
img = np.zeros((5, 5, 5, 5))
with testing.raises(NotImplementedError):
restoration.denoise_nl_means(img, multichannel=True)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:4,代码来源:test_denoise.py
示例14: img_as_float
astro = img_as_float(data.astronaut())
astro = astro[30:180, 150:300]
sigma = 0.08
noisy = random_noise(astro, var=sigma**2)
# estimate the noise standard deviation from the noisy image
sigma_est = np.mean(estimate_sigma(noisy, multichannel=True))
print("estimated noise standard deviation = {}".format(sigma_est))
patch_kw = dict(patch_size=5, # 5x5 patches
patch_distance=6, # 13x13 search area
multichannel=True)
# slow algorithm
denoise = denoise_nl_means(noisy, h=1.15 * sigma_est, fast_mode=False,
**patch_kw)
# slow algorithm, sigma provided
denoise2 = denoise_nl_means(noisy, h=0.8 * sigma_est, sigma=sigma_est,
fast_mode=False, **patch_kw)
# fast algorithm
denoise_fast = denoise_nl_means(noisy, h=0.8 * sigma_est, fast_mode=True,
**patch_kw)
# fast algorithm, sigma provided
denoise2_fast = denoise_nl_means(noisy, h=0.6 * sigma_est, sigma=sigma_est,
fast_mode=True, **patch_kw)
fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(8, 6),
sharex=True, sharey=True)
开发者ID:TheArindham,项目名称:scikit-image,代码行数:32,代码来源:plot_nonlocal_means.py
示例15: img_as_float
blurred by other denoising algoritm.
"""
import numpy as np
import matplotlib.pyplot as plt
from skimage import data, img_as_float
from skimage.restoration import denoise_nl_means
astro = img_as_float(data.astronaut())
astro = astro[30:180, 150:300]
noisy = astro + 0.3 * np.random.random(astro.shape)
noisy = np.clip(noisy, 0, 1)
denoise = denoise_nl_means(noisy, 7, 9, 0.08, multichannel=True)
fig, ax = plt.subplots(ncols=2, figsize=(8, 4), sharex=True, sharey=True,
subplot_kw={'adjustable': 'box-forced'})
ax[0].imshow(noisy)
ax[0].axis('off')
ax[0].set_title('noisy')
ax[1].imshow(denoise)
ax[1].axis('off')
ax[1].set_title('non-local means')
fig.tight_layout()
plt.show()
开发者ID:andreydung,项目名称:scikit-image,代码行数:30,代码来源:plot_nonlocal_means.py
示例16: img_as_float
import numpy as np
import matplotlib.pyplot as plt
from skimage import data, img_as_float
from skimage.restoration import denoise_nl_means
astro = img_as_float(data.astronaut())
astro = astro[30:180, 150:300]
noisy = astro + 0.3 * np.random.random(astro.shape)
noisy = np.clip(noisy, 0, 1)
denoise = denoise_nl_means(noisy, 7, 9, 0.08)
fig, ax = plt.subplots(ncols=2, figsize=(8, 4), sharex=True, sharey=True, subplot_kw={'adjustable':'box-forced'})
ax[0].imshow(noisy)
ax[0].axis('off')
ax[0].set_title('noisy')
ax[1].imshow(denoise)
ax[1].axis('off')
ax[1].set_title('non-local means')
fig.subplots_adjust(wspace=0.02, hspace=0.2,
top=0.9, bottom=0.05, left=0, right=1)
plt.show()
开发者ID:ShimonaNiharika,项目名称:Denoising_Algorithms_SP,代码行数:28,代码来源:test_nlm_python.py
注:本文中的skimage.restoration.denoise_nl_means函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论