本文整理汇总了Python中sklearn.datasets.load_digits函数的典型用法代码示例。如果您正苦于以下问题:Python load_digits函数的具体用法?Python load_digits怎么用?Python load_digits使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了load_digits函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_training_continuation
def test_training_continuation(self):
digits_2class = load_digits(2)
digits_5class = load_digits(5)
X_2class = digits_2class['data']
y_2class = digits_2class['target']
X_5class = digits_5class['data']
y_5class = digits_5class['target']
dtrain_2class = xgb.DMatrix(X_2class, label=y_2class)
dtrain_5class = xgb.DMatrix(X_5class, label=y_5class)
gbdt_01 = xgb.train(self.xgb_params_01, dtrain_2class, num_boost_round=10)
ntrees_01 = len(gbdt_01.get_dump())
assert ntrees_01 == 10
gbdt_02 = xgb.train(self.xgb_params_01, dtrain_2class, num_boost_round=0)
gbdt_02.save_model('xgb_tc.model')
gbdt_02a = xgb.train(self.xgb_params_01, dtrain_2class, num_boost_round=10, xgb_model=gbdt_02)
gbdt_02b = xgb.train(self.xgb_params_01, dtrain_2class, num_boost_round=10, xgb_model="xgb_tc.model")
ntrees_02a = len(gbdt_02a.get_dump())
ntrees_02b = len(gbdt_02b.get_dump())
assert ntrees_02a == 10
assert ntrees_02b == 10
assert mean_squared_error(y_2class, gbdt_01.predict(dtrain_2class)) == \
mean_squared_error(y_2class, gbdt_02a.predict(dtrain_2class))
assert mean_squared_error(y_2class, gbdt_01.predict(dtrain_2class)) == \
mean_squared_error(y_2class, gbdt_02b.predict(dtrain_2class))
gbdt_03 = xgb.train(self.xgb_params_01, dtrain_2class, num_boost_round=3)
gbdt_03.save_model('xgb_tc.model')
gbdt_03a = xgb.train(self.xgb_params_01, dtrain_2class, num_boost_round=7, xgb_model=gbdt_03)
gbdt_03b = xgb.train(self.xgb_params_01, dtrain_2class, num_boost_round=7, xgb_model="xgb_tc.model")
ntrees_03a = len(gbdt_03a.get_dump())
ntrees_03b = len(gbdt_03b.get_dump())
assert ntrees_03a == 10
assert ntrees_03b == 10
assert mean_squared_error(y_2class, gbdt_03a.predict(dtrain_2class)) == \
mean_squared_error(y_2class, gbdt_03b.predict(dtrain_2class))
gbdt_04 = xgb.train(self.xgb_params_02, dtrain_2class, num_boost_round=3)
assert gbdt_04.best_ntree_limit == (gbdt_04.best_iteration + 1) * self.num_parallel_tree
assert mean_squared_error(y_2class, gbdt_04.predict(dtrain_2class)) == \
mean_squared_error(y_2class, gbdt_04.predict(dtrain_2class, ntree_limit=gbdt_04.best_ntree_limit))
gbdt_04 = xgb.train(self.xgb_params_02, dtrain_2class, num_boost_round=7, xgb_model=gbdt_04)
assert gbdt_04.best_ntree_limit == (gbdt_04.best_iteration + 1) * self.num_parallel_tree
assert mean_squared_error(y_2class, gbdt_04.predict(dtrain_2class)) == \
mean_squared_error(y_2class, gbdt_04.predict(dtrain_2class, ntree_limit=gbdt_04.best_ntree_limit))
gbdt_05 = xgb.train(self.xgb_params_03, dtrain_5class, num_boost_round=7)
assert gbdt_05.best_ntree_limit == (gbdt_05.best_iteration + 1) * self.num_parallel_tree
gbdt_05 = xgb.train(self.xgb_params_03, dtrain_5class, num_boost_round=3, xgb_model=gbdt_05)
assert gbdt_05.best_ntree_limit == (gbdt_05.best_iteration + 1) * self.num_parallel_tree
assert np.any(gbdt_05.predict(dtrain_5class) !=
gbdt_05.predict(dtrain_5class, ntree_limit=gbdt_05.best_ntree_limit)) == False
开发者ID:000Nelson000,项目名称:xgboost,代码行数:59,代码来源:test_training_continuation.py
示例2: load_data
def load_data(digits=[]):
"""
Loads data from sklearn's digits dataset
(http://scikit-learn.org/stable/datasets/)
and performs preprocessing.
