本文整理汇总了Python中sklearn.metrics.cluster.v_measure_score函数的典型用法代码示例。如果您正苦于以下问题:Python v_measure_score函数的具体用法?Python v_measure_score怎么用?Python v_measure_score使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了v_measure_score函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_v_measure_and_mutual_information
def test_v_measure_and_mutual_information(seed=36):
# Check relation between v_measure, entropy and mutual information
for i in np.logspace(1, 4, 4).astype(np.int):
random_state = np.random.RandomState(seed)
labels_a, labels_b = (random_state.randint(0, 10, i),
random_state.randint(0, 10, i))
assert_almost_equal(v_measure_score(labels_a, labels_b),
2.0 * mutual_info_score(labels_a, labels_b) /
(entropy(labels_a) + entropy(labels_b)), 0)
avg = 'arithmetic'
assert_almost_equal(v_measure_score(labels_a, labels_b),
normalized_mutual_info_score(labels_a, labels_b,
average_method=avg)
)
开发者ID:MartinThoma,项目名称:scikit-learn,代码行数:14,代码来源:test_supervised.py
示例2: test_k_means_function
def test_k_means_function():
# test calling the k_means function directly
# catch output
from cStringIO import StringIO
import sys
old_stdout = sys.stdout
sys.stdout = StringIO()
cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters,
verbose=True)
sys.stdout = old_stdout
centers = cluster_centers
assert_equal(centers.shape, (n_clusters, n_features))
labels = labels
assert_equal(np.unique(labels).shape[0], n_clusters)
# check that the labels assignements are perfect (up to a permutation)
assert_equal(v_measure_score(true_labels, labels), 1.0)
assert_greater(inertia, 0.0)
# check warning when centers are passed
with warnings.catch_warnings(record=True) as w:
k_means(X, n_clusters=n_clusters, init=centers)
assert_equal(len(w), 1)
# to many clusters desired
assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1)
开发者ID:Jetafull,项目名称:scikit-learn,代码行数:27,代码来源:test_k_means.py
示例3: test_k_means_function
def test_k_means_function():
# test calling the k_means function directly
# catch output
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters,
sample_weight=None,
verbose=True)
finally:
sys.stdout = old_stdout
centers = cluster_centers
assert_equal(centers.shape, (n_clusters, n_features))
labels = labels
assert_equal(np.unique(labels).shape[0], n_clusters)
# check that the labels assignment are perfect (up to a permutation)
assert_equal(v_measure_score(true_labels, labels), 1.0)
assert_greater(inertia, 0.0)
# check warning when centers are passed
assert_warns(RuntimeWarning, k_means, X, n_clusters=n_clusters,
sample_weight=None, init=centers)
# to many clusters desired
assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1,
sample_weight=None)
# kmeans for algorithm='elkan' raises TypeError on sparse matrix
assert_raise_message(TypeError, "algorithm='elkan' not supported for "
"sparse input X", k_means, X=X_csr, n_clusters=2,
sample_weight=None, algorithm="elkan")
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:33,代码来源:test_k_means.py
示例4: test_fitted_model
def test_fitted_model(self):
# non centered, sparse centers to check the
centers = np.array([
[0.0, 5.0, 0.0, 0.0, 0.0],
[1.0, 1.0, 4.0, 0.0, 0.0],
[1.0, 0.0, 0.0, 5.0, 1.0],
])
n_samples = 100
n_clusters, n_features = centers.shape
X, true_labels = make_blobs(n_samples=n_samples, centers=centers,
cluster_std=1., random_state=42)
cbook = CoodeBook(n_words=3)
cbook = cbook.fit(X) # TODO: Is it neaded to reasign? or it can be just cbook.fit(X)
# check that the number of clusters centers and distinct labels match
# the expectation
centers = cbook.get_dictionary()
assert_equal(centers.shape, (n_clusters, n_features))
labels = cbook.predict(X)
assert_equal(np.unique(labels).shape[0], n_clusters)
