本文整理汇总了Python中sklearn.datasets.load_diabetes函数的典型用法代码示例。如果您正苦于以下问题:Python load_diabetes函数的具体用法?Python load_diabetes怎么用?Python load_diabetes使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了load_diabetes函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_load_diabetes
def test_load_diabetes():
res = load_diabetes()
assert_equal(res.data.shape, (442, 10))
assert_true(res.target.size, 442)
# test return_X_y option
X_y_tuple = load_diabetes(return_X_y=True)
bunch = load_diabetes()
assert_true(isinstance(X_y_tuple, tuple))
assert_array_equal(X_y_tuple[0], bunch.data)
assert_array_equal(X_y_tuple[1], bunch.target)
开发者ID:chribsen,项目名称:simple-machine-learning-examples,代码行数:11,代码来源:test_base.py
示例2: test_Lasso_Path
def test_Lasso_Path(self):
diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target
X /= X.std(axis=0)
df = pdml.ModelFrame(diabetes)
df.data /= df.data.std(axis=0, ddof=False)
self.assert_numpy_array_almost_equal(df.data.values, X)
eps = 5e-3
expected = lm.lasso_path(X, y, eps, fit_intercept=False)
result = df.lm.lasso_path(eps=eps, fit_intercept=False)
self.assert_numpy_array_almost_equal(expected[0], result[0])
self.assert_numpy_array_almost_equal(expected[1], result[1])
self.assert_numpy_array_almost_equal(expected[2], result[2])
expected = lm.enet_path(X, y, eps=eps, l1_ratio=0.8, fit_intercept=False)
result = df.lm.enet_path(eps=eps, l1_ratio=0.8, fit_intercept=False)
self.assert_numpy_array_almost_equal(expected[0], result[0])
self.assert_numpy_array_almost_equal(expected[1], result[1])
self.assert_numpy_array_almost_equal(expected[2], result[2])
expected = lm.enet_path(X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False)
result = df.lm.enet_path(eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False)
self.assert_numpy_array_almost_equal(expected[0], result[0])
self.assert_numpy_array_almost_equal(expected[1], result[1])
self.assert_numpy_array_almost_equal(expected[2], result[2])
expected = lm.lars_path(X, y, method='lasso', verbose=True)
result = df.lm.lars_path(method='lasso', verbose=True)
self.assert_numpy_array_almost_equal(expected[0], result[0])
self.assert_numpy_array_almost_equal(expected[1], result[1])
self.assert_numpy_array_almost_equal(expected[2], result[2])
开发者ID:sinhrks,项目名称:pandas-ml,代码行数:35,代码来源:test_linear_model.py
示例3: test_ElasticnetWeights
def test_ElasticnetWeights():
"""Test elastic net with different weight for each predictor
alpha: a vector of weight, small # means prior knowledge
1 : means no prior knowledge
"""
# Has 10 features
diabetes = datasets.load_diabetes()
# pprint(diabetes)
print("Size of data:{}".format(diabetes.data.shape))
X = diabetes.data
y = diabetes.target
X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter)
eps = 5e-3 # the smaller it is the longer is the path
alphas = np.arange(2, 4, 0.2)
alphas = np.append(alphas, 2.27889) # best aplpha from cv
# Computing regularization path using the lasso
alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps, fit_intercept=False,
alphas=alphas)
# Computing regularization path using the elastic net
alphas_enet, coefs_enet, _ = enet_path(
X, y, eps=eps, l1_ratio=0.8, fit_intercept=False, alphas=alphas)
# ElasticnetCV
num_predict = X.shape[1]
alphas = np.zeros(num_predict)
alphas.fill(1)
val = 0.1
alphas[2] = val
alphas[3] = val
alphas[6] = val
enetCV_alpha, enetCV_coef = runPrintResults(X,y, None, "EnetCV")
runPrintResults(X,y, alphas, "EnetCVWeight 1")