----
Note that the digits dataset has:
d = 64 (dimensionality)
m = ~180 (number of instances per class)
z = 10 (number of classes)
digits: An np array which has the digits you want to train on. The
digits must be in the range of [0,9].
Output: Returns the train/test, digits and targets data after
performing preprocessing.
"""
#Loads the data and the targets, resp.
#Note they should be indexed the same way. So digits_data[n] corresponds
#to digits_labels[n] for any n.
digits_data = pd.DataFrame(datasets.load_digits().data)
digits_labels = pd.Series(datasets.load_digits().target)
#If the digits to train on are not specified, pick randomly
if len(digits) == 0:
r_digits = range(0,10)
random.shuffle(r_digits)
#0-6 is 70% of the data
training_digits = set()
testing_digits = set()
for a in range(0,7):
training_digits.add(r_digits[a])
for a in range(7,10):
testing_digits.add(r_digits[a])
else:
if len(digits) > 0:
#If they specify digits outside of the range, throw
if (max(digits)>9 or min(digits)<0):
raise ValueError('The dataset only has digits 0-9. The parameter passed to load_data had a digit outside of that range')
if len(digits) >= 10:
raise ValueError('The dataset only has digits 0-9. You said to train on all of them leaving no testing data')
all_digits = set([0,1,2,3,4,5,6,7,8,9])
training_digits = set(digits)
testing_digits = all_digits - training_digits
#Training data
raw_train_labels = digits_labels[digits_labels.isin(training_digits)]
training_data = digits_data.loc[raw_train_labels.index]
#Maps the labels to 0...n
training_labels = pd.DataFrame(preprocessing.LabelEncoder().fit_transform(raw_train_labels))
#Testing data
raw_test_labels = digits_labels[digits_labels.isin(testing_digits)]
testing_data = digits_data.loc[raw_test_labels.index]
#Maps the labels to 0...n
testing_labels = pd.DataFrame(preprocessing.LabelEncoder().fit_transform(raw_test_labels))
processed = collections.namedtuple('processed', ['training_data', 'training_labels', 'testing_data','testing_labels', 'training_digits', 'testing_digits'])
return processed(training_data,training_labels,testing_data,testing_labels,training_digits,testing_digits)
开发者ID:aelkholy,项目名称:one-shot,代码行数:59,代码来源:EmbarrassingZeroShot.py
示例3: run
def run(sc):
iris = datasets.load_iris()
digits = [ datasets.load_digits(), datasets.load_digits()]
def learn(x):
clf = svm.SVC(gamma=0.001, C=100.)