# check that the labels assignment are perfect (up to a permutation)
assert_equal(v_measure_score(true_labels, labels), 1.0)
assert_greater(cbook.cluster_core.inertia_, 0.0)
# check that the descriptor looks like the homogenous PDF used
# to create the original samples
cbook_hist = cbook.get_BoF_descriptor(X)
expected_value = float(1)/cbook.n_words
for bin_value in cbook_hist[0]:
assert_less(round(bin_value-expected_value,3), 0.01)
开发者ID:massich,项目名称:oct_image_classif,代码行数:34,代码来源:test_codebook.py
示例5: test_int_input
def test_int_input():
X_list = [[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]]
for dtype in [np.int32, np.int64]:
X_int = np.array(X_list, dtype=dtype)
X_int_csr = sp.csr_matrix(X_int)
init_int = X_int[:2]
fitted_models = [
KMeans(n_clusters=2).fit(X_int),
KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_int),
# mini batch kmeans is very unstable on such a small dataset hence
# we use many inits
MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int),
MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int_csr),
MiniBatchKMeans(n_clusters=2, batch_size=2,
init=init_int, n_init=1).fit(X_int),
MiniBatchKMeans(n_clusters=2, batch_size=2,
init=init_int, n_init=1).fit(X_int_csr),
]
for km in fitted_models:
assert_equal(km.cluster_centers_.dtype, np.float64)
expected_labels = [0, 1, 1, 0, 0, 1]
scores = np.array([v_measure_score(expected_labels, km.labels_)
for km in fitted_models])
assert_array_equal(scores, np.ones(scores.shape[0]))
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:27,代码来源:test_k_means.py
示例6: test_k_means_function
def test_k_means_function():
# test calling the k_means function directly
# catch output
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters,
verbose=True)
finally:
sys.stdout = old_stdout
centers = cluster_centers
assert_equal(centers.shape, (n_clusters, n_features))
labels = labels
assert_equal(np.unique(labels).shape[0], n_clusters)
# check that the labels assignment are perfect (up to a permutation)
assert_equal(v_measure_score(true_labels, labels), 1.0)
assert_greater(inertia, 0.0)
# check warning when centers are passed
assert_warns(RuntimeWarning, k_means, X, n_clusters=n_clusters,
init=centers)
# to many clusters desired
assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1)
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:26,代码来源:test_k_means.py
示例7: test_k_means_perfect_init
def test_k_means_perfect_init():
try:
p_suite = []#PY_suite(suite_name=u'perfect_init')
for i in range(10):
X, true_labels = make_blobs(n_samples=n_samples, centers=centers,
cluster_std=1., random_state=42)
km = KMeans(init=centers.copy(), n_clusters=n_clusters,
random_state=42,n_init=1).fit(X)
p_suite+=[PY_raises(ValueError,km.fit,[[0.,1.]]),
PY_equals(v_measure_score(true_labels, km.labels_),1.0),
PY_equals(km.cluster_centers_.shape,(n_clusters,n_features)),
PY_equals(v_measure_score(true_labels,km.labels_), 1.0),
PY_greater(km.inertia_,0.0)
]
return p_suite
except Exception:
return 50
开发者ID:saemundo,项目名称:scikit-learn,代码行数:17,代码来源:test_k_means.py
示例8: test_k_means_plus_plus_init_not_precomputed
def test_k_means_plus_plus_init_not_precomputed():
try:
p_suite = []#PY_suite(suite_name=u'plus_plus_init_not_precomputed')
for i in range(10):
X, true_labels = make_blobs(n_samples=n_samples, centers=centers,
cluster_std=1., random_state=42)
km = KMeans(init="k-means++", n_clusters=n_clusters,
random_state=42,precompute_distances=False).fit(X)
p_suite+=[PY_raises(ValueError,km.fit,[[0.,1.]]),
PY_equals(v_measure_score(true_labels, km.labels_),1.0),
PY_equals(km.cluster_centers_.shape,(n_clusters,n_features)),
PY_equals(v_measure_score(true_labels,km.labels_), 1.0),
PY_greater(km.inertia_,0.0)
]
return p_suite
except Exception:
return 50