# print("coefs_enet: {}".format(coefs_enet[:, -1]))
# print("coefs_lasso: {}".format(coefs_lasso[:, -1]))
# Display results
plt.figure(1)
ax = plt.gca()
ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k'])
l1 = plt.plot(alphas_lasso, coefs_lasso.T)
l2 = plt.plot(alphas_enet, coefs_enet.T, linestyle='--')
# repeat alpha for x-axis values for plotting
enetCV_alphaVect = [enetCV_alpha] * num_predict
l3 = plt.scatter(enetCV_alphaVect, enetCV_coef, marker='x')
plt.xlabel('alpha')
plt.ylabel('coefficients')
plt.title('Lasso and Elastic-Net Paths')
plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'),
loc='upper right')
plt.axis('tight')
plt.savefig("fig/lassoEnet")
开发者ID:doaa-altarawy,项目名称:PEAK,代码行数:60,代码来源:test_Iterative_enet.py
示例4: test_simple_grnn
def test_simple_grnn(self):
dataset = datasets.load_diabetes()
x_train, x_test, y_train, y_test = train_test_split(
dataset.data, dataset.target, train_size=0.7
)
x_train_before = x_train.copy()
x_test_before = x_test.copy()
y_train_before = y_train.copy()
grnnet = algorithms.GRNN(std=0.1, verbose=False)
grnnet.train(x_train, y_train)
result = grnnet.predict(x_test)
error = rmsle(result, y_test)
old_result = result.copy()
self.assertAlmostEqual(error, 0.4245, places=4)
# Test problem with variable links
np.testing.assert_array_equal(x_train, x_train_before)
np.testing.assert_array_equal(x_test, x_test_before)
np.testing.assert_array_equal(y_train, y_train_before)
x_train[:, :] = 0
result = grnnet.predict(x_test)
total_classes_prob = np.round(result.sum(axis=1), 10)
np.testing.assert_array_almost_equal(result, old_result)
开发者ID:Neocher,项目名称:neupy,代码行数:27,代码来源:test_grnn.py
示例5: test_simple_grnn
def test_simple_grnn(self):
dataset = datasets.load_diabetes()
x_train, x_test, y_train, y_test = train_test_split(
dataset.data, dataset.target, train_size=0.7
)
x_train_before = x_train.copy()
x_test_before = x_test.copy()
y_train_before = y_train.copy()
grnnet = algorithms.GRNN(std=0.1, verbose=False)
grnnet.train(x_train, y_train)
result = grnnet.predict(x_test)
error = metrics.mean_absolute_error(result, y_test)
old_result = result.copy()
self.assertAlmostEqual(error, 46.3358, places=4)
# Test problem with variable links
np.testing.assert_array_equal(x_train, x_train_before)
np.testing.assert_array_equal(x_test, x_test_before)
np.testing.assert_array_equal(y_train, y_train_before)
x_train[:, :] = 0
result = grnnet.predict(x_test)
np.testing.assert_array_almost_equal(result, old_result)
开发者ID:itdxer,项目名称:neupy,代码行数:27,代码来源:test_grnn.py
示例6: test_grid_search
def test_grid_search(self):
def scorer(network, X, y):
result = network.predict(X)
return rmsle(result, y)
dataset = datasets.load_diabetes()
x_train, x_test, y_train, y_test = train_test_split(
dataset.data, dataset.target, train_size=0.7
)
grnnet = algorithms.GRNN(std=0.5, verbose=False)
grnnet.train(x_train, y_train)
error = scorer(grnnet, x_test, y_test)
self.assertAlmostEqual(0.513, error, places=3)
random_search = grid_search.RandomizedSearchCV(
grnnet,
param_distributions={'std': np.arange(1e-2, 1, 1e-4)},
n_iter=10,
scoring=scorer
)
random_search.fit(dataset.data, dataset.target)
scores = random_search.grid_scores_
best_score = min(scores, key=itemgetter(1))
self.assertAlmostEqual(0.452, best_score[1], places=3)
开发者ID:Neocher,项目名称:neupy,代码行数:27,代码来源:test_sklearn_compability.py
示例7: main
def main():
diabetes = datasets.load_diabetes()
# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]
diabetes_X = scale(diabetes_X)
diabetes_y = scale(diabetes.target)