clf.fit(x.data[:-1], x.target[:-1] )
return clf.predict(x.data[-1])
return sc.parallelize(digits).map(learn).collect()
开发者ID:jinhoyoo,项目名称:spark_cluster_example,代码行数:11,代码来源:scipy_example.py
示例4: test_load_digits
def test_load_digits():
digits = load_digits()
assert_equal(digits.data.shape, (1797, 64))
assert_equal(numpy.unique(digits.target).size, 10)
# test return_X_y option
X_y_tuple = load_digits(return_X_y=True)
bunch = load_digits()
assert_true(isinstance(X_y_tuple, tuple))
assert_array_equal(X_y_tuple[0], bunch.data)
assert_array_equal(X_y_tuple[1], bunch.target)
开发者ID:TaihuaLi,项目名称:scikit-learn,代码行数:11,代码来源:test_base.py
示例5: test_digits
def test_digits() :
from sklearn.cross_validation import train_test_split
from sklearn.datasets import load_digits
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
from sklearn.preprocessing import LabelBinarizer
digits = load_digits()
X = digits.data
y = digits.target #labels
X /= X.max() #norm
nn = NeuralNetwork([64,100,10],'logistic') #8x8 input, 10 output
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
labels_train = LabelBinarizer().fit_transform(y_train) #convert no to vector
labels_test = LabelBinarizer().fit_transform(y_test)
nn.fit(X_train,labels_train,epochs=100)
predictions = []
for i in range(X_test.shape[0]) :
o = nn.predict(X_test[i])
predictions.append(np.argmax(o))
print confusion_matrix(y_test,predictions)
print classification_report(y_test,predictions)
print 'accuracy at %0.3f'%accuracy_score(y_test,predictions)
开发者ID:akashdarak,项目名称:Neural-Networks,代码行数:25,代码来源:Linear_Activation.py
示例6: test_classification
def test_classification():
from sklearn.datasets import load_digits
from sklearn.cross_validation import KFold
from sklearn.metrics import normalized_mutual_info_score
digits = load_digits()
X, y = digits.data, digits.target
folds = 3
cv = KFold(y.shape[0], folds)
total = 0.0
oo_score_bag = []
for tr, te in cv:
mlp = MLPClassifier(use_dropout=True, n_hidden=200, lr=1.)
print(mlp)
mlp.fit(X[tr], y[tr], max_epochs=100, staged_sample=X[te])
t = normalized_mutual_info_score(mlp.predict(X[te]), y[te])
print("Fold training accuracy: %f" % t)
total += t
this_score = []
for i in mlp.oo_score:
this_score.append(normalized_mutual_info_score(i, y[te]))
oo_score_bag.append(this_score)
from matplotlib import pyplot as plt
plt.plot(oo_score_bag[0])
plt.show()
print("training accuracy: %f" % (total / float(folds)))
开发者ID:JakeMick,项目名称:sk-mlp,代码行数:26,代码来源:mlp.py
示例7: test_predict_probability
def test_predict_probability(self):
dataset = datasets.load_digits()
x_train, x_test, y_train, y_test = train_test_split(
dataset.data, dataset.target, train_size=0.7
)
x_train_before = x_train.copy()
x_test_before = x_test.copy()
y_train_before = y_train.copy()
number_of_classes = len(np.unique(dataset.target))
pnnet = algorithms.PNN(verbose=False, std=10)
pnnet.train(x_train, y_train)
result = pnnet.predict_prob(x_test)
n_test_inputs = x_test.shape[0]
self.assertEqual(result.shape, (n_test_inputs, number_of_classes))
total_classes_prob = np.round(result.sum(axis=1), 10)
np.testing.assert_array_equal(
total_classes_prob,
np.ones(n_test_inputs)
)
old_result = result.copy()
# Test problem with variable links
np.testing.assert_array_equal(x_train, x_train_before)
np.testing.assert_array_equal(x_test, x_test_before)
np.testing.assert_array_equal(y_train, y_train_before)
x_train[:, :] = 0
result = pnnet.predict_prob(x_test)
total_classes_prob = np.round(result.sum(axis=1), 10)
np.testing.assert_array_almost_equal(result, old_result)
开发者ID:Neocher,项目名称:neupy,代码行数:35,代码来源:test_pnn.py
示例8: test_multiclass_prediction_early_stopping
def test_multiclass_prediction_early_stopping(self):
X, y = load_digits(10, True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
params = {
'objective': 'multiclass',
'metric': 'multi_logloss',
'num_class': 10,
'verbose': -1
}
lgb_train = lgb.Dataset(X_train, y_train, params=params)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train, params=params)
evals_result = {}
gbm = lgb.train(params, lgb_train,
num_boost_round=50,
valid_sets=lgb_eval,
verbose_eval=False,
evals_result=evals_result)
pred_parameter = {"pred_early_stop": True, "pred_early_stop_freq": 5, "pred_early_stop_margin": 1.5}