开发者ID:saemundo,项目名称:scikit-learn,代码行数:17,代码来源:test_k_means.py
示例9: calculate_scores
def calculate_scores(self):
x, c, labels = self.x, self.c, self.labels
self.v_measure = v_measure_score(c, labels)
self.complete = completeness_score(c, labels)
self.adjusted_mutual = adjusted_mutual_info_score(c, labels)
self.adjusted_rand = adjusted_rand_score(c, labels)
self.silhouette = silhouette_score(x, c)
self.purity, self.partial_purity = self.__purity__()
开发者ID:jakobjoachim,项目名称:text-mining-haw-bachelor,代码行数:8,代码来源:cluster_eval.py
示例10: test_exactly_zero_info_score
def test_exactly_zero_info_score():
"""Check numerical stability when information is exactly zero"""
for i in np.logspace(1, 4, 4).astype(np.int):
labels_a, labels_b = np.ones(i, dtype=np.int), np.arange(i, dtype=np.int)
assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0)
assert_equal(v_measure_score(labels_a, labels_b), 0.0)
assert_equal(adjusted_mutual_info_score(labels_a, labels_b), 0.0)
assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0)
开发者ID:JinguoGao,项目名称:scikit-learn,代码行数:8,代码来源:test_supervised.py
示例11: test_k_means_random_init_sparse
def test_k_means_random_init_sparse():
try:
p_suite = []#PY_suite(suite_name=u'init_random_sparse')
for i in range(10):
X, true_labels = make_blobs(n_samples=n_samples, centers=centers,
cluster_std=1., random_state=42)
X_csr = sp.csr_matrix(X)
km = KMeans(init="random", n_clusters=n_clusters,
random_state=42).fit(X_csr)
p_suite+=[PY_raises(ValueError,km.fit,[[0.,1.]]),
PY_equals(v_measure_score(true_labels, km.labels_),1.0),
PY_equals(km.cluster_centers_.shape,(n_clusters,n_features)),
PY_equals(v_measure_score(true_labels,km.labels_), 1.0),
PY_greater(km.inertia_,0.0)
]
return p_suite
except Exception:
return 50
开发者ID:saemundo,项目名称:scikit-learn,代码行数:18,代码来源:test_k_means.py
示例12: test_v_measure_and_mutual_information
def test_v_measure_and_mutual_information(seed=36):
"""Check relation between v_measure, entropy and mutual information"""
for i in np.logspace(1, 4, 4):
random_state = np.random.RandomState(seed)
labels_a, labels_b = random_state.random_integers(0, 10, i),\
random_state.random_integers(0, 10, i)
assert_almost_equal(v_measure_score(labels_a, labels_b),
2.0 * mutual_info_score(labels_a, labels_b) /
(entropy(labels_a) + entropy(labels_b)), 0)
开发者ID:Jetafull,项目名称:scikit-learn,代码行数:9,代码来源:test_supervised.py
示例13: test_accuracy
def test_accuracy(self):
from sklearn.cluster import KMeans as skKMeans
n_samples = 100000
centers = 10
X, true_labels = make_blobs(n_samples=n_samples, centers=centers,
cluster_std=1., random_state=42)
kmeans_h2o = KMeans(n_gpus=1, n_clusters=centers, random_state=42)
kmeans_h2o.fit(X)
kmeans_sk = skKMeans(n_init=1, n_clusters=centers, init='random',
random_state=42)
kmeans_sk.fit(X)
accuracy_h2o = v_measure_score(kmeans_h2o.labels_, true_labels)
accuracy_sk = v_measure_score(kmeans_sk.labels_, true_labels)
# We also want to be either better or at most 10% worse than SKLearn
# Everything else is horrible and we probably should fix something
assert accuracy_h2o - accuracy_sk >= -0.1
开发者ID:wamsiv,项目名称:h2o4gpu,代码行数:18,代码来源:test_kmeans.py
示例14: test_mini_batch_k_means_random_init_partial_fit
def test_mini_batch_k_means_random_init_partial_fit():
km = MiniBatchKMeans(n_clusters=n_clusters, init="random", random_state=42)
# use the partial_fit API for online learning
for X_minibatch in np.array_split(X, 10):
km.partial_fit(X_minibatch)
# compute the labeling on the complete dataset
labels = km.predict(X)
assert_equal(v_measure_score(true_labels, labels), 1.0)
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:10,代码来源:test_k_means.py
示例15: test_scaled_weights
def test_scaled_weights():