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# diabetes_y_train = diabetes.target[:-20]
# diabetes_y_test = diabetes.target[-20:]
diabetes_y_train = diabetes_y[:-20]
diabetes_y_test = diabetes_y[-20:]
# regr = linear_model.LinearRegression()
regr = LinearRegression(n_iter=50, fit_alg="batch")
# regr = LinearRegressionNormal()
regr.fit(diabetes_X_train, diabetes_y_train)
# regr.fit(np.array([[0, 0], [1, 1], [2, 2]]), np.array([0, 1, 2]))
# print(regr.predict(np.array([[3, 3]])))
# print('Coefficients: \n', regr.coef_)
# print("Residual sum of squares: %.2f"
# % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2))
print("Variance score: %.2f" % regr.score(diabetes_X_test, diabetes_y_test))
开发者ID:kenzotakahashi,项目名称:machine_learning,代码行数:26,代码来源:linear_regression.py
示例8: test_pipeline
def test_pipeline(self):
dataset = datasets.load_diabetes()
target_scaler = preprocessing.MinMaxScaler()
target = dataset.target.reshape(-1, 1)
x_train, x_test, y_train, y_test = train_test_split(
dataset.data,
target_scaler.fit_transform(target),
train_size=0.85
)
network = algorithms.Backpropagation(
connection=[
layers.SigmoidLayer(10),
layers.SigmoidLayer(40),
layers.OutputLayer(1),
],
use_bias=True,
show_epoch=100,
verbose=False,
)
pipeline = Pipeline([
('min_max_scaler', preprocessing.MinMaxScaler()),
('backpropagation', network),
])
pipeline.fit(x_train, y_train, backpropagation__epochs=1000)
y_predict = pipeline.predict(x_test)
error = rmsle(target_scaler.inverse_transform(y_test),
target_scaler.inverse_transform(y_predict).round())
self.assertAlmostEqual(0.4481, error, places=4)
开发者ID:Neocher,项目名称:neupy,代码行数:31,代码来源:test_sklearn_compability.py
示例9: test_pipeline
def test_pipeline(self):
dataset = datasets.load_diabetes()
target_scaler = preprocessing.MinMaxScaler()
target = dataset.target.reshape(-1, 1)
x_train, x_test, y_train, y_test = train_test_split(
dataset.data,
target_scaler.fit_transform(target),
train_size=0.85
)
network = algorithms.GradientDescent(
connection=[
layers.Input(10),
layers.Sigmoid(25),
layers.Sigmoid(1),
],
show_epoch=100,
verbose=False,
)
pipeline = Pipeline([
('min_max_scaler', preprocessing.MinMaxScaler()),
('gd', network),
])
pipeline.fit(x_train, y_train, gd__epochs=50)
y_predict = pipeline.predict(x_test)
error = rmsle(target_scaler.inverse_transform(y_test),
target_scaler.inverse_transform(y_predict).round())
self.assertAlmostEqual(0.48, error, places=2)
开发者ID:itdxer,项目名称:neupy,代码行数:30,代码来源:test_sklearn_compatibility.py
示例10: test_grid_search
def test_grid_search(self):
def scorer(network, X, y):
result = network.predict(X)
return rmsle(result[:, 0], y)
dataset = datasets.load_diabetes()
x_train, x_test, y_train, y_test = train_test_split(
dataset.data, dataset.target, train_size=0.7
)
grnnet = algorithms.GRNN(std=0.5, verbose=False)
grnnet.train(x_train, y_train)
error = scorer(grnnet, x_test, y_test)
self.assertAlmostEqual(0.513, error, places=3)
random_search = model_selection.RandomizedSearchCV(
grnnet,
param_distributions={'std': np.arange(1e-2, 0.1, 1e-4)},
n_iter=10,
scoring=scorer,
random_state=self.random_seed
)
random_search.fit(dataset.data, dataset.target)
scores = random_search.cv_results_
best_score = min(scores['mean_test_score'])
self.assertAlmostEqual(0.4266, best_score, places=3)
开发者ID:itdxer,项目名称:neupy,代码行数:28,代码来源:test_sklearn_compatibility.py
示例11: gmm_clustering
def gmm_clustering():
conversion = {
0: 2,
1: 0,
2: 1,
}
g = mixture.GMM(n_components=3)
iris_data = datasets.load_iris()
diabetes_data = datasets.load_diabetes()