ret = multi_logloss(y_test, gbm.predict(X_test, pred_parameter=pred_parameter))
self.assertLess(ret, 0.8)
self.assertGreater(ret, 0.5) # loss will be higher than when evaluating the full model
pred_parameter = {"pred_early_stop": True, "pred_early_stop_freq": 5, "pred_early_stop_margin": 5.5}
ret = multi_logloss(y_test, gbm.predict(X_test, pred_parameter=pred_parameter))
self.assertLess(ret, 0.2)
开发者ID:hubei2626662,项目名称:LightGBM,代码行数:26,代码来源:test_engine.py
示例9: ModelSelectionTest01
def ModelSelectionTest01():
from sklearn import datasets, svm
import numpy as np
digits = datasets.load_digits()
X_digits = digits.data
Y_digits = digits.target
svc = svm.SVC(C = 1, kernel = 'linear')
score = svc.fit(X_digits[:-100], Y_digits[:-100]).score(X_digits[-100:], Y_digits[-100:])
#print score
X_folds = np.array_split(X_digits, 3)
Y_folds = np.array_split(Y_digits, 3)
#print len(X_folds[0])
scores = list()
for k in range(3):
X_train = list(X_folds) #这里的X_folds是一个具有3个元素的list
X_test = X_train.pop(k) #test是train的第K个元素
X_train = np.concatenate(X_train) #这里是把X_train减去X_test
#print len(X_train)
Y_train = list(Y_folds)
Y_test = Y_train.pop(k)
Y_train = np.concatenate(Y_train)
scores.append(svc.fit(X_train, Y_train).score(X_test, Y_test))
#print scores
from sklearn import cross_validation
k_fold = cross_validation.KFold(n = 6, n_folds = 3)
for train_indices, test_indices in k_fold:
print train_indices, test_indices
k_fold = cross_validation.KFold(len(X_digits), n_folds = 3)
scores = [svc.fit(X_digits[train], Y_digits[train]).score(X_digits[test], Y_digits[test]) for train , test in k_fold]
#print scores
scores = cross_validation.cross_val_score(svc, X_digits, Y_digits, cv = k_fold, n_jobs = 1)
#print scores
from sklearn.grid_search import GridSearchCV
gammas = np.logspace(-6, -1, 10)
clf = GridSearchCV(estimator = svc, param_grid = dict(gamma = gammas), n_jobs = 1)
clf.fit(X_digits[:1000], Y_digits[:1000])
print clf.best_score_
print clf.best_estimator_.gamma
from sklearn import linear_model, datasets
lasso = linear_model.LassoCV() #这里的lassoCV和lasso有什么区别?
diabetes = datasets.load_diabetes()
X_diabetes = diabetes.data
Y_diabetes = diabetes.target
lasso.fit(X_diabetes, Y_diabetes)
print lasso.alpha_
开发者ID:hyliu0302,项目名称:scikit-learn-notes,代码行数:60,代码来源:myScikitLearnFcns.py
示例10: test_unsorted_indices
def test_unsorted_indices():
# test that the result with sorted and unsorted indices in csr is the same
# we use a subset of digits as iris, blobs or make_classification didn't
# show the problem
digits = load_digits()
X, y = digits.data[:50], digits.target[:50]
X_test = sparse.csr_matrix(digits.data[50:100])
X_sparse = sparse.csr_matrix(X)
coef_dense = svm.SVC(kernel='linear', probability=True,
random_state=0).fit(X, y).coef_
sparse_svc = svm.SVC(kernel='linear', probability=True,
random_state=0).fit(X_sparse, y)
coef_sorted = sparse_svc.coef_
# make sure dense and sparse SVM give the same result
assert_array_almost_equal(coef_dense, coef_sorted.toarray())
X_sparse_unsorted = X_sparse[np.arange(X.shape[0])]
X_test_unsorted = X_test[np.arange(X_test.shape[0])]
# make sure we scramble the indices
assert_false(X_sparse_unsorted.has_sorted_indices)
assert_false(X_test_unsorted.has_sorted_indices)
unsorted_svc = svm.SVC(kernel='linear', probability=True,
random_state=0).fit(X_sparse_unsorted, y)
coef_unsorted = unsorted_svc.coef_
# make sure unsorted indices give same result
assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray())
assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted),
sparse_svc.predict_proba(X_test))
开发者ID:as133,项目名称:scikit-learn,代码行数:31,代码来源:test_sparse.py
示例11: test_tutorial
def test_tutorial(self):
"""
Verifies we can do what sklearn does here:
http://scikit-learn.org/stable/tutorial/basic/tutorial.html
"""
digits = datasets.load_digits()
digits_data = digits.data
# for now, we need a column vector rather than an array
digits_target = digits.target
p = Pipeline()
# load data from a numpy dataset
stage_data = NumpyRead(digits_data)
stage_target = NumpyRead(digits_target)
# train/test split
stage_split_data = SplitTrainTest(2, test_size=1, random_state=0)
# build a classifier
stage_clf = wrap_and_make_instance(SVC, gamma=0.001, C=100.)