# scaling all sample weights by a common factor
# shouldn't change the result
sample_weight = np.ones(n_samples)
for estimator in [KMeans(n_clusters=n_clusters, random_state=42),
MiniBatchKMeans(n_clusters=n_clusters, random_state=42)]:
est_1 = clone(estimator).fit(X)
est_2 = clone(estimator).fit(X, sample_weight=0.5*sample_weight)
assert_almost_equal(v_measure_score(est_1.labels_, est_2.labels_), 1.0)
assert_almost_equal(_sort_centers(est_1.cluster_centers_),
_sort_centers(est_2.cluster_centers_))
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:11,代码来源:test_k_means.py
示例16: test_unit_weights_vs_no_weights
def test_unit_weights_vs_no_weights():
# not passing any sample weights should be equivalent
# to all weights equal to one
sample_weight = np.ones(n_samples)
for estimator in [KMeans(n_clusters=n_clusters, random_state=42),
MiniBatchKMeans(n_clusters=n_clusters, random_state=42)]:
est_1 = clone(estimator).fit(X)
est_2 = clone(estimator).fit(X, sample_weight=sample_weight)
assert_almost_equal(v_measure_score(est_1.labels_, est_2.labels_), 1.0)
assert_almost_equal(_sort_centers(est_1.cluster_centers_),
_sort_centers(est_2.cluster_centers_))
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:11,代码来源:test_k_means.py
示例17: _check_fitted_model
def _check_fitted_model(km):
# check that the number of clusters centers and distinct labels match
# the expectation
centers = km.cluster_centers_
assert_equal(centers.shape, (n_clusters, n_features))
labels = km.labels_
assert_equal(np.unique(labels).shape[0], n_clusters)
# check that the labels assignment are perfect (up to a permutation)
assert_equal(v_measure_score(true_labels, labels), 1.0)
assert_greater(km.score_, 0.0)
开发者ID:HunterAllman,项目名称:Python,代码行数:12,代码来源:test_k_means.py
示例18: _check_fitted_model
def _check_fitted_model(km):
centers = km.cluster_centers_
assert_equal(centers.shape, (n_clusters, n_features))
labels = km.labels_
assert_equal(np.unique(labels).shape[0], n_clusters)
# check that the labels assignements are perfect (up to a permutation)
assert_equal(v_measure_score(true_labels, labels), 1.0)
assert_true(km.inertia_ > 0.0)
# check error on dataset being too small
assert_raises(ValueError, km.fit, [[0., 1.]])
开发者ID:ashish-sadh,项目名称:scikit-learn,代码行数:13,代码来源:test_k_means.py
示例19: test_exactly_zero_info_score
def test_exactly_zero_info_score():
# Check numerical stability when information is exactly zero
for i in np.logspace(1, 4, 4).astype(np.int):
labels_a, labels_b = (np.ones(i, dtype=np.int),
np.arange(i, dtype=np.int))
assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0)
assert_equal(v_measure_score(labels_a, labels_b), 0.0)
assert_equal(adjusted_mutual_info_score(labels_a, labels_b), 0.0)
assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0)
for method in ["min", "geometric", "arithmetic", "max"]:
assert adjusted_mutual_info_score(labels_a, labels_b,
method) == 0.0
assert normalized_mutual_info_score(labels_a, labels_b,
method) == 0.0
开发者ID:MartinThoma,项目名称:scikit-learn,代码行数:14,代码来源:test_supervised.py
示例20: _check_fitted_model
def _check_fitted_model(km):
# check that the number of clusters centers and distinct labels match
# the expectation
centers = km.cluster_centers_
assert_equal(centers.shape, (n_clusters, n_features))
labels = km.labels_
assert_equal(np.unique(labels).shape[0], n_clusters)
# check that the labels assignment are perfect (up to a permutation)
assert_equal(v_measure_score(true_labels, labels), 1.0)
assert_greater(km.inertia_, 0.0)
# check error on dataset being too small
assert_raises(ValueError, km.fit, [[0., 1.]])
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:15,代码来源:test_k_means.py
注:本文中的sklearn.metrics.cluster.v_measure_score函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论