data = iris_data
# Generate random observations with two modes centered on 0
# and 10 to use for training.
np.random.seed(0)
obs = np.concatenate((np.random.randn(100, 1), 10 + np.random.randn(300, 1)))
g.fit(data.data)
print("Target classification")
print(data.target)
results = g.predict(data.data)
results = [conversion[item] for item in results]
print("\nResults")
print(np.array(results))
compare = [results[i] == data.target[i] for i in range(len(results))]
accuracy_count = [item for item in compare if item == True]
print("\nAccuracy: {:.0%}".format(float(len(accuracy_count)) / len(compare)))
print(max(data.target))
开发者ID:jpinsonault,项目名称:android_sensor_logger,代码行数:32,代码来源:gmm_clustering.py
示例12: test_hessian_diagonal
def test_hessian_diagonal(self):
dataset = datasets.load_diabetes()
data, target = dataset.data, dataset.target
input_scaler = preprocessing.StandardScaler()
target_scaler = preprocessing.StandardScaler()
x_train, x_test, y_train, y_test = cross_validation.train_test_split(
input_scaler.fit_transform(data),
target_scaler.fit_transform(target.reshape(-1, 1)),
train_size=0.8
)
nw = algorithms.HessianDiagonal(
connection=[
layers.SigmoidLayer(10),
layers.SigmoidLayer(20),
layers.OutputLayer(1)
],
step=1.5,
shuffle_data=False,
verbose=False,
min_eigenvalue=1e-10
)
nw.train(x_train, y_train, epochs=10)
y_predict = nw.predict(x_test)
error = rmsle(target_scaler.inverse_transform(y_test),
target_scaler.inverse_transform(y_predict).round())
self.assertAlmostEqual(0.5032, error, places=4)
开发者ID:Neocher,项目名称:neupy,代码行数:31,代码来源:test_hessian_diagonal.py
示例13: bagging_regression
def bagging_regression():
digits = load_diabetes()
x = digits.data
y = digits.target
sample_parameter = {
'n_jobs': -1,
'min_samples_leaf': 2.0,
'n_estimators': 500,
'max_features': 0.55,
'criterion': 'mse',
'min_samples_split': 4.0,
'model': 'RFREG',
'max_depth': 4.0
}
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=42)
clf_layer = mlc.layer.layer.RegressionLayer()
print "single prediction"
#y_train_predict,y_test_predict = clf_layer.predict(x_train,y_train,x_test,sample_parameter)
#print y_test_predict
y_train_predict_proba,y_test_predict_proba = clf_layer.predict(x_train,y_train,x_test,sample_parameter)
#print y_test_predict_proba
print evaluate_function(y_test,y_test_predict_proba,'mean_squared_error')
print "multi ensamble prediction"
multi_bagging_clf = mlc.layer.layer.RegressionBaggingLayer()
y_train_predict_proba,y_test_predict_proba = multi_bagging_clf.predict(x_train,y_train,x_test,sample_parameter,times=5)
print evaluate_function(y_test,y_test_predict_proba,'mean_squared_error')
开发者ID:tereka114,项目名称:MachineLearningCombinator,代码行数:32,代码来源:single_prediction.py
示例14: test_linearsvr_fit_sampleweight
def test_linearsvr_fit_sampleweight():
# check correct result when sample_weight is 1
# check that SVR(kernel='linear') and LinearSVC() give
# comparable results
diabetes = datasets.load_diabetes()
n_samples = len(diabetes.target)
unit_weight = np.ones(n_samples)
lsvr = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target,
sample_weight=unit_weight)
score1 = lsvr.score(diabetes.data, diabetes.target)
lsvr_no_weight = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target)
score2 = lsvr_no_weight.score(diabetes.data, diabetes.target)
assert_allclose(np.linalg.norm(lsvr.coef_),
np.linalg.norm(lsvr_no_weight.coef_), 1, 0.0001)
assert_almost_equal(score1, score2, 2)
# check that fit(X) = fit([X1, X2, X3],sample_weight = [n1, n2, n3]) where
# X = X1 repeated n1 times, X2 repeated n2 times and so forth
random_state = check_random_state(0)
random_weight = random_state.randint(0, 10, n_samples)
lsvr_unflat = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target,
sample_weight=random_weight)
score3 = lsvr_unflat.score(diabetes.data, diabetes.target,
sample_weight=random_weight)
X_flat = np.repeat(diabetes.data, random_weight, axis=0)
y_flat = np.repeat(diabetes.target, random_weight, axis=0)
lsvr_flat = svm.LinearSVR(C=1e3).fit(X_flat, y_flat)
score4 = lsvr_flat.score(X_flat, y_flat)
assert_almost_equal(score3, score4, 2)
开发者ID:alexsavio,项目名称:scikit-learn,代码行数:33,代码来源:test_svm.py
示例15: get_data
def get_data(n_clients):
"""
Import the dataset via sklearn, shuffle and split train/test.