# output to a csv
stage_csv = CSVWrite(self._tmp_files('out.csv'))
node_data, node_target, node_split, node_clf, node_csv = map(
p.add, [
stage_data, stage_target, stage_split_data, stage_clf,
stage_csv])
# connect the pipeline stages together
node_data['output'] > node_split['input0']
node_target['output'] > node_split['input1']
node_split['train0'] > node_clf['X_train']
node_split['train1'] > node_clf['y_train']
node_split['test0'] > node_clf['X_test']
node_clf['y_pred'] > node_csv['input']
self.run_pipeline(p)
result = self._tmp_files.csv_read('out.csv', True)
# making sure we get the same result as sklearn
clf = SVC(gamma=0.001, C=100.)
# The tutorial just splits using array slicing, but we need to make
# sure that both UPSG and sklearn are splitting the same way, so we
# do something more sophisticated
train_X, test_X, train_y, test_y = train_test_split(
digits_data, digits_target, test_size=1, random_state=0)
clf.fit(train_X, np.ravel(train_y))
control = clf.predict(test_X)[0]
self.assertAlmostEqual(result, control)
# model persistance
s = pickle.dumps(stage_clf)
stage_clf2 = pickle.loads(s)
self.assertEqual(stage_clf.get_params(), stage_clf2.get_params())
开发者ID:macressler,项目名称:UPSG,代码行数:60,代码来源:test_sklearn_parity.py
示例12: main
def main():
digits = load_digits()
X = digits.data
y = digits.target
mds = MDS()
X_mds = mds.fit_transform(X)
plot_embedding(X_mds, y)
开发者ID:JackBass,项目名称:ml-algorithms-simple,代码行数:7,代码来源:mds_sklearn_sample.py
示例13: test_constraint_removal
def test_constraint_removal():
digits = load_digits()
X, y = digits.data, digits.target
y = 2 * (y % 2) - 1 # even vs odd as +1 vs -1
X = X / 16.
pbl = BinarySVMModel(n_features=X.shape[1])
clf_no_removal = OneSlackSSVM(model=pbl, max_iter=500, verbose=1, C=10,
inactive_window=0, tol=0.01)
clf_no_removal.fit(X, y)
clf = OneSlackSSVM(model=pbl, max_iter=500, verbose=1, C=10, tol=0.01,
inactive_threshold=1e-8)
clf.fit(X, y)
# results are mostly equal
# if we decrease tol, they will get more similar
assert_less(np.mean(clf.predict(X) != clf_no_removal.predict(X)), 0.02)
# without removal, have as many constraints as iterations
# +1 for true y constraint
assert_equal(len(clf_no_removal.objective_curve_) + 1,
len(clf_no_removal.constraints_))
# with removal, there are less constraints than iterations
assert_less(len(clf.constraints_),
len(clf.objective_curve_))
开发者ID:hushell,项目名称:pystruct,代码行数:25,代码来源:test_one_slack_ssvm.py
示例14: main
def main():
# load iris data in, make a binary decision problem out of it
data = load_digits()
X = Array2Dict().fit_transform(data.data)
y = data.target + 1
i = int(0.8 * len(X))
X_train, X_test = X[:i], X[i:]
y_train, y_test = y[:i], y[i:]
# do the actual learning
m = VW_Classifier(loss='logistic', moniker='example_sklearn', passes=10, silent=True, learning_rate=10, raw=True, oaa = 10)
m.fit(X_train, y_train)
# print confusion matrix on test data
y_est = m.predict_proba(X_test)
lines = y_est
#print y_est
probs = []
for i, line in enumerate(lines):
line = line.split()
labels, vs = zip(*[[float(x) for x in l.split(':')] for l in line[:]])
probs__ = sigmoid(asarray(vs))
probs_ = probs__/probs__.sum()
probs.append(probs_)
probs = np.asarray(probs)
print probs
开发者ID:aboSamoor,项目名称:vowpal_porpoise,代码行数:28,代码来源:example_predictproba.py
示例15: main
def main():
data = datasets.load_digits()
X = normalize(data.data)
y = data.target
# One-hot encoding of nominal y-values
y = to_categorical(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, seed=1)
# Perceptron
clf = Perceptron(n_iterations=5000,
learning_rate=0.001,
loss=CrossEntropy,
activation_function=Sigmoid)
clf.fit(X_train, y_train)
y_pred = np.argmax(clf.predict(X_test), axis=1)
y_test = np.argmax(y_test, axis=1)
accuracy = accuracy_score(y_test, y_pred)
print ("Accuracy:", accuracy)
# Reduce dimension to two using PCA and plot the results
Plot().plot_in_2d(X_test, y_pred, title="Perceptron", accuracy=accuracy, legend_labels=np.unique(y))
开发者ID:PSEUDOBUBLAR,项目名称:ML-From-Scratch,代码行数:26,代码来源:perceptron.py
示例16: code
def code():
digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target
"""X_folds = np.array_split(X_digits, 3)
y_folds = np.array_split(y_digits, 3)"""
svc = svm.SVC(C=1, kernel='linear')
"""scores = list()
for k in range(3):
# We use 'list' to copy, in order to 'pop' later on
X_train = list(X_folds)
X_test = X_train.pop(k)
X_train = np.concatenate(X_train)
y_train = list(y_folds)
y_test = y_train.pop(k)
y_train = np.concatenate(y_train)
scores.append(svc.fit(X_train, y_train).score(X_test, y_test))
print(scores)"""
k_fold = cross_validation.KFold(len(X_digits), n_folds=3)
"""for train_indices, test_indices in k_fold:
print('Train: %s | test: %s' % (train_indices, test_indices))"""
#print([svc.fit(X_digits[train], y_digits[train]).score(X_digits[test], y_digits[test]) for train, test in k_fold])
print(cross_validation.cross_val_score(svc, X_digits, y_digits, cv=k_fold,n_jobs=-1))
开发者ID:imaculate,项目名称:scikit-learn-tutorials,代码行数:30,代码来源:KFoldScore.py
示例17: test_backprop
def test_backprop():
# loading data
digits = load_digits()
X = digits['data']
y = digits['target']
# dividing in training, validation, and test set
nsamples = X.shape[0]
end_train_idx = int(0.5 * nsamples)