Return training, target lists for `n_clients` and a holdout test set
"""
print("Loading data")
diabetes = load_diabetes()
y = diabetes.target
X = diabetes.data
# Add constant to emulate intercept
X = np.c_[X, np.ones(X.shape[0])]
# The features are already preprocessed
# Shuffle
perm = np.random.permutation(X.shape[0])
X, y = X[perm, :], y[perm]
# Select test at random
test_size = 50
test_idx = np.random.choice(X.shape[0], size=test_size, replace=False)
train_idx = np.ones(X.shape[0], dtype=bool)
train_idx[test_idx] = False
X_test, y_test = X[test_idx, :], y[test_idx]
X_train, y_train = X[train_idx, :], y[train_idx]
# Split train among multiple clients.
# The selection is not at random. We simulate the fact that each client
# sees a potentially very different sample of patients.
X, y = [], []
step = int(X_train.shape[0] / n_clients)
for c in range(n_clients):
X.append(X_train[step * c: step * (c + 1), :])
y.append(y_train[step * c: step * (c + 1)])
return X, y, X_test, y_test
开发者ID:NICTA,项目名称:python-paillier,代码行数:35,代码来源:federated_learning_with_encryption.py
示例16: load_diabetes_data
def load_diabetes_data():
"""
Load the diabetes data set from scikit learn
Args:
None
Returns:
diabetes_X_train: Training features for diabetes data set
diabetes_X_test: Test set features for diabetes data set
diabetes_y_train: Target variables of the training set
diabetes_y_test: Target variables of the test set
"""
diabetes = datasets.load_diabetes()
diabetes_X, diabetes_y = diabetes.data, diabetes.target
# Split the data set as
# 70 % -> Training set
# 30 % -> Test set
limit = 0.7 * len(diabetes_y)
diabetes_X_train = diabetes_X[:limit]
diabetes_X_test = diabetes_X[limit:]
diabetes_y_train = diabetes_y[:limit]
diabetes_y_test = diabetes_y[limit:]
return diabetes_X_train, diabetes_X_test, diabetes_y_train, diabetes_y_test
开发者ID:bhsaurabh,项目名称:sklearn,代码行数:26,代码来源:LinearRegressionDemo.py
示例17: test_levenberg_marquardt
def test_levenberg_marquardt(self):
dataset = datasets.load_diabetes()
data, target = dataset.data, dataset.target
data_scaler = preprocessing.MinMaxScaler()
target_scaler = preprocessing.MinMaxScaler()
x_train, x_test, y_train, y_test = train_test_split(
data_scaler.fit_transform(data),
target_scaler.fit_transform(target.reshape(-1, 1)),
train_size=0.85
)
# Network
lmnet = algorithms.LevenbergMarquardt(
connection=[
layers.SigmoidLayer(10),
layers.SigmoidLayer(40),
layers.OutputLayer(1),
],
mu_increase_factor=2,
mu=0.1,
show_epoch=10,
use_bias=False,
verbose=False,
)
lmnet.train(x_train, y_train, epochs=100)
y_predict = lmnet.predict(x_test)
error = rmsle(target_scaler.inverse_transform(y_test),
target_scaler.inverse_transform(y_predict).round())
error
self.assertAlmostEqual(0.4372, error, places=4)
开发者ID:Neocher,项目名称:neupy,代码行数:34,代码来源:test_levenbarg_marquardt.py
示例18: test_mixture_of_experts
def test_mixture_of_experts(self):
dataset = datasets.load_diabetes()
data, target = asfloat(dataset.data), asfloat(dataset.target)
insize, outsize = data.shape[1], 1
input_scaler = preprocessing.MinMaxScaler((-1 ,1))
output_scaler = preprocessing.MinMaxScaler()
x_train, x_test, y_train, y_test = cross_validation.train_test_split(
input_scaler.fit_transform(data),
output_scaler.fit_transform(target.reshape(-1, 1)),
train_size=0.8
)
n_epochs = 10
scaled_y_test = output_scaler.inverse_transform(y_test)
scaled_y_test = scaled_y_test.reshape((y_test.size, 1))
# -------------- Train single GradientDescent -------------- #
bpnet = algorithms.GradientDescent(
(insize, 20, outsize),
step=0.1,
verbose=False
)