end_val_idx = int(0.7 * nsamples)
perm = np.random.permutation(nsamples)
Xtrain = X[perm[:end_train_idx]]
Xval = X[perm[end_train_idx:end_val_idx]]
Xtest = X[perm[end_val_idx:]]
ytrain = y[perm[:end_train_idx]]
yval = y[perm[end_train_idx:end_val_idx]]
ytest = y[perm[end_val_idx:]]
# data normalization
mean = Xtrain.mean(0)
std = Xtrain.std(0)
std[std == 0] = 1
Xtrain = (Xtrain - mean) / std
Xval = (Xval - mean) / std
Xtest = (Xtest - mean) / std
# net params
input_size = Xtrain.shape[1]
hidden_size = 30
output_size = np.unique(y).size
net = Sigmoidal2LayerMLP_WithSoftmax(input_size,
hidden_size,
output_size,
bias_init=0.0,
lr=0.0001,
momen_decay=0.0,
l2=0.1)
x = Xtrain[0]
yi = y[0]
net.forward(x)
loss = net.backward(yi)
Wih_grad = net.Wih_grad.copy()
Who_grad = net.Who_grad.copy()
hb_grad = net.hb_grad.copy()
ob_grad = net.ob_grad.copy()
e = 1e-6
for i in xrange(net.Wih.shape[0]):
for h in xrange(net.Wih.shape[1]):
net.Wih[i, h] += e
net.forward(x)
loss1 = net.loss(yi)
net.Wih[i, h] -= 2 * e
net.forward(x)
loss2 = net.loss(yi)
print 'estimated grad W%d_%d = %.4f' % (i, h,
(loss1 - loss2) / (2 * e))
print 'backprop grad = %.4f' % Wih_grad[i, h]
net.Wih[i, h] += e
开发者ID:cesarsalgado,项目名称:selfimprovingpy,代码行数:60,代码来源:mlp.py
示例18: main
def main():
# parameters to cross-validate over
parameters = {
'l2': np.logspace(-5, 0, num=6),
}
# load iris data in, make a binary decision problem out of it
data = load_digits()
X = Array2Dict().fit_transform(data.data)
y = 2 * (data.target >= 5) - 1
i = int(0.8 * len(X))
X_train, X_test = X[:i], X[i:]
y_train, y_test = y[:i], y[i:]
# do the actual learning
gs = GridSearchCV(
VW_Classifier(loss='logistic', moniker='example_sklearn',
passes=10, silent=True, learning_rate=10),
param_grid=parameters,
score_func=f1_score,
cv=StratifiedKFold(y_train),
).fit(X_train, y_train)
# print out results from cross-validation
estimator = gs.best_estimator_
score = gs.best_score_
print 'Achieved a F1 score of %f using l2 == %f during cross-validation' % (score, estimator.l2)
# print confusion matrix on test data
y_est = estimator.fit(X_train, y_train).predict(X_test)
print 'Confusion Matrix:'
print confusion_matrix(y_test, y_est)
开发者ID:ChenglongChen,项目名称:vowpal_porpoise,代码行数:34,代码来源:example_sklearn.py
示例19: test_load_digits
def test_load_digits():
digits = load_digits()
assert_equal(digits.data.shape, (1797, 64))
assert_equal(numpy.unique(digits.target).size, 10)
# test return_X_y option
check_return_X_y(digits, partial(load_digits))
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:7,代码来源:test_base.py
示例20: test_sklearn_nfolds_cv
def test_sklearn_nfolds_cv():
tm._skip_if_no_sklearn()
from sklearn.datasets import load_digits
from sklearn.model_selection import StratifiedKFold
digits = load_digits(3)
X = digits['data']
y = digits['target']
dm = xgb.DMatrix(X, label=y)
params = {
'max_depth': 2,
'eta': 1,
'silent': 1,
'objective':
'multi:softprob',
'num_class': 3
}
seed = 2016
nfolds = 5
skf = StratifiedKFold(n_splits=nfolds, shuffle=True, random_state=seed)
cv1 = xgb.cv(params, dm, num_boost_round=10, nfold=nfolds, seed=seed)
cv2 = xgb.cv(params, dm, num_boost_round=10, nfold=nfolds, folds=skf, seed=seed)
cv3 = xgb.cv(params, dm, num_boost_round=10, nfold=nfolds, stratified=True, seed=seed)
assert cv1.shape[0] == cv2.shape[0] and cv2.shape[0] == cv3.shape[0]
assert cv2.iloc[-1, 0] == cv3.iloc[-1, 0]
开发者ID:ChangXiaodong,项目名称:xgboost-withcomments,代码行数:28,代码来源:test_with_sklearn.py
注:本文中的sklearn.datasets.load_digits函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论