bpnet.train(x_train, y_train, epochs=n_epochs)
network_output = bpnet.predict(x_test)
network_error = rmsle(output_scaler.inverse_transform(network_output),
scaled_y_test)
# -------------- Train ensemlbe -------------- #
moe = algorithms.MixtureOfExperts(
networks=[
algorithms.Momentum(
(insize, 20, outsize),
step=0.1,
batch_size=1,
verbose=False
),
algorithms.Momentum(
(insize, 20, outsize),
step=0.1,
batch_size=1,
verbose=False
),
],
gating_network=algorithms.Momentum(
layers.Softmax(insize) > layers.Output(2),
step=0.1,
verbose=False
)
)
moe.train(x_train, y_train, epochs=n_epochs)
ensemble_output = moe.predict(x_test)
ensemlbe_error = rmsle(
output_scaler.inverse_transform(ensemble_output),
scaled_y_test
)
self.assertGreater(network_error, ensemlbe_error)
开发者ID:EdwardBetts,项目名称:neupy,代码行数:60,代码来源:test_mixtures_of_experts.py
示例19: supervisedTest02
def supervisedTest02():
import numpy as np
from sklearn import datasets
diabetes = datasets.load_diabetes()
diabetes_X_train = diabetes.data[:-20]
diabetes_X_test = diabetes.data[-20:]
diabetes_Y_train = diabetes.target[:-20]
diabetes_Y_test = diabetes.target[-20:]
from sklearn import linear_model
regr = linear_model.LinearRegression(copy_X=True, fit_intercept=True, normalize=False)
regr.fit(diabetes_X_train, diabetes_Y_train)
#print regr.coef_ #注意因为diabetes_X_train的特征是4维,所以coef_的个数是4+1 = 5
mean_err = np.mean((regr.predict(diabetes_X_test) - diabetes_Y_test) ** 2)
score = regr.score(diabetes_X_test, diabetes_Y_test) #这是判断test数据预测程度
print mean_err
print score
print len(diabetes.data) #样本数目
print len(diabetes.data[0]) #特征维数
开发者ID:hyliu0302,项目名称:scikit-learn-notes,代码行数:25,代码来源:myScikitLearnFcns.py
示例20: ModelSelectionTest01
def ModelSelectionTest01():
from sklearn import datasets, svm
import numpy as np
digits = datasets.load_digits()
X_digits = digits.data
Y_digits = digits.target
svc = svm.SVC(C = 1, kernel = 'linear')
score = svc.fit(X_digits[:-100], Y_digits[:-100]).score(X_digits[-100:], Y_digits[-100:])
#print score
X_folds = np.array_split(X_digits, 3)
Y_folds = np.array_split(Y_digits, 3)
#print len(X_folds[0])
scores = list()
for k in range(3):
X_train = list(X_folds) #这里的X_folds是一个具有3个元素的list
X_test = X_train.pop(k) #test是train的第K个元素
X_train = np.concatenate(X_train) #这里是把X_train减去X_test
#print len(X_train)
Y_train = list(Y_folds)
Y_test = Y_train.pop(k)
Y_train = np.concatenate(Y_train)
scores.append(svc.fit(X_train, Y_train).score(X_test, Y_test))
#print scores
from sklearn import cross_validation
k_fold = cross_validation.KFold(n = 6, n_folds = 3)
for train_indices, test_indices in k_fold:
print train_indices, test_indices
k_fold = cross_validation.KFold(len(X_digits), n_folds = 3)
scores = [svc.fit(X_digits[train], Y_digits[train]).score(X_digits[test], Y_digits[test]) for train , test in k_fold]
#print scores
scores = cross_validation.cross_val_score(svc, X_digits, Y_digits, cv = k_fold, n_jobs = 1)
#print scores
from sklearn.grid_search import GridSearchCV
gammas = np.logspace(-6, -1, 10)
clf = GridSearchCV(estimator = svc, param_grid = dict(gamma = gammas), n_jobs = 1)
clf.fit(X_digits[:1000], Y_digits[:1000])
print clf.best_score_
print clf.best_estimator_.gamma
from sklearn import linear_model, datasets
lasso = linear_model.LassoCV() #这里的lassoCV和lasso有什么区别?
diabetes = datasets.load_diabetes()
X_diabetes = diabetes.data
Y_diabetes = diabetes.target
lasso.fit(X_diabetes, Y_diabetes)
print lasso.alpha_
开发者ID:hyliu0302,项目名称:scikit-learn-notes,代码行数:60,代码来源:myScikitLearnFcns.py
注:本文中的sklearn.datasets.load_diabetes函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论